Weikert S, Ljungberg B: Contemporary epidemiology of renal cell carcinoma: perspectives of primary prevention. World J Urol. 2010, 28: 247-52. 10.1007/s00345-010-0555-1
Article
PubMed
Google Scholar
Eichelberg C, Junker K, Ljungberg B, Moch H: Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical applicability. Eur Urol. 2009, 55: 851-863. 10.1016/j.eururo.2009.01.003
Article
CAS
PubMed
Google Scholar
Haunerland NH, Spener F: Fatty acid-binding proteins-insights from genetic manipulations. Prog Lipid Res. 2004, 43: 328-349. 10.1016/j.plipres.2004.05.001
Article
CAS
PubMed
Google Scholar
Boord JB, Fazio S, Linton MF: Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and atherosclerosis. Curr Opin Lipidol. 2002, 13: 141-147. 10.1097/00041433-200204000-00005
Article
CAS
PubMed
Google Scholar
Seliger B, Lichtenfels R, Atkins D, Bukur J, Halder T, Kersten M, Harder A, Ackermann A, Malenica B, Brenner W, Zobawa M, Lottspeich F: Identification of fatty acid binding proteins as markers associated with the initiation and/or progression of renal cell carcinoma. Proteomics. 2005, 5: 2631-2640. 10.1002/pmic.200401264
Article
CAS
PubMed
Google Scholar
Domoto T, Miyama Y, Suzuki H, Teratani T, Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S, Nozawa R: Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci. 2007, 98: 77-82. 10.1111/j.1349-7006.2006.00355.x
Article
CAS
PubMed
Google Scholar
Teratani T, Domoto T, Kuriki K, Kageyama T, Takayama T, Ishikawa A, Ozono S, Nozawa R: Detection of transcript for brain-type fatty Acid-binding protein in tumor and urine of patients with renal cell carcinoma. Urology. 2007, 69: 236-240. 10.1016/j.urology.2006.09.060
Article
PubMed
Google Scholar
Tölle A, Jung M, Lein M, Johannsen M, Miller K, Moch H, Jung K, Kristiansen G: Brain-type and liver-type fatty acid-binding proteins: new tumor markers for renal cancer?. BMC Cancer. 2009, 9: 248- 10.1186/1471-2407-9-248
Article
PubMed Central
PubMed
Google Scholar
Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, Israel MA: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci USA. 2005, 102: 5814-5819. 10.1073/pnas.0402870102
Article
PubMed Central
CAS
PubMed
Google Scholar
Goto Y, Matsuzaki Y, Kurihara S, Shimizu A, Okada T, Yamamoto K, Murata H, Takata M, Aburatani H, Hoon DS, Saida T, Kawakami Y: A new melanoma antigen fatty acid-binding protein 7, involved in proliferation and invasion, is a potential target for immunotherapy and molecular target therapy. Cancer Res. 2006, 66: 4443-4449. 10.1158/0008-5472.CAN-05-2505
Article
CAS
PubMed
Google Scholar
Goto Y, Koyanagi K, Narita N, Kawakami Y, Takata M, Uchiyama A, Nguyen L, Nguyen T, Ye X, Morton DL, Hoon DS: Aberrant fatty acid-binding protein-7 gene expression in cutaneous malignant melanoma. J Invest Dermatol. 2010, 130: 221-229. 10.1038/jid.2009.195
Article
PubMed Central
CAS
PubMed
Google Scholar
Liang Y, Bollen AW, Aldape KD, Gupta N: Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC Cancer. 2006, 6: 97- 10.1186/1471-2407-6-97
Article
PubMed Central
PubMed
Google Scholar
Kaloshi G, Mokhtari K, Carpentier C, Taillibert S, Lejeune J, Marie Y, Delattre JY, Godbout R, Sanson M: FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol. 2007, 84: 245-248. 10.1007/s11060-007-9377-4
Article
PubMed
Google Scholar
Slipicevic A, Jørgensen K, Skrede M, Rosnes AK, Trøen G, Davidson B, Flørenes VA: The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells. BMC Cancer. 2008, 8: 276- 10.1186/1471-2407-8-276
Article
PubMed Central
PubMed
Google Scholar
Zhang H, Rakha EA, Ball GR, Spiteri I, Aleskandarany M, Paish EC, Powe DG, Macmillan RD, Caldas C, Ellis IO, Green AR: The proteins FABP7 and OATP2 are associated with the basal phenotype and patient outcome in human breast cancer. Breast Cancer Res Treat. 2010, 121: 41-51. 10.1007/s10549-009-0450-x
Article
CAS
PubMed
Google Scholar
Shi YE, Ni J, Xiao G, Liu YE, Fuchs A, Yu G, Su J, Cosgrove JM, Xing L, Zhang M, Li J, Aggarwal BB, Meager A, Gentz R: Antitumor activity of the novel human breast cancer growth inhibitor, mammary-derived growth inhibitor-related gene, MRG. Cancer Res. 1997, 57: 3084-3091.
CAS
PubMed
Google Scholar
Bisgrove DA, Monckton EA, Packer M, Godbout R: Regulation of Brain Fatty Acid-binding Protein Expression by Differential Phosphorylation of Nuclear Factor I in Malignant Glioma Cell Lines. J Biol Chem. 2000, 275: 30668-30676.
Article
CAS
PubMed
Google Scholar
Brun M, Coles JE, Monckton EA, Glubrecht DD, Bisgrove D, Godbout R: Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines. J Mol Biol. 2009, 391: 282-300. 10.1016/j.jmb.2009.06.041
Article
CAS
PubMed
Google Scholar
Sánchez-Font MF, Bosch-Comas A, Gonzàlez-Duarte R, Marfany G: Overexpression of FABP7 in Down syndrome fetal brains is associated with PKNOX1 gene-dosage imbalance. Nucleic Acids Res. 2003, 31: 2769-2777. 10.1093/nar/gkg396
Article
PubMed Central
PubMed
Google Scholar
NCBI FABP7 gene resource. http://www.ncbi.nlm.nih.gov/gene/2173
Tsunoda T, Takagi T: Estimating transcription factor bindability on DNA. Bioinformatics. 1999, 15: 622-630. 10.1093/bioinformatics/15.7.622
Article
CAS
PubMed
Google Scholar
Transcription Element Search System.http://www.cbil.upenn.edu/cgi-bin/tess/tess
Gronostajski RM: Roles of the NFI/CTF gene family in transcription and development. Gene. 2000, 249: 31-45. 10.1016/S0378-1119(00)00140-2
Article
CAS
PubMed
Google Scholar
Kochevar J: A renal cell carcinoma neoplastic antigen detectable by immunohistochemistry is defined by a murine monoclonal antibody. Cancer. 1987, 60: 2031-2036.
Article
Google Scholar
Fogh J, Trempe G: New human tumor cell lines. Human Tumor Cells In Vitro. Edited by: Fogh J. 1975, 115-141. New York: Plenum Press
Chapter
Google Scholar
Williams RD, Elliott AY, Stein N, Fraley EE: In vitro cultivation of human renal cell cancer. II. Characterization of cell lines. In Vitro. 1978, 14: 779-786. 10.1007/BF02617972
Article
CAS
PubMed
Google Scholar
Tölle A, Krause H, Miller K, Jung K, Stephan C: Importance of brain-type fatty acid binding protein for cell-biological processes in human renal carcinoma cells. Oncol Rep. 2011, 25: 1307-1312.
Article
PubMed
Google Scholar
Munshi A, Shafi G, Aliya N, Jyothy A: Histone modifications dictate specific biological readouts. J Genet Genomics. 2009, 36: 75-88. 10.1016/S1673-8527(08)60094-6
Article
CAS
PubMed
Google Scholar
Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA. 2002, 99: 3740-3745. 10.1073/pnas.052410099
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Wiemer EA: The role of microRNAs in cancer: no small matter. Eur J Cancer. 2007, 43: 1529-1544. 10.1016/j.ejca.2007.04.002
Article
CAS
PubMed
Google Scholar
Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H, Kawamura K, Shiba K, Noda T: The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev. 1995, 9: 3109-3121. 10.1101/gad.9.24.3109
Article
CAS
PubMed
Google Scholar
Schonemann MD, Ryan AK, McEvilly RJ, O'Connell SM, Arias CA, Kalla KA, Li P, Sawchenko PE, Rosenfeld MG: Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev. 1995, 9: 3122-3135. 10.1101/gad.9.24.3122
Article
CAS
PubMed
Google Scholar
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010, 463: 1035-1041. 10.1038/nature08797
Article
PubMed Central
CAS
PubMed
Google Scholar
Cook AL, Sturm RA: POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigment Cell Melanoma Res. 2008, 21: 611-626. 10.1111/j.1755-148X.2008.00510.x
Article
CAS
PubMed
Google Scholar
Shi G, Sohn KC, Choi DK, Kim YJ, Kim SJ, Ou BS, Piao YJ, Lee YH, Yoon TJ, Lee Y, Seo YJ, Kim CD, Lee JH: Brn2 is a transcription factor regulating keratinocyte differentiation with a possible role in the pathogenesis of lichen planus. PLoS One. 2010, 5: e13216- 10.1371/journal.pone.0013216
Article
PubMed Central
PubMed
Google Scholar
Zwilling S, König H, Wirth T: High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 1995, 14: 1198-1208.
PubMed Central
CAS
PubMed
Google Scholar
Tomilin A, Reményi A, Lins K, Bak H, Leidel S, Vriend G, Wilmanns M, Schöler HR: Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell. 2000, 103: 853-864. 10.1016/S0092-8674(00)00189-6
Article
CAS
PubMed
Google Scholar
Jung M, Ramankulov A, Roigas J, Johannsen M, Ringsdorf M, Kristiansen G, Jung K: In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol. 2007, 8: 47- 10.1186/1471-2199-8-47
Article
PubMed Central
PubMed
Google Scholar
Faus I, Hsu HJ, Fuchs E: Oct-6: a regulator of keratinocyte gene expression in stratified squamous epithelia. Mol Cell Biol. 1994, 14: 3263-3275.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takaoka N, Fukuzawa M, Saito T, Sakaitani T, Ochiai H: Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum. Biochim Biophys Acta. 1999, 1447: 226-230.
Article
CAS
PubMed
Google Scholar
Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P, Sturm RA, Larue L, Goding CR: Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 2008, 68: 7788-7794. 10.1158/0008-5472.CAN-08-1053
Article
CAS
PubMed
Google Scholar
Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R: Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One. 2008, 3: e2734- 10.1371/journal.pone.0002734
Article
PubMed Central
PubMed
Google Scholar