Taylor EM, Lehmann AR: Review: Conservation of eukaryotic DNA repair mechanisms. Int J Radiat Biol. 1998, 74: 277-286. 10.1080/095530098141429
Article
CAS
PubMed
Google Scholar
Fleck O, Nielsen O: DNA repair. J Cell Sci. 2004, 117: 515-517. 10.1242/jcs.00952
Article
CAS
PubMed
Google Scholar
Hopfner KP, Putnam CD, Tainer JA: DNA double-strand break repair from head to tail. Curr Opin Struc Biol. 2002, 12: 115-122. 10.1016/S0959-440X(02)00297-X.
Article
CAS
Google Scholar
Hubscher U, Nasheuer HP, Syvaoja JE: Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci. 2000, 25: 143-147. 10.1016/S0968-0004(99)01523-6
Article
CAS
PubMed
Google Scholar
Wittner M, Weiss LM: The Microsporidia and Microsporidosis. 1999, Washington, D. C.: ASM Press
Google Scholar
Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares C: Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001, 414: 450-453. 10.1038/35106579
Article
CAS
PubMed
Google Scholar
Hirt RP, Healey B, Vossbrinck CR, Canning EU, Embley TM: A mitochondrial Hsp70 orthologue in Varimorpha necatrix : Molecular evidence that microsporidia once contained mitochondria. Curr Biol. 1997, 7: 995-998. 10.1016/S0960-9822(06)00420-9
Article
CAS
PubMed
Google Scholar
Keeling PJ: Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol. 2003, 38: 298-309. 10.1016/S1087-1845(02)00537-6
Article
CAS
PubMed
Google Scholar
Fischer WM, Palmer JD: Evidence from small-subunit ribosomal RNA sequences for a fungal origin of microsporidia. Mol Phylogenet Evol. 2005, 36: 606-622. 10.1016/j.ympev.2005.03.031
Article
CAS
PubMed
Google Scholar
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold EA, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R: Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature. 2006, 443: 818-822. 10.1038/nature05110
Article
CAS
PubMed
Google Scholar
Krokan HE, Standal R, Slupphaug G: DNA glycosylases in the base excision repair of DNA. Biochem J. 1997, 325: 1-16.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boiteux S, Guillet M: Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae. DNA Repair. 2004, 3: 1-12. 10.1016/j.dnarep.2003.10.002
Article
CAS
PubMed
Google Scholar
Kelley M, Kow YW, Wilson DM: Disparity between DNA base excision repair in yeast and mammals: Translational implications. Cancer Res. 2003, 63: 549-554.
CAS
PubMed
Google Scholar
Sung J, Demple B: Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006, 273: 1620-1629. 10.1111/j.1742-4658.2006.05192.x
Article
CAS
PubMed
Google Scholar
Saccharomyces genome database., http://www.yeastgenome.org/
van den Boom V, Jaspers NGJ, Vermeulen W: When machines get stuck- obstructed RNA polymerase II: Displacement, degradation or suicide. BioEssays. 2002, 24: 780-784. 10.1002/bies.10150
Article
CAS
PubMed
Google Scholar
Prakash S, Prakash L: Nucleotide excision repair in yeast. Mutat Res. 2000, 451: 13-24.
Article
CAS
PubMed
Google Scholar
Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, Reed SH: Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J. 2006, 25: 2529-2538.
PubMed Central
CAS
PubMed
Google Scholar
van Laar T, van der Eb AJ, Terleth C: A role for Rad23 proteins in 26S proteasome-dependent protein degradation?. Mutat Res. 2002, 499: 53-61.
Article
CAS
PubMed
Google Scholar
Giaver G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 418: 387-391. 10.1038/nature00935
Article
Google Scholar
Sassanfar M, Samson L: Identification and preliminary characterization of an O6-methylguanine DNA repair methyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem. 1990, 265: 20-25.
CAS
PubMed
Google Scholar
Marti TM, Kunz C, Fleck O: DNA mismatch repair and mutation avoidance pathways. J Cell Physiol. 2002, 191: 28-41. 10.1002/jcp.10077
Article
CAS
PubMed
Google Scholar
Tornier C, Bessone S, Varlet I, Rudolph C, Darmon M, Fleck O: Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizosaccharomyces pombe. Genetics. 2001, 158: 65-75.
PubMed Central
CAS
PubMed
Google Scholar
Aylon Y, Kupiec M: DSB repair: The yeast paradigm. DNA Repair. 2004, 3: 797-815. 10.1016/j.dnarep.2004.04.013
Article
CAS
PubMed
Google Scholar
Lisby M, Rothstein R: Localization of checkpoint and repair proteins in eukaryotes. Biochimie. 2005, 87: 579-589. 10.1016/j.biochi.2004.10.023
Article
CAS
PubMed
Google Scholar
Brandt PD, Helt CE, Keng PC, Bambara RA: The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation. Biochem Bioph Res Co. 2006, 347: 232-237. 10.1016/j.bbrc.2006.06.064.
Article
CAS
Google Scholar
Toueille M, El-Andaloussi N, Frouin I, Freire R, Funk D, Shevelev I, Friedrich-Heineken E, Villani G, Hottiger MO, Hubscher U: The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilization efficiency: Implications for DNA repair. Nucleic Acids Res. 2004, 22: 3316-3324. 10.1093/nar/gkh652.
Article
Google Scholar
Pandita RK, Sharma GG, Laszlo A, Hopkins KM, Davey S, Chakhparonian M, Gupta A, Wellinger RJ, Zhang J, Powell SN, Roti JL, Lieberman HB, Pandita TK: Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombination repair. Mol Cell Biol. 2006, 26: 1850-1864. 10.1128/MCB.26.5.1850-1864.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Helt CE, Wang W, Keng PC, Bambara RA: Evidence that DNA damage detection machinery participates in DNA repair. Cell Cycle. 2005, 4: 529-532.
Article
CAS
PubMed
Google Scholar
Wang W, Lindsey-Boltz LA, Sancar A, Bambara RA: Mechanism of stimulation of human DNA ligase I by the Rad9-Rad1-Hus1 checkpoint complex. J Biol Chem. 2006, 281: 20865-20872. 10.1074/jbc.M602289200
Article
CAS
PubMed
Google Scholar
Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P: Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. J Biol Chem. 2003, 278: 48957-48964. 10.1074/jbc.M309877200
Article
CAS
PubMed
Google Scholar
Hefferin ML, Tomkinson AE: Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair. 2005, 4: 639-648.
Article
CAS
PubMed
Google Scholar
Chang WH, Kornberg RD: Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell. 2000, 102: 609-613. 10.1016/S0092-8674(00)00083-0
Article
CAS
PubMed
Google Scholar
Samson L, Thomale J, Rajewsky MF: Alternative pathways for the in vivo repair of O6-alkylguanine and O4-alkylthymine in Escherichia coli: The adaptive response and nucleotide excision repair. EMBO J. 1988, 7: 2261-2267.
PubMed Central
CAS
PubMed
Google Scholar
Williams BAP, Hirt RP, Lucocq JM, Embley TM: A mitochondrial remnant in the microsporidian Trachipliestophora hominis. Nature. 2002, 418: 865-869. 10.1038/nature00949
Article
CAS
PubMed
Google Scholar
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JMJ, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ: Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007, 315: 207-212. 10.1126/science.1132894
Article
PubMed Central
PubMed
Google Scholar
Rong L, Palladino F, Aguilera A, Klein HL: The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics. 1991, 127: 75-85.
PubMed Central
CAS
PubMed
Google Scholar
Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M: Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 2003, 23: 1403-1417. 10.1128/MCB.23.4.1403-1417.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Klein HL: RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics. 1997, 147: 1533-1543.
PubMed Central
CAS
PubMed
Google Scholar
Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A: In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 2004, 23: 939-949. 10.1038/sj.emboj.7600091
Article
PubMed Central
CAS
PubMed
Google Scholar
Aylon Y, Kupiec M: The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol Cell Biol. 2003, 23: 6585-6596. 10.1128/MCB.23.18.6585-6596.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Kadyk LC, Hartwell LH: Sister chromatids are preferred over homolgs as substrates for recombinational repair in saccharomyces cerevisiae. Genetics. 1992, 132: 387-402.
PubMed Central
CAS
PubMed
Google Scholar
Johnson RD, Jasin M: Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000, 19: 3398-3407. 10.1093/emboj/19.13.3398
Article
PubMed Central
CAS
PubMed
Google Scholar
Brugere JF, Cornillot E, Metener G, Bensimon A, Vivares C: Encephalitozoon cuniculi (microsporidia) genome: Physical map and evidence for telomere-associated rDNA units on all chromosomes. Nucleic Acids Res. 2000, 28: 2026-2033. 10.1093/nar/28.10.2026
Article
PubMed Central
CAS
PubMed
Google Scholar
Symington LS: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol R. 2002, 66: 630-670. 10.1128/MMBR.66.4.630-670.2002.
Article
CAS
Google Scholar
Krogh BO, Symington LS: Recombination proteins in yeast. Annu Rev Genet. 2004, 38: 233-271. 10.1146/annurev.genet.38.072902.091500
Article
CAS
PubMed
Google Scholar
Ayyagari R, Gomes XV, Gordenin DA, Burgers PMJ: Okazaki fragment maturation in yeast. I. distribution of functions between FEN1 and DNA2. J Biol Chem. 2003, 278: 1618-1625. 10.1074/jbc.M209801200
Article
CAS
PubMed
Google Scholar
Ramesh MA, Malik SB, Logsdon JM: A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005, 15: 185-191.
CAS
PubMed
Google Scholar
Burglin TR: The homeobox genes of Encephalitozoon cuniculi (microsporidia) reveal a putative mating locus. Dev Genes Evol. 2003, 213: 50-52.
PubMed
Google Scholar
Parrilla-Castellar ER, Arlander SJH, Karnitz L: Dial 9-1-1 for DNA damage: The Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair. 2004, 3:
Google Scholar
Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE: Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell. 1998, 94: 399-409. 10.1016/S0092-8674(00)81482-8
Article
CAS
PubMed
Google Scholar
Bertuch AA, Lundblad V: Which end: Dissecting Ku's function at telomeres and double-strand breaks. Genes Dev. 2003, 17: 2347-2350. 10.1101/gad.1146603
Article
CAS
PubMed
Google Scholar
Johnston LH: The Cdc9 ligase joins completed replicons in baker's yeast. Mol Gen Genet. 1983, 190: 315-317. 10.1007/BF00330657
Article
CAS
PubMed
Google Scholar
Moran NA, Mira A: The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol. 2001, 2: RESEARCH0054- 10.1186/gb-2001-2-12-research0054
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389
Article
PubMed Central
CAS
PubMed
Google Scholar
Database of interacting proteins., http://dip.doe-mbi.ucla.edu/
Daley JM, Palmbos PL, Wu D, Wilson TE: Nonhomologous end joining in yeast. Annu Rev Genet. 2005, 39: 431-451. 10.1146/annurev.genet.39.073003.113340
Article
CAS
PubMed
Google Scholar
Burgers PMJ: Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma. 1998, 107: 218-227. 10.1007/s004120050300
Article
CAS
PubMed
Google Scholar