Burley SK, Roeder RG: Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 1996, 65: 769-799. 10.1146/annurev.biochem.65.1.769
Article
CAS
PubMed
Google Scholar
Bell B, Tora L: Regulation of Gene Expression by Multiple Forms of TFIID and Other Novel TAFII-Containing Complexes. Exp. Cell Res. 1999, 246: 11-19. 10.1006/excr.1998.4294
Article
CAS
PubMed
Google Scholar
Albright SR, Tjian R: TAFs revisited: more data reveal new twists and confirm old ideas. Gene. 2000, 242: 1-13. 10.1016/S0378-1119(99)00495-3
Article
CAS
PubMed
Google Scholar
Mengus G, May M, Jacq X, Staub A, Tora L, Chambon P, Davidson I: Cloning and characterization of hTAFII18, hTAFII20 and hTAFII28: three subunits of the human transcription factor TFIID. EMBO J. 1995, 14: 1520-1531.
PubMed Central
CAS
PubMed
Google Scholar
Mengus G, May M, Carre L, Chambon P, Davidson I: Human TAFII135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 1997, 11: 1381-1395.
Article
CAS
PubMed
Google Scholar
Georgieva S, Kirschner DB, Jagla T, Nabirochkina E, Hanke S, Schenkel H, de Lorenzo C, Sinha P, Jagla K, Mechler B: Two novel drosophila TAFIIs have homology with human TAFII30 and are differentially regulated during development. Mol Cell Biol. 2000, 20: 1639-48. 10.1128/MCB.20.5.1639-1648.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Moqtaderi Z, Yale JD, Struhl K, Buratowski S: Yeast homologues of higher eukaryotic TFIID subunits. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 14654-14658. 10.1073/pnas.93.25.14654
Article
PubMed Central
CAS
PubMed
Google Scholar
Wieczorek E, Brand M, Jacq X, Tora L: Function of TAFII-containing complex without TBP in transcription by RNA polymerase II. Nature. 1998, 393: 187-191. 10.1038/30283
Article
CAS
PubMed
Google Scholar
Brand M, Yamamoto K, Staub A, Tora L: Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 1999, 274: 18285-18289. 10.1074/jbc.274.26.18285
Article
CAS
PubMed
Google Scholar
Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates JR, Workman JL: A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell. 1998, 94: 45-53.
Article
CAS
PubMed
Google Scholar
Ogryzko VV, Kotani T, Zhang X, Schlitz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y: Histone-like TAFs within the PCAF histone acetylase complex. Cell. 1998, 94: 35-44.
Article
CAS
PubMed
Google Scholar
Martinez E, Kundu TK, Fu J, Roeder RG: A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 1998, 273: 23781-23785. 10.1074/jbc.273.37.23781
Article
CAS
PubMed
Google Scholar
Michel B, Komarnitsky P, Buratowski S: Histone-like TAFs are essential for transcription in vivo. Mol. Cell. 1998, 2: 663-673.
Article
CAS
PubMed
Google Scholar
Komarnitsky PB, Michel B, Buratowski S: TFIID-specific yeast TAF40 is essential for the majority of RNA polymerase II-mediated transcription in vivo. Genes. Dev. 1999, 13: 2484-2489. 10.1101/gad.13.19.2484
Article
PubMed Central
CAS
PubMed
Google Scholar
Sanders SL, Klebanow ER, Weil PA: TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J. Biol. Chem. 1999, 274: 18847-18850. 10.1074/jbc.274.27.18847
Article
CAS
PubMed
Google Scholar
Apone LM, Virbasius CA, Holstege FC, Wang J, Young RA, Green MR: Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA. Mol. Cell. 1998, 2: 653-661.
Article
CAS
PubMed
Google Scholar
Moqtaderi Z, Keaveney M, Struhl K: The histone H3-like TAF is broadly required for transcription in yeast. Mol. Cell. 1998, 2: 675-682.
Article
CAS
PubMed
Google Scholar
Walker SS, Shen WC, Reese JC, Apone LM, Green MR: Yeast TAFII145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell. 1997, 90: 607-614.
Article
CAS
PubMed
Google Scholar
Apone LM, Virbasius CM, Reese JC, Green MR: Yeast TAFII90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes. Dev. 1996, 10: 2368-2380.
Article
CAS
PubMed
Google Scholar
Green MR: TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem Sci. 2000, 25: 59-63. 10.1016/S0968-0004(99)01527-3
Article
CAS
PubMed
Google Scholar
Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T: The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol. 1991, 11: 3317-25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki-Yagawa Y, Guermah M, Roeder RG: The ts13 mutation in the TAFII250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature. Mol. Cell Biol. 1997, 17: 3284-3294.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang EH, Tjian R: Promoter-selective transcriptional defect in cell cycle mutant ts13 rescued by hTAFII250. Science. 1994, 263: 811-814.
Article
CAS
PubMed
Google Scholar
O'Brien T, Tjian R: Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. Proc Natl Acad Sci U S A. 2000, 97(6): 2456-61. 10.1073/pnas.97.6.2456. 10.1073/pnas.97.6.2456
Article
Google Scholar
Metzger D, Scheer E, Soldatov A, Tora L: Mammalian TAFII30 is required for cell cycle progression and specific cellular differentiation programmes. EMBO J. 1999, 18: 4823-4834. 10.1093/emboj/18.17.4823
Article
PubMed Central
CAS
PubMed
Google Scholar
Saluja D, Vassallo MF, Tanese N: Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol. Cell Biol. 1998, 18: 5734-5743.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanese N, Saluja D, Vassallo MF, Chen JL, Admon A: Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc. Natl. Acad. Sci. U.S.A. 1996, 93: 13611-13616. 10.1073/pnas.93.24.13611
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M: Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 1997, 11: 738-747.
Article
CAS
PubMed
Google Scholar
Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y: Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat Genet. 2000, 26: 29-36. 10.1038/79139
Article
CAS
PubMed
Google Scholar
Dikstein R, Zhou S, Tjian R: Human TAFII105 is a cell type-specific TFIID subunit related to hTAFII130. Cell. 1996, 87: 137-146.
Article
CAS
PubMed
Google Scholar
Reese JC, Zhang Z, Kurpad H: Identification of a yeast transcription factor IID subunit, TSG2/TAF48. J Biol Chem. 2000, 275: 17391-8. 10.1074/jbc.M001635200
Article
CAS
PubMed
Google Scholar
Sanders SL, Weil PA: Identification of two novel TAF subunits of the yeast saccharomyces cerevisiae TFIID complex. J Biol Chem. 2000, 275: 13895-900. 10.1074/jbc.275.18.13895
Article
CAS
PubMed
Google Scholar
Gangloff YG, Werten S, Romier C, Carre L, Poch O, Moras D, Davidson I: The human TFIID components TAFII135 and TAFII20 and the yeast SAGA components ADA1 and TAFII68 heterodimerize to form histone-like pairs. Mol Cell Biol. 2000, 20: 340-351.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gangloff YG, Romier C, Thuault S, Werten S, Davidson I: The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem. Sci. 2001, 26: 250-257. 10.1016/S0968-0004(00)01741-2
Article
CAS
PubMed
Google Scholar
Molinari E, Gilman M, Natesan S: Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J. 1999, 18: 6439-47. 10.1093/emboj/18.22.6439
Article
PubMed Central
CAS
PubMed
Google Scholar
Salghetti SE, Muratani M, Wijnen H, Futcher B, Tansey WP: Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A. 2000, 97: 3118-23. 10.1073/pnas.050007597
Article
PubMed Central
CAS
PubMed
Google Scholar
Salghetti SE, Kim SY, Tansey WP: Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 1999, 18: 717-26. 10.1093/emboj/18.3.717
Article
PubMed Central
CAS
PubMed
Google Scholar
Thomas D, Tyers M: Kamikaze activators. Curr Biol. 2000, 10: 341-3. 10.1016/S0960-9822(00)00386-9
Article
Google Scholar
El Khissiin A, Leclercq G: Implication of proteasome in estrogen receptor degradation. FEBS Lett. 1999, 448: 160-6. 10.1016/S0014-5793(99)00343-9
Article
CAS
PubMed
Google Scholar
Lange CA, Shen T, Horwitz KB: Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A. 2000, 97: 1032-7. 10.1073/pnas.97.3.1032
Article
PubMed Central
CAS
PubMed
Google Scholar
Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW: Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A. 1999, 96: 1858-62. 10.1073/pnas.96.5.1858
Article
PubMed Central
CAS
PubMed
Google Scholar
Kopf E, Plassat JL, Vivat V, de The H, Chambon P, Rochette-Egly C: Dimerization with RXRs and phosphorylation modulate the retinoic acid- induced degradation of RAR{alpha} and RAR{gamma} and through the ubiquitin-proteasome pathway. J Biol Chem. 2000, 275: 33280-8. 10.1074/jbc.M002840200
Article
CAS
PubMed
Google Scholar
Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H: Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A. 1999, 96: 14807-12. 10.1073/pnas.96.26.14807
Article
PubMed Central
CAS
PubMed
Google Scholar
Lonard DM, Nawaz Z, Smith CL, O'Malley BW: The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell. 2000, 5: 939-48.
Article
CAS
PubMed
Google Scholar
Kim TK, Maniatis T: Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science. 1996, 273: 1717-9.
Article
CAS
PubMed
Google Scholar
Mathew A, Mathur SK, Morimoto RI: Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 1998, 18: 5091-8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strickland S, Mahdavi V: The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978, 15: 393-403.
Article
CAS
PubMed
Google Scholar
Strickland S, Smith KK, Marotti KR: Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell. 1980, 21: 347-355.
Article
CAS
PubMed
Google Scholar
Clifford J, Chiba H, Sobieszczuk D, Metzger D, Chambon P: RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J. 1996, 15: 4142-4155.
PubMed Central
CAS
PubMed
Google Scholar
Chiba H, Clifford J, Metzger D, Chambon P: Distinct retinoid X receptor retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol. Cell Biol. 1997, 17: 3013-3020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chiba H, Clifford J, Metzger D, Chambon P: Specific and redundant functions of retinoid X Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells. J. Cell Biol. 1997, 139: 735-747. 10.1083/jcb.139.3.735
Article
PubMed Central
CAS
PubMed
Google Scholar
Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994, 78: 761-771.
Article
CAS
PubMed
Google Scholar
Lee DH, Goldberg AL: Proteasome inhibitors: valuable new tools for cell biologists. Trends. Cell Biol. 1998, 8: 397-403. 10.1016/S0962-8924(98)01346-4
Article
CAS
PubMed
Google Scholar
Lecoeur H, Gougeon ML: Comparative analysis of flow cytometric methods for apoptosis quantitation in murine thymocytes and human peripheral lymphocytes from controls and HIV-infected persons. Evidence for interference by granulocytes and erythrocytes. Journal of Immunological Methods. 1996, 198: 87-99. 10.1016/0022-1759(96)00148-2
Article
CAS
PubMed
Google Scholar
Philippe J, Louagie H, Thierens H, Vral A, Cornelissen M, De Ridder L: Quantification of apoptosis in lymphocyte subsets and effect of apoptosis on apparent expression of membrane antigens. Cytometry. 1997, 29: 242-9. 10.1002/(SICI)1097-0320(19971101)29:3<242::AID-CYTO7>3.0.CO;2-D
Article
CAS
PubMed
Google Scholar
Hu L, Gudas LJ: Cyclic AMP analogs and retinoic acid influence the expression of retinoic acid receptor alpha, beta, and gamma mRNAs in F9 teratocarcinoma cells. Mol Cell Biol. 1990, 10: 391-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Silberstein L, Webster SG, Travis M, Blau HM: Developmental progression of myosin gene expression in cultured muscle cells. Cell. 1986, 46: 1075-81.
Article
CAS
PubMed
Google Scholar
Boylan JF, Lohnes D, Taneja R, Chambon P, Gudas LJ: Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc. Natl. Acad. Sci. U.S.A. 1993, 90: 9601-9605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P: Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J. 1997, 16: 6452-6465. 10.1093/emboj/16.21.6452
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee JW, Ryan F, Swaffield JC, Johnston SA, Moore DD: Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature. 1995, 374: 91-94. 10.1038/374091a0
Article
CAS
PubMed
Google Scholar
vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V, Le Douarin B, Gronemeyer H, Chambon P, Losson R: Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996, 15: 110-124.
PubMed Central
CAS
PubMed
Google Scholar
Alzuherri HM, White RJ: Regulation of a TATA-binding protein-associated factor during cellular differentiation. J. Biol. Chem. 1998, 273: 17166-17171. 10.1074/jbc.273.27.17166
Article
CAS
PubMed
Google Scholar
Alzuherri HM, White RJ: Regulation of RNA polymerase I transcription in response to F9 embryonal carcinoma stem cell differentiation. J. Biol. Chem. 1999, 274: 4328-4334. 10.1074/jbc.274.7.4328
Article
CAS
PubMed
Google Scholar
Faria TN, Mendelsohn C, Chambon P, Gudas LJ: The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J Biol Chem. 1999, 274(38): 26783-8. 10.1074/jbc.274.38.26783. 10.1074/jbc.274.38.26783
Article
Google Scholar
Lavigne AC, Gangloff YG, Carr L, Mengus G, Birck C, Poch O, Romier C, Moras D, Davidson I: Synergistic transcriptional activation by TATA-binding protein and hTAFII28 requires specific amino acids of the hTAFII28 histone fold. Mol. Cell Biol. 1999, 19: 5050-5060.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brou C, Wu J, Ali S, Scheer E, Lang C, Davidson I, Chambon P, Tora L: Different TBP-associated factors are required for mediating the stimulation of transcription in vitro by the acidic transactivator GAL-VP16 and the two nonacidic activation functions of the estrogen receptor. Nucleic Acids Res. 1993, 21: 5-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lescure A, Lutz Y, Eberhard D, Jacq X, Krol A, Grummt I, Davidson I, Chambon P, Tora L: The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 1994, 13: 1166-1175.
PubMed Central
CAS
PubMed
Google Scholar
Jacq X, Brou C, Lutz Y, Davidson I, Chambon P, Tora L: Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell. 1994, 79: 107-117.
Article
CAS
PubMed
Google Scholar
Dubrovskaya V, Lavigne AC, Davidson I, Acker J, Staub A, Tora L: Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. EMBO J. 1996, 15: 3702-3712.
PubMed Central
CAS
PubMed
Google Scholar
Lavigne AC, Mengus G, May M, Dubrovskaya V, Tora L, Chambon P, Davidson I: Multiple interactions between hTAFII55 and other TFIID subunits. Requirements for the formation of stable ternary complexes between hTAFII55 and the TATA-binding protein. J. Biol. Chem. 1996, 271: 19774-19780. 10.1074/jbc.271.33.19774
Article
CAS
PubMed
Google Scholar