Lowther WT, Weissbach H, Etienne F, Brot N, Matthews BW: The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol. 2002, 9: 348-352.
CAS
PubMed
Google Scholar
Moskovitz J, Poston JM, Berlett BS, Nosworthy NJ, Szczepanowski R, Stadtman ER: Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem. 2000, 275: 14167-14172. 10.1074/jbc.275.19.14167
Article
CAS
PubMed
Google Scholar
Moskovitz J, Singh VK, Requena J, Wilkinson BJ, Jayaswal RK, Stadtman ER: Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem Biophys Res Commun. 2002, 290: 62-65. 10.1006/bbrc.2001.6171
Article
CAS
PubMed
Google Scholar
Brot N, Weissbach L, Werth J, Weissbach H: Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA. 1981, 78: 2155-2158. 10.1073/pnas.78.4.2155
Article
PubMed Central
CAS
PubMed
Google Scholar
Sagher D, Brunell D, Brot N, Vallee BL, Weissbach H: Selenocompounds can serve as oxidoreductants with the methionine sulphoxide reductase enzymes. J Biol Chem. 2006, 281: 31184-7. 10.1074/jbc.M606962200
Article
CAS
PubMed
Google Scholar
Kim HY, Gladyshev VN: Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol. 2005, 3: e375- 10.1371/journal.pbio.0030375
Article
PubMed Central
PubMed
Google Scholar
Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H: Thionein can serve as a reducing agent for the methionine sulfoxide reductases. Proc Natl Acad Sci USA. 2006, 103: 8656-61. 10.1073/pnas.0602826103
Article
PubMed Central
CAS
PubMed
Google Scholar
Weissbach H, Resnick L, Brot N: Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta. 2005, 1703: 203-12.
Article
CAS
PubMed
Google Scholar
Hansel A, Heinemann SH, Hoshi T: Heterogeneity and function of mammalian MSRs: enzymes for repair, protection and regulation. Biochim Biophys Acta. 2005, 1703: 239-47.
Article
CAS
PubMed
Google Scholar
Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL: Methionine oxidation and aging. Biochim Biophys Acta. 2005, 1703: 135-40.
Article
CAS
PubMed
Google Scholar
Moskovitz J: Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta. 2005, 1703: 213-9.
Article
CAS
PubMed
Google Scholar
Petropoulos I, Friguet B: Protein maintenance in aging and replicative senescence: a role for the peptide methionine sulfoxide reductases. Biochim Biophys Acta. 2005, 1703: 261-6.
Article
CAS
PubMed
Google Scholar
Moskovitz J, Rahman MA, Strassman J, Yancey SO, Kushner SR, Brot N, Weissbach H: Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol. 1995, 177: 502-507.
PubMed Central
CAS
PubMed
Google Scholar
Moskovitz J, Berlett BS, Poston JM, Stadtman ER: The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA. 1997, 94: 9585-9589. 10.1073/pnas.94.18.9585
Article
PubMed Central
CAS
PubMed
Google Scholar
Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER: Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA. 1998, 95: 14071-14075. 10.1073/pnas.95.24.14071
Article
PubMed Central
CAS
PubMed
Google Scholar
Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER: Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA. 2001, 98: 12920-12925. 10.1073/pnas.231472998
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruan H, Tang XD, Chen ML, Joiner MA, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T: High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA. 2002, 99: 2748-2753. 10.1073/pnas.032671199
Article
PubMed Central
CAS
PubMed
Google Scholar
Petropoulos I, Mary J, Perichon M, Friguet B: Rat peptide methionine sulphoxide reductase: cloning of the cDNA, and down-regulation of gene expression and enzyme activity during aging. Biochem J. 2001, 355: 819-825.
Article
PubMed Central
CAS
PubMed
Google Scholar
Picot CR, Perichon M, Cintrat JC, Friguet B, Petropoulos : The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett. 2004, 558: 74-78. 10.1016/S0014-5793(03)01530-8
Article
CAS
PubMed
Google Scholar
Kim HY, Gladyshev VN: Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell. 2004, 15: 1055-64. 10.1091/mbc.E03-08-0629
Article
PubMed Central
CAS
PubMed
Google Scholar
Bar-Noy , Moskovitz J: Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochem Biophys Res Commun. 2002, 297: 956-961. 10.1016/S0006-291X(02)02314-8
Article
CAS
PubMed
Google Scholar
Kim HY, Fomenko DE, Yoon YE, Gladyshev VN: Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry. 2006, 45: 13697-13704. 10.1021/bi0611614
Article
PubMed Central
CAS
PubMed
Google Scholar
Halliwell B: Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Ex Pathol. 1989, 70: 737-757.
CAS
Google Scholar
Mary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B: Enzymatic reactions involved in the repair of oxidized proteins. Ex Gerontol. 2004, 39: 1117-11123. 10.1016/j.exger.2004.06.008.
Article
CAS
Google Scholar
Poole LB, Karplus PA, Claiborne A: Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol. 2004, 44: 325-347. 10.1146/annurev.pharmtox.44.101802.121735
Article
CAS
PubMed
Google Scholar
Moskovitz J, Stadtman ER: Selenium-deficient diet enhances protein oxidation and affects methionine sulfoxide reductase (MsrB) protein level in certain mouse tissues. Proc Natl Acad Sci USA. 2003, 100: 7486-90. 10.1073/pnas.1332607100
Article
PubMed Central
CAS
PubMed
Google Scholar
De Luca A, Sacchetta P, Di Ilio C, Favaloro B: Identification and analysis of the promoter region of the human methionine sulphoxide reductase A gene. Biochem J. 2006, 393: 321-9. 10.1042/BJ20050973
Article
PubMed Central
CAS
PubMed
Google Scholar
Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP: Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998, 72: 141-196.
Article
CAS
PubMed
Google Scholar
Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999, 21: 103-7. 10.1038/5047
Article
CAS
PubMed
Google Scholar
Chiurazzi P, Pomponi MG, Pietrobono R, Bakker CE, Neri G, Oostra BA: Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet. 1999, 8: 2317-23. 10.1093/hmg/8.12.2317
Article
CAS
PubMed
Google Scholar
Honda H, Pazin MJ, Ji H, Wernyj RP, Morin PJ: Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J Biol Chem. 2006, 281: 21433-44. 10.1074/jbc.M603767200
Article
CAS
PubMed
Google Scholar
Yoshida M, Horinouchi S, Beppu T: Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioassays. 1995, 17: 423-30. 10.1002/bies.950170510.
Article
CAS
Google Scholar
Dressel U, Renkawitz R, Baniahmad A: Promoter specific sensitivity to inhibition of histone deacetylases: implications for hormonal gene control, cellular differentiation and cancer. Anticancer Res. 2000, 20: 1017-22.
CAS
PubMed
Google Scholar
Kantorow M, Hawse JR, Cowell TL, Benhamed S, Pizarro GO, Reddy VN, Hejtmancik JF: Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci USA. 2004, 101: 9654-9. 10.1073/pnas.0403532101
Article
PubMed Central
CAS
PubMed
Google Scholar
Marchetti MA, Pizarro GO, Sagher D, Deamicis C, Brot N, Hejtmancik JF, Weissbach H, Kantorow M: Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Invest Ophthalmol Vis Sci. 2005, 46: 2107-12. 10.1167/iovs.05-0018
Article
PubMed Central
PubMed
Google Scholar
Lee JW, Gordiyenko NV, Marchetti M, Tserentsoodol N, Sagher D, Alam S, Weissbach H, Kantorow M, Rodriguez IR: Gene structure, localization and role in oxidative stress of methionine sulfoxide reductase A (MSRA) in the monkey retina. Exp Eye Res. 2006, 82: 816-27. 10.1016/j.exer.2005.10.003
Article
PubMed Central
CAS
PubMed
Google Scholar
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006, 160: 1-40. 10.1016/j.cbi.2005.12.009
Article
CAS
PubMed
Google Scholar
Lu J, Lee W, Jiang C, Keller EB: Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem. 1994, 269: 5391-402.
CAS
PubMed
Google Scholar
Kollmar R, Sukow KA, Sponagle SK, Farnham PJ: Start site selection at the TATA-less carbamoyl-phosphate synthase (glutamine-hydrolyzing)/aspartate carbamoyltransferase/dihydroorotase promoter. J Biol Chem. 1994, 269: 2252-7.
CAS
PubMed
Google Scholar
Blake MC, Jambou RC, Swick AG, Kahn JW, Azizkhan JC: Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol. 1990, 10: 6632-41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feinberg AP, Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 2004, 4: 143-53. 10.1038/nrc1279
Article
CAS
PubMed
Google Scholar
Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003, 349: 2042-54. 10.1056/NEJMra023075
Article
CAS
PubMed
Google Scholar
Tamaru H, Selker EU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001, 414: 277-83. 10.1038/35104508
Article
CAS
PubMed
Google Scholar
Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006, 439: 871-4. 10.1038/nature04431
Article
CAS
PubMed
Google Scholar
Mutskov V, Felsenfeld G: Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004, 23: 138-49. 10.1038/sj.emboj.7600013
Article
PubMed Central
CAS
PubMed
Google Scholar
Munot K, Bell SM, Lane S, Horgan K, Hanby AM, Speirs V: Pattern of expression of genes linked to epigenetic silencing in human breast cancer. Hum Pathol. 2006, 37: 989-99. 10.1016/j.humpath.2006.04.013
Article
CAS
PubMed
Google Scholar
Worm J, Kirkin AF, Dzhandzhugazyan KN, Guldberg P: Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J Biol Chem. 2001, 276: 39990-40000. 10.1074/jbc.M103181200
Article
CAS
PubMed
Google Scholar
Chen C, Yang MC, Yang TP: Evidence that silencing of the HPRT promoter by DNA methylation is mediated by critical CpG sites. J Biol Chem. 2001, 276: 320-8. 10.1074/jbc.M007096200
Article
CAS
PubMed
Google Scholar
Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM: Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest. 2004, 114: 1146-57. 10.1172/JCI200421647
Article
PubMed Central
CAS
PubMed
Google Scholar
Stirzaker C, Song JZ, Davidson B, Clark SJ: Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res. 2004, 64: 3871-7. 10.1158/0008-5472.CAN-03-3690
Article
CAS
PubMed
Google Scholar
Zhang Y, Fatima N, Dufau ML: Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol. 2005, 25: 7929-39. 10.1128/MCB.25.18.7929-7939.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Rountree MR, Bachman KE, Herman JG, Baylin SB: DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001, 20: 3156-65. 10.1038/sj.onc.1204339
Article
CAS
PubMed
Google Scholar
Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998, 19: 187-91. 10.1038/561
Article
CAS
PubMed
Google Scholar
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393: 386-9. 10.1038/30764
Article
CAS
PubMed
Google Scholar
Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, 13: 1924-35. 10.1101/gad.13.18.2388
Article
PubMed Central
CAS
PubMed
Google Scholar
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003, 278: 4035-40. 10.1074/jbc.M210256200
Article
CAS
PubMed
Google Scholar
Lin X, Asgari K, Putzi MJ, Gage WR, Yu X, Cornblatt BS, Kumar A, Piantadosi S, DeWeese TL, De Marzo AM, Nelson WG: Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 2001, 61: 8611-6.
CAS
PubMed
Google Scholar