DuBose TD Jr. American society of nephrology presidential address 2006: chronic kidney disease as a public health threat—new strategy for a growing problem. J Am Soc Nephrol JASN. 2007;18(4):1038–45.
Article
PubMed
Google Scholar
Jorres A, Bender TO, Finn A, Witowski J, Frohlich S, Gahl GM, Frei U, Keck H, Passlick-Deetjen J. Biocompatibility and buffers: effect of bicarbonate-buffered peritoneal dialysis fluids on peritoneal cell function. Kidney Int. 1998;54(6):2184–93.
Article
CAS
PubMed
Google Scholar
Ha H, Yu MR, Choi HN, Cha MK, Kang HS, Kim MH, Lee HB. Effects of conventional and new peritoneal dialysis solutions on human peritoneal mesothelial cell viability and proliferation. Perit Dial Int. 2000;20(Suppl 5):S10–8.
PubMed
Google Scholar
Witowski J, Korybalska K, Ksiazek K, Wisniewska-Elnur J, Jorres A, Lage C, Schaub TP, Passlick-Deetjen J, Breborowicz A, Grzegorzewska A, et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol Dial Transplant. 2004;19(4):917–24.
Article
CAS
PubMed
Google Scholar
Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de Greeuw I, Schadee-Eestermans IL, Havenith CE, van den Born J, ter Wee PM, et al. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol JASN. 2001;12(12):2775–86.
CAS
PubMed
Google Scholar
Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H, Breborowicz A. Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int. 2004;24(1):48–57.
CAS
PubMed
Google Scholar
Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 2004;66(3):1257–65.
Article
CAS
PubMed
Google Scholar
Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005;67(4):1559–65.
Article
CAS
PubMed
Google Scholar
Choi HY, Kim DK, Lee TH, Moon SJ, Han SH, Lee JE, Kim BS, Park HC, Choi KH, Ha SK, et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit Dial Int. 2008;28(2):174–82.
CAS
PubMed
Google Scholar
Schmitt CP, Nau B, Gemulla G, Bonzel KE, Holtta T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, et al. Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol CJASN. 2013;8(1):108–15.
Article
CAS
PubMed
Google Scholar
Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int. 1996;16(Suppl 1):S54–7.
PubMed
Google Scholar
Lai KN, Li FK, Lan HY, Tang S, Tsang AW, Chan DT, Leung JC. Expression of aquaporin-1 in human peritoneal mesothelial cells and its upregulation by glucose in vitro. J Am Soc Nephrol JASN. 2001;12(5):1036–45.
CAS
PubMed
Google Scholar
Schoenicke G, Diamant R, Donner A, Roehrborn A, Grabensee B, Plum J. Histochemical distribution and expression of aquaporin 1 in the peritoneum of patients undergoing peritoneal dialysis: relation to peritoneal transport. Am J Kidney Dis. 2004;44(1):146–54.
Article
CAS
PubMed
Google Scholar
Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS. Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Physiol. 1999;276(1 Pt 1):C76–81.
Article
CAS
PubMed
Google Scholar
Ni J, Verbavatz JM, Rippe A, Boisde I, Moulin P, Rippe B, Verkman AS, Devuyst O. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 2006;69(9):1518–25.
Article
CAS
PubMed
Google Scholar
Zhai Y, Bloch J, Homme M, Schaefer J, Hackert T, Philippin B, Schwenger V, Schaefer F, Schmitt CP. Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol. 2012;27(7):1165–77.
Article
PubMed
Google Scholar
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature. 2000;407(6804):599–605.
Article
CAS
PubMed
Google Scholar
Agre P. Nobel lecture aquaporin water channels. Biosci Rep. 2004;24(3):127–63.
Article
CAS
PubMed
Google Scholar
Ni J, Cnops Y, Debaix H, Boisde I, Verbavatz JM, Devuyst O. Functional and molecular characterization of a peritoneal dialysis model in the C57BL/6 J mouse. Kidney Int. 2005;67(5):2021–31.
Article
CAS
PubMed
Google Scholar
Devuyst O. Water channels in peritoneal dialysis. J Nephrol. 2010;23(Suppl 16):S170–4.
PubMed
Google Scholar
Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005;118(Pt 15):3225–32.
Article
CAS
PubMed
Google Scholar
Hara-Chikuma M, Verkman AS. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol JASN. 2006;17(1):39–45.
Article
CAS
PubMed
Google Scholar
Hayashi S, Takahashi N, Kurata N, Yamaguchi A, Matsui H, Kato S, Takeuchi K. Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair. Biochem Biophys Res Commun. 2009;386(3):483–7.
Article
CAS
PubMed
Google Scholar
Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature. 2005;434(7034):786–92.
Article
CAS
PubMed
Google Scholar
Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J. 2006;20(11):1892–4.
Article
CAS
PubMed
Google Scholar
Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J. 2006;20(12):1974–81.
Article
CAS
PubMed
Google Scholar
de Arteaga J, Ledesma F, Garay G, Chiurchiu C, de la Fuente J, Douthat W, Massari P, Terryn S, Devuyst O. High-dose steroid treatment increases free water transport in peritoneal dialysis patients. Nephrol Dial Transplant. 2011;26(12):4142–5.
Article
PubMed
Google Scholar
Echevarria M, Munoz-Cabello AM, Sanchez-Silva R, Toledo-Aral JJ, Lopez-Barneo J. Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J Biol Chem. 2007;282(41):30207–15.
Article
CAS
PubMed
Google Scholar
Lanaspa MA, Andres-Hernando A, Li N, Rivard CJ, Cicerchi C, Roncal-Jimenez C, Schrier RW, Berl T. The expression of aquaporin-1 in the medulla of the kidney is dependent on the transcription factor associated with hypertonicity, TonEBP. J Biol Chem. 2010;285(41):31694–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umenishi F, Schrier RW. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem. 2003;278(18):15765–70.
Article
CAS
PubMed
Google Scholar
Tie L, Lu N, Pan XY, Pan Y, An Y, Gao JW, Lin YH, Yu HM, Li XJ. Hypoxia-induced up-regulation of aquaporin-1 protein in prostate cancer cells in a p38-dependent manner. Cell Physiol Biochem. 2012;29(1–2):269–80.
Article
CAS
PubMed
Google Scholar
Conner MT, Conner AC, Bland CE, Taylor LH, Brown JE, Parri HR, Bill RM. Rapid aquaporin translocation regulates cellular water flow: mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel. J Biol Chem. 2012;287(14):11516–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abreu-Rodriguez I, Sanchez Silva R, Martins AP, Soveral G, Toledo-Aral JJ, Lopez-Barneo J, Echevarria M. Functional and transcriptional induction of aquaporin-1 gene by hypoxia; analysis of promoter and role of Hif-1α. PLoS ONE. 2011;6(12):e28385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka A, Sakurai K, Kaneko K, Ogino J, Yagui K, Ishikawa K, Ishibashi T, Matsumoto T, Yokote K, Saito Y. The role of the hypoxia-inducible factor 1 binding site in the induction of aquaporin-1 mRNA expression by hypoxia. DNA Cell Biol. 2011;30(8):539–44.
Article
CAS
PubMed
Google Scholar
Ray D, Bosselut R, Ghysdael J, Mattei MG, Tavitian A, Moreau-Gachelin F. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol. 1992;12(10):4297–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schotte R, Nagasawa M, Weijer K, Spits H, Blom B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med. 2004;200(11):1503–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schotte R, Rissoan MC, Bendriss-Vermare N, Bridon JM, Duhen T, Weijer K, Briere F, Spits H. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood. 2003;101(3):1015–23.
Article
CAS
PubMed
Google Scholar