Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M, Justesen J, Kisselev LL: A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 1994, 372: 701-703. 10.1038/372701a0
Article
CAS
PubMed
Google Scholar
Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov SG, Kisselev LL, Philippe M: Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995, 14: 4065-4072.
PubMed Central
CAS
PubMed
Google Scholar
Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF: The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995, 14: 4365-4373.
PubMed Central
CAS
PubMed
Google Scholar
Frolova L, Le Goff X, Zhouravleva G, Davydova E, Philippe M, Kisselev L: Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996, 2: 334-341.
PubMed Central
CAS
PubMed
Google Scholar
Zavialov AV, Buckingham RH, Ehrenberg M: A posttermination ribosomal complex is the guanidine nucleotide exchange factor for peptide release factor RF3. Cell. 2001, 107: 115-124. 10.1016/S0092-8674(01)00508-6
Article
CAS
PubMed
Google Scholar
Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV: In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell. 2006, 125: 1125-1136. 10.1016/j.cell.2006.04.035
Article
CAS
PubMed
Google Scholar
Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D: The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000, 100: 311-321. 10.1016/S0092-8674(00)80667-4
Article
CAS
PubMed
Google Scholar
Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN: Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993, 7: 683-692.
Article
CAS
PubMed
Google Scholar
Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN: The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics. 1994, 137: 671-676.
PubMed Central
CAS
PubMed
Google Scholar
Liu JJ, Sondheimer N, Lindquist SL: Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci USA. 2002, 99: 16446-16453. 10.1073/pnas.252652099
Article
PubMed Central
CAS
PubMed
Google Scholar
Bradley ME, Liebman SW: The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol. 2004, 51: 1649-1659. 10.1111/j.1365-2958.2003.03955.x
Article
CAS
PubMed
Google Scholar
Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD: Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35 -encoded polypeptide chain release factor. EMBO J. 1996, 15: 3127-3134.
PubMed Central
CAS
PubMed
Google Scholar
Patino MM, Liu JJ, Glover JR, Lindquist SL: Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 1996, 273: 622-626.
Article
CAS
PubMed
Google Scholar
Valouev IA, Kushnirov VV, Ter-Avanesyan MD: Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskeleton. 2002, 52: 161-173. 10.1002/cm.10040
Article
CAS
PubMed
Google Scholar
Kong C, Ito K, Walsh MA, Wada M, Liu Y, Kumar S, Barford D, Nakamura Y, Song H: Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 form S. pombe. Mol Cell. 2004, 14: 233-245. 10.1016/S1097-2765(04)00206-0
Article
CAS
PubMed
Google Scholar
Gagny B, Silar P: Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle. Genetics. 1988, 149: 1763-1775.
Google Scholar
Hoshino S, Imai M, Kobayashi T, Uchida N, Katada T: The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3'-poly(A) tail of mRNA. Direct association of eRF3/GSPT with polyadenylate-binding protein. J Biol Chem. 1999, 274: 16677-16680. 10.1074/jbc.274.24.16677
Article
CAS
PubMed
Google Scholar
Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G: Poly(A)-binding protein acts in translation termination via eukaryotic release factor interaction and does not influence [PSI+] propagation. Mol Cell Biol. 2002, 22: 3301-3315. 10.1128/MCB.22.10.3301-3315.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T: Translation termination factor eRF3 mediates mRNA decay through the regulation of deanylation. J Biol Chem. 2003, 278: 28287-38291.
Google Scholar
Urakov VN, Valouev IA, Lewitin EI, Paushkin SV, Kosorukov VS, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD: Itt1p, a novel protein inhibiting translation termination in Saccharomyces cerevisiae. BMC Mol Biol. 2001, 2: 9-18. 10.1186/1471-2199-2-9
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailleul PA, Newnam GP, Steenbergen JN, Chernoff YO: Genetic study of interactions between the cytoskeletal assembly protein Sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics. 1999, 153: 81-94.
PubMed Central
CAS
PubMed
Google Scholar
Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S: Self-seeded fibers formed by Sup35 the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell. 1997, 89: 811-819. 10.1016/S0092-8674(00)80264-0
Article
CAS
PubMed
Google Scholar
King C-Y, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K: Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA. 1997, 94: 6618-6622. 10.1073/pnas.94.13.6618
Article
PubMed Central
CAS
PubMed
Google Scholar
Breining P, Piepersberg W: Yeast omnipotent suppressor SUP1 (SUP45): nucleotide sequence of the wild type and a mutant gene. Nucleic Acids Res. 1986, 14: 5187-5197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Valouev IA, Urakov VN, Kochneva-Pervukhova NV, Ter-Avanesyan MD: Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis. Mol Microbiol. 2004, 53: 687-696. 10.1111/j.1365-2958.2004.04157.x
Article
CAS
PubMed
Google Scholar
Ebihara K, Nakamura Y: C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA. 1999, 5: 739-750. 10.1017/S135583829998216X
Article
PubMed Central
CAS
PubMed
Google Scholar
Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF: The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol. 1999, 32: 485-496. 10.1046/j.1365-2958.1999.01346.x
Article
CAS
PubMed
Google Scholar
Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD: Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997, 17: 2798-2805.
Article
PubMed Central
CAS
PubMed
Google Scholar
Santoso A, Chien P, Osherovich LZ, Weissman JS: Molecular basis of a yeast prion species barrier. Cell. 2000, 100: 277-288. 10.1016/S0092-8674(00)81565-2
Article
CAS
PubMed
Google Scholar
Kushnirov VV, Kochneva-Pervukhova NV, Chechenova MB, Frolova NS, Ter-Avanesyan MD: Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 2000, 19: 324-331. 10.1093/emboj/19.3.324
Article
PubMed Central
CAS
PubMed
Google Scholar
Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM: Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol. 2000, 35: 865-876. 10.1046/j.1365-2958.2000.01761.x
Article
CAS
PubMed
Google Scholar
Nakayashiki T, Ebihara K, Bannai H, Nakamura Y: Yeast [PSI+] "prions" that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol Cell. 2001, 7: 1121-1130. 10.1016/S1097-2765(01)00259-3
Article
CAS
PubMed
Google Scholar
Hara H, Nakayashiki T, Crist CG, Nakamura Y: Prion domain interaction responsible for species discrimination in yeast [PSI+] transmission. Genes to Cells. 2004, 8: 925-939. 10.1111/j.1365-2443.2003.00694.x.
Article
Google Scholar
Sherman F, Fink GR, Hicks JB: Methods in yeast genetics. 1986, Cold Spring Harbor Laboratory Press
Google Scholar
Boeke JD, LaCroute F, Fink GR: A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984, 197: 345-346. 10.1007/BF00330984
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EE, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, 2
Google Scholar
Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350: 87-96.
Article
CAS
PubMed
Google Scholar
Inoue H, Nojima H, Okayama H: High efficiency transformation of Escherichia coli with plasmids. Gene. 1990, 96: 23-28. 10.1016/0378-1119(90)90336-P
Article
CAS
PubMed
Google Scholar
Lafontaine DLJ, Preiss T, Tollervey D: Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis?. Mol Cell Biol. 1998, 18: 2360-2370.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones JS, Prakash L: Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast. 1990, 6: 363-366. 10.1002/yea.320060502
Article
CAS
PubMed
Google Scholar
Rose MD, Novick P, Thomas JH, Botstein D, Fink GR: A Saccharomyces cerevisiae genomic bank based on a centromere-containing shuttle vector. Gene. 1987, 60: 237-243. 10.1016/0378-1119(87)90232-0
Article
CAS
PubMed
Google Scholar
Gari E, Piedrafita L, Aldea M, Herrero E: A set of vectors with tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast. 1997, 13: 837-848. 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T
Article
CAS
PubMed
Google Scholar
Miller JH: Experiments in Molecular Genetics. 1972, Cold Spring Harbor Laboratory Press
Google Scholar
Stansfield I, Akhmaloka , Tuite MF: A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet. 1995, 27: 417-426. 10.1007/BF00311210
Article
CAS
PubMed
Google Scholar
Roman H: Studies of gene mutation in Saccharomyces. Cold Spring Harbor Symp Quant Biol. 1956, 21: 175-185.
Article
CAS
PubMed
Google Scholar
Fortes P, Kufel J, Fornerod M, Policarpou-Schwarz M, Lafontaine D, Tollervey D, Mattaj IW: Genetic and physical interactions involving the yeast nuclear cap-binding complex. Mol Cell Biol. 1999, 19: 6543-6553.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chernoff YO, Inge-Vechtomov SG, Derkach IL, Ptyushkina MV, Tarunina OV, Dagkesamanskaya AR, Ter-Avanesyan MD: Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae. Yeast. 1992, 8: 489-499. 10.1002/yea.320080702
Article
CAS
PubMed
Google Scholar
Gietz RD, Sugino A: New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988, 74: 527-534. 10.1016/0378-1119(88)90185-0
Article
CAS
PubMed
Google Scholar
Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989, 122: 19-27.
PubMed Central
CAS
PubMed
Google Scholar