WHO. Cancer fact sheet No 297; 2012.
Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.
Article
CAS
PubMed
Google Scholar
Schneider G, Siveke JT, Eckel F, Schmid RM. Pancreatic cancer: basic and clinical aspects. Gastroenterology. 2005;128:1606–25.
Article
CAS
PubMed
Google Scholar
Schneider G, Hamacher R, Eser S, Friess H, Schmid RM, Saur D. Molecular biology of pancreatic cancer–new aspects and targets. Anticancer Res. 2008;28:1541–50.
CAS
PubMed
Google Scholar
König A, Fernandez-Zapico ME, Ellenrieder V. Primers on molecular pathways–the NFAT transcription pathway in pancreatic cancer. Pancreatology. 2010;10:416–22.
Article
PubMed
PubMed Central
Google Scholar
Viola JP, Carvalho LD, Fonseca BP, Teixeira LK. NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res. 2005;38:335–44.
Article
CAS
PubMed
Google Scholar
Horsley V, Pavlath GK. NFAT: ubiquitous regulator of cell differentiation and adaptation. J Cell Biol. 2002;156:771–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arlt A, Schäfer H, Kalthoff H. The ‘N-factors’ in pancreatic cancer: functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis. 2012;26:1–8.
Google Scholar
Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM, Ellenrieder V. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J. 2006;25:3714–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neal JW, Clipstone NA. Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J Biol Chem. 2001;276:3666–73.
Article
CAS
PubMed
Google Scholar
Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer. 2009;9:810–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol. 2008;28:7168–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mognol GP, de Araujo-Souza PS, Robbs BK, Teixeira LK, Viola JP. Transcriptional regulation of the c-Myc promoter by NFAT1 involves negative and positive NFAT- responsive elements. Cell Cycle. 2012;11:1014–28.
Article
CAS
PubMed
Google Scholar
Im SH, Rao A. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT- mediated signaling. Mol Cells. 2004;18:1–9.
CAS
PubMed
Google Scholar
Baumgart S, Glesel E, Singh G, Chen NM, Reutlinger K, Zhang J, Billadeau DD, Fernandez- Zapico ME, Gress TM, Singh SK, Ellenrieder V. Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology. 2012;142:388–98.
Article
CAS
PubMed
Google Scholar
Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–47.
Article
CAS
PubMed
Google Scholar
Hernández GL, Volpert OV, Iñiguez MA, Lorenzo E, Martínez-Martínez S, Grau R, Fresno M, Redondo JM. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T-cells and cyclooxygenase 2. J Exp Med. 2001;193:607–20.
Article
PubMed
PubMed Central
Google Scholar
Corral RS, Iñiguez MA, Duque J, López-Pérez R, Fresno M. Bombesin induces cyclooxygenase-2 expression through the activation of the nuclear factor of activated T cells and enhances cell migration in Caco-2 colon carcinoma cells. Oncogene. 2007;26:958–69.
Article
CAS
PubMed
Google Scholar
Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109:67–79.
Article
Google Scholar
Chen L, Glover J, Hogan P, Rao A, Harrison S. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature. 1998;392:42–8.
Article
CAS
PubMed
Google Scholar
Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: nFAT and AP-1. Oncogene. 2001;20:2476–89.
Article
CAS
PubMed
Google Scholar
Yang TT, Chow CW. Transcription cooperation by NFAT.C/EBP composite enhancer complex. J Biol Chem. 2003;278:15874–85.
Article
CAS
PubMed
Google Scholar
Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med. 2006;12:1410–6.
Article
CAS
PubMed
Google Scholar
Santini MP, Talora C, Seki T, Bolgan L, Dotto GP. Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation. Proc Natl Acad Sci USA. 2001;98:9575–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kao SC, Wu H, Xie J, Chang CP, Ranish JA, Graef IA, Crabtree GR. Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science. 2009;323:651–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003;17:2205–32.
Article
CAS
PubMed
Google Scholar
Bouwman P, Philipson E. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol. 2002;195:27–38.
Article
CAS
PubMed
Google Scholar
Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer. 2005;41:2438–48.
Article
CAS
PubMed
Google Scholar
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 2001;188:143–60.
Article
CAS
PubMed
Google Scholar
Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J. 2005;392:1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaczynski J, Cook T, Urrutia R. Sp1- and Krüppel-like transcription factors. Genome Biol. 2003;4:1–8.
Article
Google Scholar
Beishline K, Azizkhan-Clifford J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015;282:224–58.
Article
CAS
PubMed
Google Scholar
Kumar AP, Butler AP. Enhanced Sp1 DNA-binding activity in murine keratinocyte cell lines and epidermal tumors. Cancer Lett. 1999;137:159–65.
Article
CAS
PubMed
Google Scholar
Shi Q, Le X, Abbruzzese JL, Peng Z, Qian CN, Tang H, Xiong Q, Wang B, Li XC, Xie K. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 2001;61:4143–54.
CAS
PubMed
Google Scholar
Jungert K, Buck A, von Wichert G, Adler G, König A, Buchholz M, Gress TM, Ellenrieder V. Sp1 is required for transforming growth factor-beta-induced mesenchymal transition and migration in pancreatic cancer cells. Cancer Res. 2007;67:1563–70.
Article
CAS
PubMed
Google Scholar
Bidart M, Berger F, Pelletier L. Anti-angiogenetic therapies: from theory to practice. Ann Biol Clin. 2013;71:527–35.
CAS
Google Scholar
Fjällskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 2003;9:1469–73.
PubMed
Google Scholar
Huang ZQ, Buchsbaum DJ. Monoclonal antibodies in the treatment of pancreatic cancer. Immunotherapy. 2009;1:223–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka S. Molecular pathogenesis and targeted therapy of pancreatic cancer. Ann Surg Oncol. 2016;2:197–205.
Article
Google Scholar