Zhao J, Hyman L, Moore C: Formation of mRNA 3' ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999, 63: 405-445.
PubMed Central
CAS
PubMed
Google Scholar
Edmonds M: A history of poly A sequences: From formation to factors to function. Prog Nucleic Acid Res Mol Biol. 2002, 71: 285-389.
Article
CAS
PubMed
Google Scholar
Gilmartin GM, McDevitt MA, Nevins JR: Multiple factors are required for specific RNA cleavage at a poly(A) addition site. Genes Dev. 1988, 2: 578-587.
Article
CAS
PubMed
Google Scholar
Gilmartin GM, Nevins JR: An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 1989, 3: 2180-2190.
Article
CAS
PubMed
Google Scholar
Gilmartin GM, Nevins JR: Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol. 1991, 11: 2432-2438.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sheets MD, Ogg SC, Wickens MP: Point mutations in AAUAAA and the poly (A) addition site: Effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 1990, 18: 5799-5805.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zarkower D, Stephenson P, Sheets M, Wickens M: The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro. Mol Cell Biol. 1986, 6: 2317-2323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wickens M, Stephenson P: Role of the conserved AAUAAA sequence: Four AAUAAA point mutants prevent messenger RNA 3' end formation. Science. 1984, 226: 1045-1051. 10.1126/science.6208611
Article
CAS
PubMed
Google Scholar
Montell C, Fisher EF, Caruthers MH, Berk AJ: Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3' consensus sequence AAUAAA. Nature. 1983, 305: 600-605. 10.1038/305600a0
Article
CAS
PubMed
Google Scholar
Fitzgerald M, Shenk T: The sequence 5'-AAUAAA-3' forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell. 1981, 24: 251-260. 10.1016/0092-8674(81)90521-3
Article
CAS
PubMed
Google Scholar
MacDonald CC, Wilusz J, Shenk T: The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol. 1994, 14: 6647-6654.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen F, MacDonald CC, Wilusz J: Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995, 23: 2614-2620.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takagaki Y, Manley JL: Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell. 1998, 2: 761-771. 10.1016/S1097-2765(00)80291-9
Article
CAS
PubMed
Google Scholar
Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T: A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 1990, 4: 2112-2120.
Article
CAS
PubMed
Google Scholar
Duvel K, Braus GH: Different positioning elements select poly(A) sites at the 3'-end of GCN4 mRNA in the yeast saccharomyces cerevisiae. Nucleic Acids Res. 1999, 27: 4751-4758. 10.1093/nar/27.24.4751
Article
PubMed Central
CAS
PubMed
Google Scholar
Arhin GK, Boots M, Bagga PS, Milcarek C, Wilusz J: Downstream sequence elements with different affinities for the hnRNP H/H' protein influence the processing efficiency of mammalian polyadenylation signals. Nucleic Acids Res. 2002, 30: 1842-1850. 10.1093/nar/30.8.1842
Article
PubMed Central
CAS
PubMed
Google Scholar
Natalizio BJ, Muniz LC, Arhin GK, Wilusz J, Lutz CS: Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem. 2002, 277: 42733-42740. 10.1074/jbc.M208070200
Article
CAS
PubMed
Google Scholar
Chen F, Wilusz J: Auxiliary downstream elements are required for efficient polyadenylation of mammalian pre-mRNAs. Nucleic Acids Res. 1998, 26: 2891-2898. 10.1093/nar/26.12.2891
Article
PubMed Central
CAS
PubMed
Google Scholar
Bagga PS, Ford LP, Chen F, Wilusz J: The G-rich auxiliary downstream element has distinct sequence and position requirements and mediates efficient 3' end pre-mRNA processing through a trans-acting factor. Nucleic Acids Res. 1995, 23: 1625-1631.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen F, MacDonald CC, Wilusz J: Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 1995, 23: 2614-2620.
Article
PubMed Central
CAS
PubMed
Google Scholar
Proudfoot NJ, Brownlee GG: 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976, 263: 211-214. 10.1038/263211a0
Article
CAS
PubMed
Google Scholar
McDevitt MA, Imperiale MJ, Ali H, Nevins JR: Requirement of a downstream sequence for generation of a poly(A) addition site. Cell. 1984, 37: 993-999. 10.1016/0092-8674(84)90433-1
Article
CAS
PubMed
Google Scholar
Keller W, Bienroth S, Lang KM, Christofori G: Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA. EMBO J. 1991, 10: 4241-4249.
PubMed Central
CAS
PubMed
Google Scholar
Ryan K, Calvo O, Manley JL: Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease. RNA. 2004, 10: 565-573. 10.1261/rna.5214404
Article
PubMed Central
CAS
PubMed
Google Scholar
Edwalds-Gilbert G, Veraldi KL, Milcarek C: Alternative poly(A) site selection in complex transcription units: Means to an end?. Nucleic Acids Res. 1997, 25: 2547-2561. 10.1093/nar/25.13.2547
Article
PubMed Central
CAS
PubMed
Google Scholar
Takagaki Y, Manley JL: RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol. 1997, 17: 3907-3914.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C: FY is an RNA 3' end-processing factor that interacts with FCA to control the arabidopsis floral transition. Cell. 2003, 113: 777-787. 10.1016/S0092-8674(03)00425-2
Article
CAS
PubMed
Google Scholar
MacDonald CC, Redondo JL: Reexamining the polyadenylation signal: Were we wrong about AAUAAA?. Mol Cell Endocrinol. 2002, 190: 1-8. 10.1016/S0303-7207(02)00044-8
Article
CAS
PubMed
Google Scholar
Foulkes NS, Schlotter F, Pevet P, Sassone-Corsi P: Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature. 1993, 362: 264-267. 10.1038/362264a0
Article
CAS
PubMed
Google Scholar
Ravnik SE, Wolgemuth DJ: The developmentally restricted pattern of expression in the male germ line of a murine cyclin A, cyclin A2, suggests roles in both mitotic and meiotic cell cycles. Dev Biol. 1996, 173: 69-78. 10.1006/dbio.1996.0007
Article
CAS
PubMed
Google Scholar
Meijer D, Hermans A, von Lindern M, van Agthoven T, de Klein A, Mackenbach P, Grootegoed A, Talarico D, Della Valle G, Grosveld G: Molecular characterization of the testis specific c-abl mRNA in mouse. EMBO J. 1987, 6: 4041-4048.
PubMed Central
CAS
PubMed
Google Scholar
Liu D, Brockman JM, Dass B, Hutchens LN, McCarrey JR, MacDonald CC, Singh P, Graber JH: Systematic variation in mRNA 3'-processing during mouse spermatogenesis. Nucleic Acids Res.
Gil A, Proudfoot NJ: Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3' end formation. Cell. 1987, 49: 399-406. 10.1016/0092-8674(87)90292-3
Article
CAS
PubMed
Google Scholar
McLauchlan J, Gaffney D, Whitton JL, Clements JB: The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3' termini. Nucleic Acids Res. 1985, 13: 1347-1368.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kessler MM, Beckendorf RC, Westhafer MA, Nordstrom JL: Requirement of A-A-U-A-A-A and adjacent downstream sequences for SV40 early polyadenylation. Nucleic Acids Res. 1986, 14: 4939-4952.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bardwell VJ, Wickens M, Bienroth S, Keller W, Sproat BS, Lamond AI: Site-directed ribose methylation identifies 2'-OH groups in polyadenylation substrates critical for AAUAAA recognition and poly(A) addition. Cell. 1991, 65: 125-133. 10.1016/0092-8674(91)90414-T
Article
CAS
PubMed
Google Scholar
Keller W, Bienroth S, Lang KM, Christofori G: Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA. EMBO J. 1991, 10: 4241-4249.
PubMed Central
CAS
PubMed
Google Scholar
Hardy DM, Garbers DL: A sperm membrane protein that binds in a species-specific manner to the egg extracellular matrix is homologous to von willebrand factor. J Biol Chem. 1995, 270: 26025-26028. 10.1074/jbc.270.44.26025
Article
CAS
PubMed
Google Scholar
Logan J, Falck-Pedersen E, Darnell JE, Shenk T: A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene. Proc Natl Acad Sci USA. 1987, 84: 8306-8310. 10.1073/pnas.84.23.8306
Article
PubMed Central
CAS
PubMed
Google Scholar
Connelly S, Manley JL: A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988, 2: 440-452.
Article
CAS
PubMed
Google Scholar
Proudfoot NJ, Furger A, Dye MJ: Integrating mRNA processing with transcription. Cell. 2002, 108: 501-512. 10.1016/S0092-8674(02)00617-7
Article
CAS
PubMed
Google Scholar
Wallace AM, Dass B, Ravnik SE, Tonk V, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC: Two distinct forms of the 64, 000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells. Proc Natl Acad Sci USA. 1999, 96: 6763-6768. 10.1073/pnas.96.12.6763
Article
PubMed Central
CAS
PubMed
Google Scholar
Dass B, McMahon KW, Jenkins NA, Gilbert DJ, Copeland NG, MacDonald CC: The gene for a variant form of the polyadenylation protein CstF-64 is on chromosome 19 and is expressed in pachytene spermatocytes in mice. J Biol Chem. 2001, 276: 8044-8050. 10.1074/jbc.M009091200
Article
CAS
PubMed
Google Scholar
Zhang H, Lee JY, Tian B: Biased alternative polyadenylation in human tissues. Genome Biol. 2005, 6: R100- 10.1186/gb-2005-6-12-r100
Article
PubMed Central
PubMed
Google Scholar
Ito S, Sakai A, Nomura T, Miki Y, Ouchida M, Sasaki J, Shimizu K: A novel WD40 repeat protein, WDC146, highly expressed during spermatogenesis in a stage-specific manner. Biochem Biophys Res Commun. 2001, 280: 656-663. 10.1006/bbrc.2000.4163
Article
CAS
PubMed
Google Scholar
Kleene KC, Mulligan E, Steiger D, Donohue K, Mastrangelo MA: The mouse gene encoding the testis-specific isoform of poly(A) binding protein (Pabp2) is an expressed retroposon: Intimations that gene expression in spermatogenic cells facilitates the creation of new genes. J Mol Evol. 1998, 47: 275-281. 10.1007/PL00006385
Article
CAS
PubMed
Google Scholar
Kashiwabara S, Zhuang T, Yamagata K, Noguchi J, Fukamizu A, Baba T: Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Dev Biol. 2000, 228: 106-115. 10.1006/dbio.2000.9894
Article
CAS
PubMed
Google Scholar
Takagaki Y, Seipelt RL, Peterson ML, Manley JL: The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996, 87: 941-952. 10.1016/S0092-8674(00)82000-0
Article
CAS
PubMed
Google Scholar
Dye MJ, Proudfoot NJ: Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell. 2001, 105: 669-681. 10.1016/S0092-8674(01)00372-5
Article
CAS
PubMed
Google Scholar
Yonaha M, Proudfoot NJ: Transcriptional termination and coupled polyadenylation in vitro. EMBO J. 2000, 19: 3770-3777. 10.1093/emboj/19.14.3770
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang H, Hu J, Recce M, Tian B: PolyA_DB: A database for mammalian mRNA polyadenylation. Nucleic Acids Res. 2005, 33: D116-20. 10.1093/nar/gki055
Article
PubMed Central
CAS
PubMed
Google Scholar