
Bunch and Calderwood. ﻿BMC Molecular Biol  (2015) 16:14 
DOI 10.1186/s12867-015-0040-x

REVIEW

TRIM28 as a novel transcriptional 
elongation factor
Heeyoun Bunch and Stuart K Calderwood* 

Abstract 

TRIM28 is a multidomain protein with versatile functions in transcription and DNA repair. Recently it was shown that 
this factor plays unanticipated roles in transcriptional elongation. TRIM28 was shown to stabilize the pausing of RNA 
polymerase II (Pol II) close to the transcriptional start site in many unactivated genes, permitting Pol II accumulation 
and readying genes for induction. In addition, the factor was shown to respond rapidly to signals accompanying tran-
scriptional activation permitting the productive elongation of RNA by previously paused Pol II. We discuss here critical 
regulatory mechanisms of TRIM28 in transcriptional control and DNA repair that may illuminate the novel roles of this 
factor in pausing and elongation of Pol II.
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Background
Transcription is one of the major cellular processes to 
access the genome and regulate gene expression. Finely 
controlled gene expression is crucial to determine cell 
identity and maintain normal cell growth and homeosta-
sis. During transcription, the RNA polymerase II (Pol II) 
complex carries out the generation of messenger RNAs 
and the majority of non-coding genes in eukaryotic cells 
[1, 2], and depending on the functional status and posi-
tion of Pol II, transcription has been studied in three 
stages: transcriptional initiation, elongation, and termi-
nation [3].

Transcriptional initiation is the initial checkpoint in 
gene expression, where Pol II and general transcrip-
tion factors (GTFs) are recruited to the promoter region 
upon activation [4]. Then, once Pol II becomes triggered 
to escape from the promoter, it elongates a nascent RNA 
transcript before releasing the fully transcribed RNA 
strand and finally dissociating from the gene terminus 
[3]. However, recent genome-wide analyses have revealed 
an additional regulatory step situated between early and 

processive elongation. This new, prevailing mechanism 
of regulation in metazoans, especially for developmental 
and stimulus-inducible genes, is called Pol II promoter-
proximal pausing, in which Pol II is already engaged with 
TSS between +20 and +100 before transcriptional acti-
vation [5–8]. This TSS-bound, paused yet active Pol II 
has the capability to resume transcription upon receipt of 
activating signals. Approximately 30% of all protein cod-
ing genes displays Pol II paused in the promoter-proxi-
mal region [8]. Thus Pol II pausing has been recognized 
as another major checkpoint along with transcriptional 
initiation for gene activation [8, 9]. As a newly emerging, 
regulatory mechanism for transcription, Pol II promoter 
proximal pausing is undergoing rigorous investigation. A 
number of protein factors have been identified as regula-
tors of Pol II pausing. NELF (negative elongation factor), 
DSIF (DRB sensitivity inducing factor), and POLR2M 
(DNA directed RNA polymerase II subunit) induce and 
stabilize Pol II pausing while positive transcription elon-
gation factor (P-TEFb), MYC, ELL, TFIIS, CDK8-Media-
tor, and TFIIF facilitate Pol II pause release and entering 
into processive elongation [5, 6, 10–15]. In addition, 
we have recently discovered a novel role for the factor 
TRIM28 in the control of pausing of Pol II in mammalian 
genes genome-wide, a mechanism that is the subject of 
discussion here [16].
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TRIM28, a multi‑domain protein
TRIM28 (TRIpartate motif-containing protein 28), 
also known as KAP1 (KRAB-associated protein 1) and 
transcription intermediary factor 1β (TIF1β), was first 
discovered as a polypeptide interacting with zinc fin-
ger family members of the Kruppel transcription factor 
family (KRAB) [17–21]. (For a comprehensive review 
on TRIM28, readers are directed to Iyengar et  al. [22]). 
TRIM28 was initially shown to function alongside KRAB 
factors in gene repression [22]. This factor has subse-
quently been shown to be a highly versatile multid-
omain protein that is found associated with many genes 
throughout the genome.

TRIM28 was shown to contain an N terminal RBCC 
domain that is comprised of a RING (really interesting 
new gene) finger, two B-box zinc fingers and a coiled 
coil domain through which it interacts with KRAB pro-
teins and is recruited to DNA [17, 23–25] (Figure 1). The 
RING motif is highly represented among mammalian 
proteins and exhibits ubiquitin E3 ligase activity [18, 26]. 
Adjacent to the RBCC domain is the short TIF1 signa-
ture domain that is essential for gene repression [23]. At 
the C-terminus are two adjacent domains with key roles 
in trans-repression of target genes. These are the PHD 
(plant homeo domain) and the C-terminal BR (BRomo 
domain). The BR domain of TRIM28 is atypical in that 
it does not bind to acetyl lysine residues [27]. The PHD 
domain possesses E3 ligase activity and can lead to mul-
tiple modifications on the BR domain by SUMO addition 
[28–30]. Sumoylation then “arms” the BR domain for 
interaction with mediators of repression, permitting it to 
associate with the SUMO interaction (SIM) domains in 
Mi2/NuRD complexes (with repressive HDAC activity) 
and with SETDB1 a histone methyltransferase that leads 
to trimethylation of histone H3 on lysine 9 (HeK9) on 
chromatin [31] (Figures 1, 2). H3K9Me3 is a classic mark 

of silent heterochromatin. TRIM28 is closely associated 
with regions rich in H3K9 in the genome [22]. However, 
TRIM28 has not been reported to bind directly to DNA. 
This factor has however been shown to be tethered to 
chromatin by association with KRAB factors through 
the RBCC domain [32]. In addition, TRIM28 contains a 
central binding site for HP1 (heterochromatin protein 1) 
and the factor is found associated with HP1 and H3K9 in 
areas of heterochromatin (Figures 1, 2) [33].

More recently, another level of regulation for TRIM28 
involving phosphorylation has been discovered during 
investigation of the role of TRIM28 in DNA repair (see 
below). TRIM28 was shown to be recruited to the region 
of DNA double strand breaks in association with HP1 
and to be rapidly phosphorylated close to the C termi-
nus (on S824) by the DNA damage response kinase ATM 
(Figure  1) [34–36]. Phosphorylation on S824 led to loss 
of the SUMO residues within the BR domain, dissocia-
tion from NuRD and SETDB1 repressor complexes and 
accompanying relaxation of heterochromatin permit-
ting DNA repair [35]. There thus appeared to be cycle 
of SUMO- and phospho-S824 modifications that gov-
erned cycles of contrasting TRIM28 activity [35]. A fur-
ther wrinkle to this regulatory pathway was provided by 
findings that members of the Src family of non-receptor 
tyrosine kinases could suppress ATM-mediated TRIM28 
modification and, during DNA repair, signal the termina-
tion of DNA damage mediated checkpoint signaling [37].

TRIM28 phosphorylation by such kinases, particu-
larly Src itself, at multiple tyrosine residues (Y-449/Y-
458/Y-517), located close to the HP1 binding-motif 
inhibited association of the factor with HP1 and reversed 
gene silencing mediated through binding to HP1 (Fig-
ure  1) [38]. Another phosphorylatable residue adjacent 
to the HP1 box, S473 was also associated with inhibition 
of TRIM28-HP1 binding and a decline in the intensity of 

Figure 1  Major functional domains and key sites for PTM in TRIM28. The factor contains multiple functional domains. TRIM28 binds to KRAB 
transcription factors through the RBCC domain in the N-terminal portion and to heterochomatin 1 (HP1) proteins through a centrally located bind-
ing motif. Gene repression is mediated through C-terminal domains including adjacent PHD and BR domains. Key posttranslational modifications 
(PTM) include tyrosine and serine phosphorylation sites clustered around the HP1 binding motif and sumoylation sites in the BR domain. A critically 
important regulatory phosphorylation site is serine 824 located in the extreme C-terminal region.
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the DNA damage response (Figure 1) [39]. Phosphoryla-
tion on this residue by DDR kinase Chk2 downstream of 
ATM led to both loss of repressor function in TRIM28, 
but also permitted binding to the factor E2F1 [40]. Thus 
negative charge introduced close to the HP1 box in 
TRIM28 appeared inhibitory to HP1 mediated-events, 
indicating another level of regulation by phosphorylation.

Key role for TRIM28 in DNA repair
Understanding of the role of TRIM28 in pausing may be 
informed by current knowledge of its functions in DNA 
repair. White et  al. and others have shown an impor-
tant role for TRIM28 in DNA repair mechanisms [34, 
35, 41]. These responses to DNA damage involved a 
role for the DNA damage response (DDR) kinase ATM 
in phosphorylating TRIM28 on S824 and presumably 
loss of the key Sumo residues from the BR domain [41]. 
Active, sumoylated TRIM28 was shown to bind rapidly 
to damaged chromatin in association with HP1, followed 
by phosphorylation on S824 and reversal of the silenc-
ing effects of the factor. In addition, resolution of the 
DSB response appeared to involve the phosphorylation 
of TRIM28 in residues adjacent to the HP1 box by Src 
family kinases as discussed earlier [35, 37]. Thus phos-
phorylation may counteract the repressive influence of 
TRIM28 by both reversing sumoylation of the BR domain 
and reducing association with HP1. Phosphatases also 
played a role in this response and PP1β was shown to 

interact with the coiled coil domain of TRIM28 followed 
by dephosphorylation of S824 and promoting DDR sign-
aling [35]. Likewise PP4 could lead to dephosphorylation 
of S824 and was shown to play a key role in non-homol-
ogous end joining repair [42–44]. The role of TRIM28 in 
DDR signaling was recently attributed to activation of 
the histone acetylase Tip60 [45]. A complex containing 
TRIM28, HP1 and the histone methyltransferase suv39.
h1 was shown to become associated with chromatin after 
DNA damage and led to cycles of histone H3K9 meth-
ylation and further binding of the TRIM28, HP1 and 
suv39.h1 to the H3K9Me regions [45]. This reaction was 
shown to create areas of acetylated H3K9 that could acti-
vate Tip60 and this led to acetylation and activation of 
ATM and modification of histone H4 by acetylation. This 
was shown to be a self-limiting interaction and TRIM28 
phosphorylation by the activated ATM on S824 attenu-
ated the response [45]. Overall the exact role of the rapid 
changes in histone H3K9 methylation in the response is 
not clear but these events did appear to play key roles in 
DDR signaling as well as in chromatin remodeling inter-
actions that might be key to the access of repair proteins 
to areas of DNA damage [46–48].

TRIM28 and transcriptional elongation
TRIM28 has been shown to be a powerful gene repressor 
when overexpressed in cells [31, 49]. This factor bound 
tightly to the 3′ region of members of the ZNF family 

Fig. 2  Representation of mechanisms of association of TRIM28 with chromatin and influences in transcriptional function. TRIM28 is depicted 
as associating with KRAB factors through the RBCC domain and with HP1 factors associated with H1K9Me3 though the HP1 binding motif. The 
sumoylated BR domain is represented as interacting with both CHH3/Mi2/NuRD complexes and with SETDB1 and mediating trans-repression.
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in association with SETDB1 and chromatin areas rich 
in H3K9Me3, implying the establishment of a repres-
sive transcriptional environment [32, 50]. In another 
study, TRIM28 was shown to bind TSSs of over 3,000 
genes in mouse embryonic stem cells [51]. However, a 
clear role for TRIM28 in the transcriptional regulation 
of these genes was not established [32, 50]. In addition, 
TRIM28 was also shown to bind to the promoter regions 
of a number of genes, interestingly, independently of 
the RBCC domain. Iyengar et  al. [32] showed that such 
recruitment involved protein–protein interactions in a 
central (380–618) region of TRIM28 independent of the 
HP1 box. The implications of such interactions seemed 
however unclear.

Recently, in an unbiased screen for proteins that bound 
at the pausing site to regulate Pol II pausing on the 
human HSP70 (HSPA1B) gene, TRIM28 was identified 
[16]. TRIM28 was found associated with the non-tem-
plate DNA of HSPA1B close to the transcriptional start 
site (TSS) at around +70. Using an in vitro transcrip-
tion assay, it was then shown that TRIM28 could stabi-
lize pausing of Pol II on HSPA1B and that depletion of 
the factor from HeLa nuclear extracts used in the assay 
led to increased transcriptional elongation [16]. It could 
thus be predicted that reduction in TRIM28 levels would 
lead to increases in basal level of productive elongation 
and gene expression of HSPA1B. Indeed, knockdown of 
TRIM28 led to increases in HSPA1B RNA and protein 
levels in vivo as well as levels of other proteins regulated 
by Pol II pausing such as NFB and ERK1 [16]. ChIP-seq 
studies of Pol II occupancy in murine ES cells with or 
without knockdown of TRIM28 reinforced the function 
of TRIM28 in regulating Pol II pausing. Pausing indices 
were analyzed as the ratio of promoter proximal Pol II 
(−250 to +250 from TSS) to elongating Pol II defined 
here as gene body Pol II (+500 to +2,500 or the gene 
end). TRIM28 knockdown modulated pausing index in a 
large number of genes many that had been shown previ-
ously to be regulated by Pol II promoter-proximal paus-
ing. These included the HSPA1B, ERK1, JUN and EGR1 
genes [16]. These data therefore indicated a commanding 
role for TRIM28 in regulating Pol II pausing and pause 
release.

The next question was: how could TRIM28-mediated 
Pol II pausing be overturned in vivo after transcriptional 
activation? One possibility considered was that TRIM28 
could dissociate from the promoter proximal site after 
transcriptional activation. However, ChIP-qPCR experi-
ments carried out on HSPA1B during heat shock showed 
little evidence of TRIM28 release [16]. Taking a lesson 
from p21 transcription regulated by TRIM28 phospho-
rylation [35], it was found that the factor became rap-
idly phosphorylated on S824, within seconds of heat 

shock, a time when trans-activator HSF1 was shown to 
bind to HSP genes [16, 34, 41]. Next, kinases potentially 
involved in S824 phosphorylation were examined. DNA-
dependent protein kinase (DNA-PK) kinase was inves-
tigated since TRIM28 had been shown to interact with 
the DNA-PK catalytic subunit and its regulatory subunit 
Ku70 in immunoprecipitation experiments followed by 
mass spectrometry analysis [16]. ATM was studied due 
to its known involvement in TRIM28 S824 phosphoryla-
tion after DNA damage and for its overlapping functions 
and substrates with DNA-PK. It was found that inhibi-
tion of DNA-PK as well as ATM kinase activity inhibited 
the phosphorylation of TRIM28 on S824 [16]. Signifi-
cantly, inhibiting these kinases dramatically reduced Pol 
II occupancy in the gene terminus when transcription 
was activated in HSPA1B, suggesting an important role of 
this phosphorylation signaling on transcriptional elonga-
tion. The significance of TRIM28 phosphorylation in Pol 
II pause release was confirmed in in vitro transcription 
experiments showing that phosphomimetic mutation of 
S824 by aspartate substitution abolished the ability of 
TRIM28 to mediate Pol II pausing on HSPA1B. These 
findings established a role for TRIM28 in Pol II pausing 
regulation and a mechanism for pausing release involv-
ing DNA damage-triggered kinases DNA-PK and ATM. 
In this model, unphosphorylated TRIM28 stabilizes Pol 
II pausing at the pausing site. Upon transcriptional acti-
vation, ATM and DNA-PK become activated to phos-
phorylate TRIM28 at S824, potentially leading to more 
favorable nucleosome architecture for Pol II processive 
elongation (Figure 3).

General discussion
These studies open up a wide range of issues for discus-
sion and further experimentation. For instance, the find-
ing that S824 phosphorylation reverses the influence 
of TRIM28 on pausing might suggest that Pol II paus-
ing requires the active poly-sumoylated form of the BR 
domain. This finding would also implicate potential roles 
for SETDB1 and the Mi2/NuRD complex in pausing. 
Indeed, one hypothesis for the establishment of stable 
transcriptional pausing is that this mechanism might be 
influenced by the positioning of the first nucleosome in 
the gene body [8, 9]. One might thus suggest a role for 
H3k9Me3 modification of such structures and associa-
tion of TRIM28 with such structures through its HP1 
binding domain in maintenance of Pol II pausing.

Another question is—how is this novel mechanism 
involving TRIM28 to be dovetailed with established 
pathways for regulating Pol II pausing? The principle 
mechanism for mediation of pausing involves the factors 
NELF and DSIF that mediate arrest of Pol II until tran-
scriptional stimulus. Transcriptional activation involves 
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recruitment of the kinase complex P-TEFb to the acti-
vated gene, phosphorylation of NELF and serine 2 on 
the C-terminal repeat sequence of Pol II (Pol II phospho-
S2) by P-TEFb, disengagement of NELF, and subsequent 
elongation [9]. ChIP Seq studies indicated a significant 
increase in the levels of Pol II phospho-S2 in the gene 
bodies of a large number of genes when TRIM28 was 
knocked down [16]. It remains to be determined whether 
these findings indicate a primary role for TRIM28 in 
influencing Pol II phosphorylation at the S2 position or 
whether Pol II modification occurs indirectly as elonga-
tion is unleashed following trans-activation by inducing 
factors.

Many unresolved questions await further experimen-
tation regarding TRIM28-mediated Pol II pausing regu-
lation. For instance, a mechanism for the activation of 
the PIKK kinases ATM and DNA-PK prior to phospho-
rylation of TRIM28 at S824 needs to be established. How 
such principle signaling molecules in the DDR response 
could become activated in productive elongation is not 
clear. Previous studies of trans-activation in androgen 

receptor and estrogen receptor-regulated genes have 
shown association of target genes with the catalytic subu-
nit of DNA-PK, DNA-PK associated proteins Ku70 and 
Ku80, ATM, topoisomerase II and DNA repair interme-
diate poly (ADP-ribose polymerase (PARP1), an associa-
tion leading to transcription through a mechanism that 
may involve generation of DNA double strand breaks in 
the activated gene. [52–54]. In addition, DNA-PK was 
shown, in previous studies to associate directly with 
HSF1, the transcriptional regulator of HSP genes [55, 56]. 
Previous studies by the Lis lab showed that elongation 
was associated with processive movement of PARP1 into 
the gene body of HSP70 in heat shocked cells and subse-
quent processive modification of histones by ADP ribo-
sylation in Drosophila. This effect was triggered by HSF 
induced recruitment of Tip60 and histone acetylation on 
histone H2A, an effect required for activation of PARP1 
residues pre-existing at the 5′ of the unactivated gene and 
triggering HSP70 transcription [57]. These findings are 
reminiscent of the DNA repair studies mentioned above 
where exposure to DNA double strand breaks led to 

Figure 3  A model of TRIM28-mediated transcriptional regulation in Pol II promoter-proximal pausing and pause release. A transcriptional repressor 
TRIM28 is bound adjacent to the Pol II pausing site to stabilize the paused complex of Pol II. In a model paused gene, HSPA1B, heat-shock instantly 
recruits a gene-specific transcriptional activator, HSF1 to activate transcription. Upon transcriptional activation, TRIM28 is rapidly phosphorylated 
at S824. This phosphorylation is dependent on ATM and DNA-PK, critical DNA damage and repair kinases. This phosphorylation signaling appears 
important for Pol II pause release as blocking the function of these kinases interferes with Pol II progression into the 3′ terminus of HSPA1B.
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association of TRIM28 and HP1 with areas of H3K9Me3 
on damaged chromatin that could activate Tip60 and lead 
to acetylation and activation of ATM [45].

Another question is—by what mechanism does TRIM28 
interact with the TSS of the gene bodies of paused genes? 
TRIM28 may operate in pause regulation in a “hit and 
run” manner or might associate stably with chromatin. As 
mentioned earlier, it was shown that TRIM28 could asso-
ciate with target areas of chromatin through: (1) binding 
to KRAB transcription factors through its RBCC domain 
[22], (2) association with methylated histones through 
HP1 binding to the HP1 binding motif [22], and (3) though 
a central domain remote from the HP1 box shown to bind 
unknown factors in gene promoters [32]. It is notable that 
HP1 has been reported to function in transcriptional elon-
gation and to interact with the factor facilitates chromatin 
transcription (FACT) [58, 59]. Another possibility could be 
binding of TRIM28 to other transcription factors through 
the coiled-coil domain [22]. Mechanisms involving phos-
phorylation of the central region by nuclear tyrosine 
kinases discussed above, as observed in DNA repair stud-
ies, could be involved in regulating TRIM28 association 
with transcriptionally paused genes (Figure 1). In addition, 
it will be important to understand how nucleosome struc-
tures might be modified or changed by TRIM28 phospho-
rylation during Pol II pause release.

In conclusion therefore, TRIM28 appears to play a 
unique and essential role in transcriptional elonga-
tion. We anticipate future investigation of upstream and 
downstream signaling and the regulatory mechanisms 
that underlie the role of TRIM28 in transcriptional paus-
ing and elongation.
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