Zhou BB, Elledge SJ: The DNA damage response: putting checkpoints in perspective. Nature. 2000, 408: 433-443. 10.1038/35044005
Article
CAS
PubMed
Google Scholar
Jaklevic BR, Su TT: Relative contribution of DNA repair, cell cycle check points and cell death to survival after DNA damage in Drosophila larvae. Curr Biol. 2004, 14: 23-32. 10.1016/j.cub.2003.12.032
Article
CAS
PubMed
Google Scholar
Voss AK, Thomas T: MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays. 2009, 31: 1050-1061. 10.1002/bies.200900051
Article
CAS
PubMed
Google Scholar
Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB: Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J. 2004, 23: 2258-2268. 10.1038/sj.emboj.7600235
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004, 32: 959-976. 10.1093/nar/gkh252
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ER, Pannuti A, Gu W, Steurnagel A, Cook RG, Allis CD, Lucchesi JC: The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol. 2000, 20: 312-318. 10.1128/MCB.20.1.312-318.2000
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC: A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol. 2005, 25: 9175-9188. 10.1128/MCB.25.21.9175-9188.2005
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wu L, Corsa CA, Kunkel S, Dou Y: Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell. 2009, 36: 290-301. 10.1016/j.molcel.2009.07.031
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC: Mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 1997, 16: 2054-2060. 10.1093/emboj/16.8.2054
Article
CAS
PubMed
PubMed Central
Google Scholar
Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A: hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol. 2005, 25: 6798-6810. 10.1128/MCB.25.15.6798-6810.2005
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal- Bhadra M, Horikoshi N, Pushpavalli Sreerangam NCVL, Sarkar A, Bag I, Krishnan A, Lucchesi JC, Kumar R, Yang Q, Pandita RJ, Singh M, Bhadra U, Eissenberg JC, Pandita TK: The role of MOF in the ionizing radiation response is conserved in Drosophila melanogaster. Chromosoma. 2011,http://dx.doi.org/10.1007/s00412-011-0344-7,
Google Scholar
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL: Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006, 311: 844-847. 10.1126/science.1124000
Article
CAS
PubMed
Google Scholar
Corona DF, Clapier CR, Becker PB, Tamkun JW: Modulation of ISWI function by site-specific histoneacetylation. EMBO Rep. 2002, 3: 242-247. 10.1093/embo-reports/kvf056
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhtar A, Becker PB: Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell. 2000, 5: 367-375. 10.1016/S1097-2765(00)80431-1
Article
CAS
PubMed
Google Scholar
Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK: The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol. 2008, 28: 397-409. 10.1128/MCB.01045-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005, 37: 391-400. 10.1038/ng1531
Article
CAS
PubMed
Google Scholar
Tram U, Riggs B, Sullivan W: Cleavage and gastrulation in Drosophila embryos. Encyclopedia of Life Sciences. 2002, London: Macmillan Reference Ltd,
Google Scholar
Foe VE, Odell GM Edgar BA, Bate M, Martinez Arias A: Mitosis and morphogenesis in the Drosophila embryo, Point and counterpoint. The Development of Drosophila melanogaster vol 1. 1993, 149-300. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press,
Google Scholar
Dor E, Beck SA, Brock HW: Polycomb group mutants exhibit mitotic defects in syncytial cell cycles of Drosophila embryos. Dev Biol. 2006, 29: 312-322.
Article
Google Scholar
Fogarty P, Campbell SD, Abu-Shumays R, Phalle BS, Yu KR, Uy GL, Goldberg ML, Sullivan W: The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr Biol. 1997, 7: 418-426. 10.1016/S0960-9822(06)00189-8
Article
CAS
PubMed
Google Scholar
Sibon OC, Kelkar A, Lemstra W, Theurkauf WE: DNA replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol. 2000, 2: 90-95. 10.1038/35000041
Article
CAS
PubMed
Google Scholar
Sibon OC, Stevenson VA, Theurkauf WE: DNA-replication checkpoint control at the Drosophila midblastula transition. Nature. 1997, 388: 93-97. 10.1038/40439
Article
CAS
PubMed
Google Scholar
Sibon OC, Laurencon A, Hawley R, Theurkauf WE: The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr Biol. 1999, 9: 302-312. 10.1016/S0960-9822(99)80138-9
Article
CAS
PubMed
Google Scholar
Takada S, Kelkar A, Theurkauf WE: Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell. 2003, 113: 87-99. 10.1016/S0092-8674(03)00202-2
Article
CAS
PubMed
Google Scholar
Oishi I, Sugiyama S, Otani H, Yamamura H, Nishida Y, Minami Y: A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech Dev. 1998, 71: 49-63. 10.1016/S0925-4773(97)00200-1
Article
CAS
PubMed
Google Scholar
Xu J, Xin S, Du W: Drosophila Chk2 is required for DNA damage-mediated cell cycle arrest and apoptosis. FEBS Lett. 2001, 508: 394-398. 10.1016/S0014-5793(01)03103-9
Article
CAS
PubMed
Google Scholar
Callaini G, Dallai R, Riparbelli MG: Cytochalasin induces spindle fusion in the syncytial blastoderm of the early Drosophila embryo. Biol Cell. 1992, 74: 249-254. 10.1016/0248-4900(92)90035-Y
Article
CAS
PubMed
Google Scholar
Nakayama M, Yamaguchi S, Sagisu Y, Sakurai H, Ito F, Kawasaki K: Loss of RecQ5 leads to spontaneous mitotic defects and chromosomal aberrations in Drosophila melanogaster. DNA Repair. 2009, 8: 232-241. 10.1016/j.dnarep.2008.10.007
Article
CAS
PubMed
Google Scholar
Sakurai H, Okado M, Fumiaki I, Kawasaki K: Anaphase DNA bridges induced by lack of RecQ5 in Drosophila syncytial embryos. FEBS Lett. 2011, 585: 1923-1928. 10.1016/j.febslet.2011.04.074
Article
CAS
PubMed
Google Scholar
Sullivan W, Daily DR, Fogarty P, Yook KJ, Pimpinelli S: Delays in anaphase initiation occur in individual nuclei of the syncytial Drosophila embryo. Mol Biol Cell. 1993, 4: 885-896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roninson IB, Broude EV, Chang BD: If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Update. 2001, 4: 303-313. 10.1054/drup.2001.0213. 10.1054/drup.2001.0213
Article
CAS
Google Scholar
Polo SE, Jackson SP: Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011, 25: 409-433. 10.1101/gad.2021311
Article
CAS
PubMed
PubMed Central
Google Scholar
Raff JW, Glover DM: Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell. 1989, 57: 611-619. 10.1016/0092-8674(89)90130-X
Article
CAS
PubMed
Google Scholar
Misteli T, Soutoglou E: The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009, 10: 243-254. 10.1038/nrm2651
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi L, Oberdoerffer P: Chromatin dynamics in DNA double-strand break repair. Biochim Biophys Acta. 2012, 1819: 811-819. 10.1016/j.bbagrm.2012.01.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakkenist CJ, Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003, 421: 499-506. 10.1038/nature01368
Article
CAS
PubMed
Google Scholar
Bencokova Z, Kaufmann MR, Pires IM, Lecane PS, Giaccia AJ, Hammond EM: ATM activation and signaling under hypoxic conditions. Mol Cell Biol. 2009, 29: 526-537. 10.1128/MCB.01301-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rie N, Horikoshi N, Baskaran R, Lee JH, Lobrich M, Paull TT, Roti JL: Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 2007, 67: 3010-3017. 10.1158/0008-5472.CAN-06-4328
Article
CAS
PubMed
Google Scholar
Li J, Stern DF: DNA damage regulates Chk2 association with chromatin. J Biol Chem. 2005, 280: 37948-37956. 10.1074/jbc.M509299200
Article
CAS
PubMed
Google Scholar
Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, Anderson CW, Appella E, Nakanishi M, Suzuki H, Nagashima K, Sawa H, Ikeda K, Motoyama N: Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 2002, 21: 5195-5205. 10.1093/emboj/cdf506
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LD, Gilkes M, Pan Y, Lane WS, Chen J: ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 2005, 24: 3411-3422. 10.1038/sj.emboj.7600812
Article
CAS
PubMed
PubMed Central
Google Scholar