Bertram G, Innes S, Minella O, Richardson J, Stansfield I: Endless possibilities: translation termination and stop codon recognition. Microbiology. 2001, 147: 255-269.
Article
CAS
PubMed
Google Scholar
Kisselev LL, Buckingham RH: Translational termination comes of age. Trends Biochem Sci. 2000, 25: 561-566. 10.1016/S0968-0004(00)01669-8
Article
CAS
PubMed
Google Scholar
Nakamura Y, Ito K, Ehrenberg M: Mimicry grasps reality in translation termination. Cell. 2000, 101: 349-352. 10.1016/S0092-8674(00)80845-4
Article
CAS
PubMed
Google Scholar
Poole E, Tate W: Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta. 2000, 1493: 1-11. 10.1016/S0167-4781(00)00162-7
Article
CAS
PubMed
Google Scholar
Frolova L, Le GX, Rasmussen HH, Cheperegin S, Drugeon G, Kress M: A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 1994, 372: 701-703. 10.1038/372701a0
Article
CAS
PubMed
Google Scholar
Craigen WJ, Lee CC, Caskey CT: Recent advances in peptide chain termination. Mol Microbiol. 1990, 4: 861-865. 10.1111/j.1365-2958.1990.tb00658.x
Article
CAS
PubMed
Google Scholar
Caskey CT, Forrester WC, Tate W, Ward CD: Cloning of the Escherichia coli release factor 2 gene. J Bacteriol. 1984, 158: 365-368.
PubMed Central
CAS
PubMed
Google Scholar
Scolnick E, Tompkins R, Caskey T, Nirenberg M: Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968, 61: 768-774. 10.1073/pnas.61.2.768
Article
PubMed Central
CAS
PubMed
Google Scholar
Weiss RB, Murphy JP, Gallant JA: Genetic screen for cloned release factor genes. J Bacteriol. 1984, 158: 362-364.
PubMed Central
CAS
PubMed
Google Scholar
Breining P, Piepersberg W: Yeast omnipotent supressor SUP1 (SUP45): nucleotide sequence of the wild type and a mutant gene. Nucleic Acids Res. 1986, 14: 5187-5197. 10.1093/nar/14.13.5187
Article
PubMed Central
CAS
PubMed
Google Scholar
Himmelfarb HJ, Maicas E, Friesen JD: Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product. Mol Cell Biol. 1985, 5: 816-822.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakamura Y, Ito K, Matsumura K, Kawazu Y, Ebihara K: Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol. 1995, 73: 1113-1122.
Article
CAS
PubMed
Google Scholar
Ito K, Ebihara K, Uno M, Nakamura Y: Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci U S A. 1996, 93: 5443-5448. 10.1073/pnas.93.11.5443
Article
PubMed Central
CAS
PubMed
Google Scholar
Ito K, Uno M, Nakamura Y: A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature. 2000, 403: 680-684. 10.1038/35003097
Article
CAS
PubMed
Google Scholar
Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF: The crystal structure of human eukaryotic release factor eRF1 – mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000, 100: 311-321. 10.1016/S0092-8674(00)80667-4
Article
CAS
PubMed
Google Scholar
Klaholz B, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B: Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature. 2003, 421: 90-94. 10.1038/nature01225
Article
CAS
PubMed
Google Scholar
Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M: Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell. 2001, 8: 1375-1382. 10.1016/S1097-2765(01)00415-4
Article
CAS
PubMed
Google Scholar
Scarlett DJ, McCaughan KK, Wilson DN, Tate WP: Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. J Biol Chem.
Google Scholar
Ebihara K, Nakamura Y: C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA. 1999, 5: 739-750. 10.1017/S135583829998216X
Article
PubMed Central
CAS
PubMed
Google Scholar
Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF: The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol. 1999, 32: 485-496. 10.1046/j.1365-2958.1999.01346.x
Article
CAS
PubMed
Google Scholar
Ito K, Ebihara K, Nakamura Y: The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 1998, 4: 958-972. 10.1017/S1355838298971874
Article
PubMed Central
CAS
PubMed
Google Scholar
Merkulova TI, Frolova LY, Lazar M, Camonis J, Kisselev LL: C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 1999, 443: 41-47. 10.1016/S0014-5793(98)01669-X
Article
CAS
PubMed
Google Scholar
Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM: Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 1999, 5: 1014-1020. 10.1017/S135583829999043X
Article
PubMed Central
CAS
PubMed
Google Scholar
Frolova LY, Merkulova TI, Kisselev LL: Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains. RNA. 2000, 6: 381-390. 10.1017/S135583820099143X
Article
PubMed Central
CAS
PubMed
Google Scholar
Bertram G, Bell HA, Ritchie DW, Fullerton G, Stansfield I: Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA. 2000, 6: 1236-1247. 10.1017/S1355838200000777
Article
PubMed Central
CAS
PubMed
Google Scholar
Chavatte L, Frolova L, Kisselev L, Favre A: The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur J Biochem. 2001, 268: 2896-2904. 10.1046/j.1432-1327.2001.02177.x
Article
CAS
PubMed
Google Scholar
Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M: Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995, 14: 4065-4072.
PubMed Central
CAS
PubMed
Google Scholar
Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV: The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995, 14: 4365-4373.
PubMed Central
CAS
PubMed
Google Scholar
Stansfield I, Eurwilaichitr L, Akhmaloka , Tuite MF: Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Mol Microbiol. 1996, 20: 1135-1143. 10.1111/j.1365-2958.1996.tb02634.x
Article
CAS
PubMed
Google Scholar
Kawakami K, Nakamura Y: Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2. Proc Natl Acad Sci U S A. 1990, 87: 8432-8436. 10.1073/pnas.87.21.8432
Article
PubMed Central
CAS
PubMed
Google Scholar
Inge-Vechtomov SG: New genetic lines of yeast Saccharomyces cerevisiae. Vestnik LGU (in Russian). 1963, 21: 117-125.
Google Scholar
Mortimer RK, Johnston JR: Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986, 113: 35-43.
PubMed Central
CAS
PubMed
Google Scholar
Stansfield I, Akhmaloka , Tuite MF: A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet. 1995, 27: 417-426. 10.1007/BF00311210
Article
CAS
PubMed
Google Scholar
Boeke JD, LaCroute F, Fink GR: A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984, 197: 345-346. 10.1007/BF00330984
Article
CAS
PubMed
Google Scholar
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998, 14: 115-132. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
Article
CAS
PubMed
Google Scholar
Hani J, Feldmann H: tRNA genes and retroelements in the yeast genome. Nucleic Acids Res. 1998, 26: 689-696. 10.1093/nar/26.3.689
Article
PubMed Central
CAS
PubMed
Google Scholar
Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature. 1989, 340: 245-246. 10.1038/340245a0
Article
CAS
PubMed
Google Scholar
Beier H, Grimm M: Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 2001, 29: 4767-4782. 10.1093/nar/29.23.4767
Article
PubMed Central
CAS
PubMed
Google Scholar
Tate WP, Poole ES, Mannering SA: Hidden infidelities of the translational stop signal. Prog Nucleic Acid Res Mol Biol. 1996, 52: 293-335.
Article
CAS
PubMed
Google Scholar
Percudani R, Pavesi A, Ottonello S: Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol. 1997, 268: 322-330. 10.1006/jmbi.1997.0942
Article
CAS
PubMed
Google Scholar
Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M: Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI+] propagation. Mol Cell Biol. 2002, 22: 3301-3315. 10.1128/MCB.22.10.3301-3315.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW: The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J. 1999, 18: 1182-1191. 10.1093/emboj/18.5.1182
Article
PubMed Central
CAS
PubMed
Google Scholar
Tate WP, Mannering SA: Three, four or more: the translational stop signal at length. Mol Microbiol. 1996, 21: 213-219. 10.1046/j.1365-2958.1996.6391352.x
Article
CAS
PubMed
Google Scholar
Poole ES, Brown CM, Tate WP: The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995, 14: 151-158.
PubMed Central
CAS
PubMed
Google Scholar
Bonetti B, Fu L, Moon J, Bedwell DM: The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol. 1995, 251: 334-345. 10.1006/jmbi.1995.0438
Article
CAS
PubMed
Google Scholar
Weiss WA, Edelman I, Culbertson MR, Friedberg EC: Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987, 84: 8031-8034. 10.1073/pnas.84.22.8031
Article
PubMed Central
CAS
PubMed
Google Scholar
Pure GA, Robinson GW, Naumovski L, Friedberg EC: Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol. 1985, 183: 31-42. 10.1016/0022-2836(85)90278-5
Article
CAS
PubMed
Google Scholar
Tuite MF, McLaughlin CS: Endogenous read-through of a UGA termination codon in a Saccharomyces cerevisiae cell-free system: evidence for involvement of both a mitochondrial and a nuclear tRNA. Mol Cell Biol. 1982, 2: 490-497.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liebman SW, Sherman F: Inhibition of growth by amber suppressors in yeast. Genetics. 1976, 82: 233-249.
PubMed Central
CAS
PubMed
Google Scholar
Borkhsenius AS, Inge-Vechtomov SG: [The role of SUP35 and SUP45 genes in controlling Saccharomycetes cell cycle]. Dokl Akad Nauk. 1997, 353: 553-556.
CAS
PubMed
Google Scholar
Louis EJ, Haber JE: Nonrecombinant meiosis I nondisjunction in Saccharomyces cerevisiae induced by tRNA ochre suppressors. Genetics. 1989, 123: 81-95.
PubMed Central
CAS
PubMed
Google Scholar
Edelman I, Culbertson MR: Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae. EMBO J. 1991, 10: 1481-1491.
PubMed Central
CAS
PubMed
Google Scholar
Valouev IA, Kushnirov VV, Ter-Avanesyan MD: Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskeleton. 2002, 52: 161-173. 10.1002/cm.10040
Article
CAS
PubMed
Google Scholar
Cai T, Reilly TR, Cerio M, Schmitt ME: Mutagenesis of SNM1, which encodes a protein component of the yeast RNase MRP, reveals a role for this ribonucleoprotein endoribonuclease in plasmid segregation. Mol Cell Biol. 1999, 19: 7857-7869.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kokoska RJ, Stefanovic L, DeMai J, Petes TD: Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol Cell Biol. 2000, 20: 7490-7504. 10.1128/MCB.20.20.7490-7504.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Eaglestone SS, Cox BS, Tuite MF: Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 1999, 18: 1974-1981. 10.1093/emboj/18.7.1974
Article
PubMed Central
CAS
PubMed
Google Scholar
Le Goff C, Zemlyanko O, Moskalenko S, Berkova N, Inge-Vechtomov S, Philippe M: Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo. Genes Cells. 2002, 7: 1043-1057. 10.1046/j.1365-2443.2002.00585.x
Article
CAS
PubMed
Google Scholar
Sherman F, Fink GR, Hicks JB, Cold Spring HL: Laboratory course manual for methods in yeast genetics. Cold Spring Harbor, Cold Spring Harbor Press. 1986
Google Scholar
Inge-Vechtomov SG, Mironova LN, Ter-Avanesyan MD: [Ambiguity of translation: a eukaryotic version?]. Genetika. 1994, 30: 1022-1035.
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH, Willems AR, Woods RA: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995, 11: 355-360. 10.1002/yea.320110408
Article
CAS
PubMed
Google Scholar
Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985, 33: 103-119. 10.1016/0378-1119(85)90120-9
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A laboratory manual. Cold Spring Harbor, Cold Spring Harbor Press. 1989
Google Scholar
Burke D, Dawson D, Stearns T, Cold Spring HL: Methods in yeast genetics. Cold Spring Harbor, Cold Spring Harbor Laboratory Press. 2000
Google Scholar
Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989, 122: 19-27.
PubMed Central
CAS
PubMed
Google Scholar
Didichenko SA, Ter-Avanesyan MD, Smirnov VN: Ribosome-bound EF-1 alpha-like protein of yeast Saccharomyces cerevisiae. Eur J Biochem. 1991, 198: 705-711. 10.1111/j.1432-1033.1991.tb16070.x
Article
CAS
PubMed
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0
Article
CAS
PubMed
Google Scholar
Comments
View archived comments (1)