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Background
Cap-dependent translation is not the only means by
which mRNA translation can be initiated. The discovery of

Abstract

Background: Connexin55.5 (Cx55.5) is a gap junction protein with horizontal cell-restricted
expression in zebrafish accumulating at dendritic sites within the receptor-horizontal cell complex
in form of hemichannels where light-dependent plasticity occurs. This connexin is the first example
of a gap junction protein processed to form two protein isoforms from a monocistronic message
by an IRES mediated process. The nuclear occurrence of a carboxy-terminal fragment of this
protein provides evidence that this gap junction protein may participate in a putative cytoplasmic
to nuclear signal transfer.

Results: We characterized the IRES element of Cx55.5 in terms of sequence elements necessary
for its activity and protein factor(s), which may play a role for its function. Two stretches of
polypyrimidine tracts designated PPT| and PPT2 which influence the IRES activity of this neuronal
gap junction protein were identified. Selective deletion of PPT| results in an appreciable decrease
of the IRES activity, while the deletion of PPT2 results in a complete loss. RNA-EMSA and UV-cross
linking experiments showed that protein complexes bind to this IRES element, of which the
polypyrimidine tract binding protein (PTB) was identified as one of the interacting partners with
influence on IRES activity. These results indicate that PTB conveys a role in the regulation of the
IRES activity of Cx55.5.

Conclusion: Our findings indicate that the activity of the IRES element of the neuronal gap
junction protein Cx55.5 is subject of regulation through flanking polypyrimidine tracts, and that the
non-canonical trans-activation factor PTB plays an essential role in this process. This observation
is of considerable importance and may provide initial insight into molecular-functional relationships
of electrical coupling in horizontal cells.

internal ribosome entry sites (IRES) in picornaviruses
mRNA revealed that the small ribosomal subunit could
bind within the mRNA in a cap-independent manner
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[1,2]. Because of this property, IRES elements provide an
exception of the general mechanism of scanning from the
5' end of the cap structure to initiate eukaryotic transla-
tion. Multiple IRESs have subsequently been found on
different viral mRNAs, and more recently in cellular
mRNAs [3-10]. The presence of IRES elements in viruses
provides them with the advantage to hijack the transla-
tional machinery of the host cell to favor the expression of
foreign transcripts. Most of the cellular IRESs have been
shown to function preferentially when cap-dependent
translation is physiologically impaired. Consistent with
this concept, IRES elements were active during y-radia-
tions [11], hypoxia [12] or amino acid starvation [13].
This led to the current hypothesis that IRES-mediated
translation of certain mRNAs represents a regulatory
mechanism that helps the cell to cope with transient
stress.

Connexins form gap junctions, which are believed to con-
vey a broad spectrum of functions, including the regula-
tion of cell growth, cell differentiation and maintenance
of tissue homeostasis [ 14]. Translational initiation of con-
nexin genes has been regarded mainly in a cap-dependent
manner, but recent reports have shown that connexins
possess IRES elements [15], where in one case a single
point mutation in an IRES element of the 5' untranslated
region has been linked to Charcot-Marie-Tooth disease
[16]. A recent report on connexin43 has shown that this
gene use alternate splicing mechanism, which yields tran-
scripts with different 5'-UTRs displaying different transla-
tional efficiencies [17]. Moreover, we reported on the
presence of a unique internal IRES element in the coding
region of the horizontal cell specific zebrafish Cx55.5,
which results in an internal translation of a carboxy-termi-
nal domain (p11-CT) [18,19]. The presence of such IRES
elements in the coding region of eukaryotic genes has only
recently become apparent [20-22].

Regulation of a typical caped eukaryotic mRNA by modu-
lating the activity of critical translational initiation factors,
elF4E and elF4F, is well known [23]. However, the trans-
lational regulation of the IRES containing mRNA is still
less understood. To get insight into the regulation of the
IRES elements in cellular genes, it becomes imperative to
identify the motifs within the IRES's scaffold, which are
important for its function. In addition to the requirement
of the canonical initiation factors, the requirements of
some non-canonical trans-acting factors have been found
important for the function of IRES elements [24-26].

In the present study, we extent a previous report on the
presence of an internal IRES element in the coding region
of Cx55.5 by characterizing the IRES site in terms of
sequence elements important for IRES activity and puta-
tive trans-acting factors that could modulate the IRES
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function. Our findings indicate that the activity of the
IRES element is subject of regulation through flanking
polypyrimidine tracts, and that PTB seems to be an essen-
tial RNA binding factor involved in this process. This
observation is of considerable importance since it adds a
further facet to the widespread function of PTB. On one
hand PTB has been characterized as a crucial factor
involved in the non-canonical trans-activity mechanisms.
There, PTB was initially discovered as a splicing factor due
to its ability to bind to polypyrimidine tracts at 3' splice
sites [27-30]. Here, our finding supports the previously
described role of PTB in IRES mediated translation [26,31-
33], which in our case consists of an internal segment that
allows alternate translation of a carboxy-terminal isoform
with the capability to translocate to the nucleus. This find-
ing may provide initial insight on molecular-functional
relationships of electrical coupling in horizontal cells,
which show a unique light dependent plasticity. Changes
of the interneuronal coupling mediated by electrical syn-
apse proteins in response to light adaptation, receptive
field shaping and structural plasticity are known as a par-
amount feature of the outer retina [34,35]. The regulation
of these processes is not understood at the molecular level
but information transfer to the nucleus by a locally gener-
ated messenger deriving from an electrical synapse pro-
tein may comprise a feasible molecular determinant in a
yet uncharacterized signalling pathway. On the basis of
our results it is tempting to speculate whether the Cx55.5
CT domain shows a light stimulus dependent transloca-
tion and exert its function by interaction with DNA, RNA
and/or other nuclear proteins thus modulating gene regu-
lation making plasticity of horizontal cells possible.

Results

Cx55.5 internal IRES element activity is modulated by two
polypyrimidine tracts

We reported recently that the carboxy-terminal domain
(p11-CT) of the zebrafish Cx55.5 can be internally trans-
lated from an IRES element present in the coding region
of the full length Cx55.5 mRNA [19]. A detailed sequence
analysis of this element revealed the presence of two
stretches of polypyrimidine tracts named polypyrimidine
tract 1 (PPT1, nt 909-917) and polypyrimidine tract 2
(PPT2, nt 928-941) (Fig 1A). We hypothesized that both
sequence elements could contribute to IRES activity and
generated plasmid constructs with deletions of PPT1 or
PPT?2 separately or in combination with the IRES element
(IR) containing the Di-cistronic vector pRF-IR. The control
Di-cis vector pRF along with wild type IRES Di-cis vector
PRF-IR and the various deletion mutant constructs of the
IRES element, pRF-IRDell, pRF-IRDel2 and pRF-IRDel3
(Fig. 1B), were transiently transfected into N2A cells and
the Rennila and Firefly luciferase activity measured 48 hrs
post transfection. The IRES activity was calculated as the
ratio of Firefly luciferase to Rennila luciferase activity
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Deletion of polypyrimidine tract elements reveal a
significant reduction in IRES mediated activitys of
Cx55.5. A) Partial DNA sequence of the Cx55.5 IRES ele-
ment with polypyrimidine tract | (PPTI) and polypyrimidine
tract 2 (PPT2) (underlined by bars) is depicted. The relative
position of each element relative to the start nucleotide of
the Cx55.5 coding region is shown. B) Schematic representa-
tion of the Di-cis constructs applied: pRF, control vector hav-
ing Rennila luciferase as first cistron (RLuc) and Firefly
luciferase as downstream cistron (FLuc) with the first cistron
under the control of the CMV promoter activity. pRF-IR;
wild type IRES containing Di-cis construct, with the IRES ele-
ment placed between first and second cistron. pRF-IRDel | =
PPTI deleted, pRF-IRDel2 = PPT2 deleted, pRF-IRDel3 =
PPTI, PPT2 and the intervening sequence deleted. HP = hair-
pin structure C) IRES activity of the constructs in transiently
transfected N2A cells. IRES activity is represented as the
ratio of Firefly to Rennila luciferase activities (FLuc/RLuc) with
the activity of control vector set to "I". Each construct was
tested 4 times and each experiment was done in triplicates.
Data are represented as mean of + SEM.

(FLuc/RLuc). Luciferase activity readings demonstrated
that the wild type IRES vector (pRF-IR) was able to
enhance the expression of the downstream located Firefly
luciferase cistron by ~20 fold as compared to the control
vector pRF (Fig. 1C). Deletion of the PPT1 element in the
plasmid pRF-IRDel1 reduced luciferase activity by ~2 fold.
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The deletion of PPT2 sequence in plasmid pRF-IRDel2
alone, or the simultaneous deletion of PPT1, PPT2 and
the intervening sequence in pRF-IRDel3 reduced the luci-
ferase activity to background. This effect was further con-
firmed by Western blotting using deletion constructs. In
all constructs, the Firefly luciferase gene was replaced by
the EGFP coding region. The wild type IRES construct
PRE-IR and the deletion constructs, pRE-IRDell, pRE-
IRDel2 and pRE-IRDel3, along with the control vector
PRE were transiently transfected into the N2A cells (Fig.
2A). Fourty eight hours post transfection cytosolic cell
extracts were prepared and 30 pg of the total protein was
separated by 10% SDS-PAGE. Immunodetection with the
anti-GFP antibody showed an enhanced expression of
EGFP in the construct pRE-IR with the wild type IRES ele-
ment (Fig. 2B) as compared to the control vector pRE. The
deletion of the PPT1 motif induced a moderate decrease
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Figure 2

Western blot of wild type IRES element and its dele-
tion mutants substantiate the efficiency of the PTB
elements: A) Schematic representation of Di-cis constructs
used for the Western blot analysis. pRE; control vector hav-
ing RLuc as first cistron and EGFP as downstream cistron,
PRE-IR; wild type IRES containing Di-cis construct, pRE-
IRDell; PPTI deleted, pRE-IRDel2; PPT2 deleted and pRE-
IRDel3; PPT| and PPT2 deleted IRES construct. B) Western
blot of the constructs transiently transfected into N2A cells.
30 pg of cytosolic total proteins were resolved by 10% SDS-
PAGE. Immunodetection was done using anti-GFP (1:2000)
as primary antibody and peroxidase labeled anti-mouse IgG
(1:7,500) as secondary antibody. C) The detection of 3-actin
served as internal loading control.
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in the expression of EGFP as compared to pRE-IR. The
deletion of the PPT2 motif alone or a deletion of both
PPT1 and PPT2 reduced EGFP expression below the detec-
tion limit. This finding confirmed the profound effect of
PPT2 on IRES activity consistent with the result obtained
by the reporter assay described above.

Polypyrimidine tract binding protein (PTB) plays an
essential role in the IRES activity mediated by PPT| and
PPT2

The polypyrimidine tract binding protein (PTB) is known
to bind to polypyrimidine tracts [34]. We assumed a role
of PTB in binding to the two polypyrimidine tracts and
thereby modulating IRES activity. This hypothesis was
tested by overexpression of the human PTB (huPTB) in
N2A cells together with the wild type IRES or PPT deletion
constructs (Fig. 3A). After transient transfection into N2A
cells, Rennila and Firefly luciferase activity was measured
and ratios calculated. Luciferase readings showed that co-
transfection of the vector pC1-PTB encoding the exoge-
nously expressed huPTB with the wild-type IRES construct
PRF-IR stimulated luciferase activity ~3 fold as compared
to control vector pRF. Similarly, co-transfection of the
PPT1 deletion construct, pRF-IRDell and pC1-PTB,
showed a ~4 fold increase in the luciferase activity. In con-
trast, simultaneous expression of the PPT2 deletion con-
structs pRF-IRDel2 and pRF-IRDel3 with huPTB did not
affect luciferase activity (Fig. 3A). These results demon-
strate that PPT2 is crucial for PTB mediated IRES activity,
while PPT1 seems to play a subsidiary role.

A direct correlation between the expression of PTB and the
activity of the IRES element was substantiated by Western
blots using the EGFP containing Di-cis constructs. The
wild type IRES construct pRE-IR and the deletion con-
structs were transiently co-transfected with the pC1-PTB
vector into N2A cells (Fig 3B). Cell extracts were prepared
48 hrs after transfection and 30 pg of the total protein was
separated on 10% SDS gel. Immunodetection with anti-
GFP and anti-PTB antibodies showed that the huPTB over-
expression along with the wild type IRES element resulted
in an enhanced expression of EGFP as compared to
endogenous expression of PTB. Co-expression of huPTB
and the PPT1 deletion construct promoted an increased
EGFP expression, which appeared only slightly reduced
when compared to the wild type IRES element. The dele-
tion of the PPT2 motif, however, led to a profound reduc-
tion of EGFP protein expression. The double mutant
lacking PPT1 and PPT2 was indistinguishable from the
control vector pRE demonstrating that both PPT motifs
are necessary to mediate the full PTB effect, but with dif-
ferent efficiency.
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Overexpression of PTB enhances IRES activity: A)
IRES activity of Di-cis constructs (see Fig. |B) transiently
transfected into N2A cells either in the presence of endog-
enous PTB or overexpressed human PTB (huPTB) by co-
transfection with the pC1-PTB construct. IRES activity is rep-
resented as the ratio of Firefly to Rennila luciferase (FLuc/
RLuc), with the activity of control vector pRF set to "1". Each
construct was tested 4 times and each experiment was done
in triplicates. Data are expressed as mean + SEM. B) West-
ern blot of Di-cis constructs as summarized in Fig. 2A. All
constructs were transiently transfected into N2A cells in the
presence of either endogenous PTB (-) or over-expressed
huPTB (+). 30 ng of total cytosolic proteins were resolved by
10% SDS-PAGE and immunodetection was done using anti-
GFP (1:2,000) as primary antibody and peroxidase labeled
anti-mouse IgG (1:7,500) as secondary antibody. C) Western
blot of endogenous PTB and over-expressed huPTB from
transiently transfected N2A cells. Inmunodetection was
done by using anti-PTB (1:1,000; Invitrogen) as primary anti-
body and peroxidase labeled anti-mouse IgG (1:7,500, Jack-
son ImmunoResearch) as secondary antibody. Note:
endogenous and over-expressed huPTB is detected as a dou-
blet band. D) Western blots applying B-actin served as load-
ing control.

Polypyrimidine tract | (PPT1) and polypyrimidine tract Il
(PPT2) are important for the IRES mediated expression of
the pI1-CT of Cx55.5

The importance of PTB and polypyrimidine tracts for the
expression of the IRES-dependent translation of the car-
boxy-terminal fragment (p11-CT) of Cx55.5 was also ana-
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lyzed using the mutant deficient for both polypyrimidine
tract binding sites (PPTDel3). The mutated construct and
the wild type Cx55.5-EGFP (WT) construct were tran-
siently transfected into N2A cells either in presence or
absence of over-expressed huPTB. 48 hrs post-transfection
cytosolic cell extracts were prepared and 30 pg of the total
protein was separated on 10% SDS gels. Immunodetec-
tion with anti-GFP showed that the deletion of the PPT1
and PPT2 motif reduced the expression of p11-CT as com-
pared to the wild type construct (Fig. 4). Furthermore,
over-expression of huPTB with the wild type Cx55.5 con-
struct resulted in the expected enhanced expression of
p11-CT, while the over-expression of huPTB with the
PPTDel3 mutant promoted p11-CT expression to levels
below that of the wild type construct.

A specific ribonucleic-protein complex (RNP) assembles on
the Cx55.5 IRES element

We used the RNA electromobility shift assay (RNA-EMSA)
to determine whether cellular proteins recognize the
Cx55.5 IRES element. For this purpose, a radiolabeled

WT PPTDel3
A -t huPTB

ey asae < Cx555

- p11-CT

— = — s — PTB

- «— [3-actin

Figure 4

Polypyrimidine tracts and polypyrimidine tract bind-
ing protein (PTB) regulate the expression of pl 1-CT.
A) Western blot of wild type Cx55.5-EGFP (WT) and PPTI
and PPT2 deleted (WT-PPTDel3) fusion constructs tran-
siently transfected in N2A cells in the presence of either
endogenous PTB (-) or overexpressed PTB (+). Inmunode-
tection was performed by using anti-GFP antibody as
described above. B) Western blot detection of endogenous
and huPTB using anti-PTB antibody as described above and
with B-actin as loading control.
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RNA probe was incubated with a S10 cytosolic N2A pro-
tein extract. As shown in Fig. 5A the cytosolic S10 extract
retarded the migration of the RNA probe, leading to the
formation of a single dominant RNA-protein complex
when compared to the control reaction without protein.
Formation of this complex was effectively competed by
the inclusion of a 50-fold molar excess of homologous
unlabeled competitor RNA.

Additionally, UV cross-linking experiments were per-
formed to further characterize the RNA-protein complexes
that assemble at the IRES element (Fig. 5B). When the
wild type IRES probe, or its deletion mutants were incu-
bated with the S10 cytosolic N2A protein extract and UV
crosslinked several distinct RNA-protein complexes were

= m M competitor 5 M = = =
A - + + $10 N{ZA -+ + + + + B
extraci
kDa + o+ o+ RNA-probe + O+ o+ o+ 4+ +

100 —

72 —

55 —

- . -
40 —

35 —

]
I 1 m I 1 mivv v
SR @

& SR

Figure 5

RNA-EMSA reveals a RNA-protein complex on the
IRES element: A) RNA-EMSA of wild type IRES. Internally
labeled 32P RNA-probes were incubated with S10 extract
from N2A cells. RNA-protein complexes, resolved on a 4%
non-denaturing polyacrylamide gel were visualized by autora-
diography. The presence of competitor (50 fold molar
excess), S|0 N2A extract and radiolabeled RNA probe is
indicated by (+/-). The position of the RNA-protein binding
complex is indicated by the arrow. B) UV cross-linking of
RNA probes with SI0 N2A extract: RNA-protein complexes
were formed as indicated in (A) and samples were subjected
to UV cross-linking followed by subsequent RNase treatment
and resolved by 10% SDS PAGE. The composition of each
sample is indicated as shown in A). Triangles on the right
represent specific RNA-protein complexes and the numbers
on the left represent a protein molecular weight marker
kDa. Densitometrical analysis revealed a reduction to 39%
(lane 1V), 47% (lane V) and 27% (lane VI) with the wild type
condition (lane Il) set to 100%.
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detected after SDS-PAGE. The crosslinked complexes had
apparent molecular masses in the range from 35 to 60
kDa. A prominent band showed an apparent molecular
weight of ~55 kDa (Fig. 5B). The formation of the cross-
linked RNA-protein complexes was prevented by the
inclusion of a 50 fold molar excess of unlabeled homolo-
gous competitor RNA. When the deletion mutants
PPTDel1, PPTDel2 and PPTDel3 were applied a reduction
of the protein complex at around ~55 kDa became appar-
ent, indicating that the deletion of the polypyrimidine
tracts weakens the binding of a major RNA binding pro-
tein.

Purified GST-PTB fusion protein is able to bind the IRES
element

The prominent RNA-protein complex of ~55 kDa sug-
gested that PTB with an apparent molecular weight of 54
kDa constitutes the protein binding to the IRES element.
We evaluated this assumption with a recombinant GST-
PTB fusion protein, which was purified to homogeneity
and subjected to RNA-EMSA. The wild-type IRES RNA
probe and the deletion mutants were incubated with GST
alone or with the GST-PTB fusion protein. As shown in
(Fig 6A), GST-PTB was able to retard the migration of the
RNA probe while GST alone did not show any effect. The
formation of the GST-PTB RNA complex was prevented by
inclusion of 20 fold molar excess of homologous unla-
beled competitor RNA.

The RNA-EMSA data were further confirmed by UV cross-
linking of the GST-PTB fusion protein to the wild type
IRES RNA, which resulted in the formation of a single
RNA-protein complex of ~86 kDa (Fig 6B). This complex
was effectively competed by adding 20 fold molar excess
of unlabeled homologous RNA. No RNA-protein complex
was formed by UV cross-linking GST alone to the IRES ele-
ment, which excludes that the GST protein itself has RNA
binding properties. The PPTDell IRES RNA showed a
reduced binding when compared to the wild type IRES
RNA. This effect was even more pronounced when the
PPTDel2 and PPTDel3 mutants were subjected to cross-
linking (Fig. 6B).

PTB interacts with zfCx55.5 mRNA in vivo under
physiological conditions

To prove that PTB interacts with the Cx55.5 mRNA in liv-
ing cells under physiological conditions, ribonucleopro-
tein immunoprecipitation (RNP-IP) assays were
performed. N2A cells were transiently transfected with a
Cx55.5 expression vector. 36 hrs post transfection cells
were harvested in PBS and incubated with formaldehyde
to form stable RNA-protein complexes. Cells were lysed
and PTB was immunoprecipitated from cell lysates using
PTB specific antibodies. The RNA was extracted, reverse
transcribed to generate cDNA and subjected to polymer-

http://www.biomedcentral.com/1471-2199/9/92

Competitor - - + Competitor - - +
GST-PTB -+ o+ GST-PTB - + + + + +
GSTonly + GST-only + -
RNA-probe + + + RNA-probe + + + + + +
kDa
—130
—100
’.‘ . -
— 72
= 5%
— 40
A -
11 mivvwv
S
%/Sq«
ARARY

Figure 6

Recombinant GST-PTB fusion is able to bind the
IRES element: A) RNA-EMSA of wild type 32P labeled IRES
RNA with: lane 1) ~50 pg of purified GST only, lane 1) 0.3 ug
of purified GST/PTB fusion protein and lane Ill) cold competi-
tion of RNA-protein complex formed in (ll) by 20 fold molar
excess of unlabeled RNA. The triangle indicates the position
of the RNA-protein complex. B) UV cross-linking of GST-
PTB to the IRES element. Lane I) GST plus wild type IRES
element. Lane Il) GST-PTB fusion protein plus wild type IRES
element. Lane Ill) cold competition of (Il) using 50 fold molar
excess of unlabeled RNA. Lane IV) PPTDell, lane V)
PPTDel2 and lane VI) PPTDel3 IRES mutants. A RNA-protein
complex of about 84 kDa was detected in all cases (see trian-
gle), but significantly less in PPTDel2 and PPTDel3 deletion
mutants. This complex corresponds to a fusion protein of
PTB (57 kDa) and GST (27 kDa). Numbers on right site rep-
resent a protein molecular weight marker in kDa.

ase chain reaction (PCR) with primers specific to the
Cx55.5 coding region. The specificity of this approach was
proven using B-actin antibody coated beads and a void
control with beads only. As shown (Fig. 7), a specific DNA
band of about 1497 bp corresponding to the full length
Cx55.5 coding region was PCR amplified using the cDNA
obtained from the immunoprecipitated RNA. To further
confirm the specificity of the immunoprecipated RNA,
nested primers specific for the carboxy-terminal domain
of Cx55.5 were employed that led to the amplification of
the expected carboxy-terminal fragment of ~400 bp (Fig.
7). No amplicons were found in controls using the -actin
loaded and void beads. Thus, the RNP-IP assay provides
additional evidence that PTB is able to interact with the
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PTB antibodies precipitate Cx55,5 mRNA from tran-
siently transfected N2A cells: Binding of PTB to Cx55.5
in living cells was tested 36 hrs post transfection. Crosslinked
cell lysates were subjected to immunoprecipitate Cx55.5
RNAs using anti-PTB or anti-f-actin antibodies. RNAs bind-
ing to the antibody captured proteins were heat released,
reversed transcribed and PCR amplified using primers spe-
cific for the Cx55.5 coding region. Lane I) NTC, no template
control, lane Il) control, PCR of cDNA reactions obtained
from the samples immunoprecipitated with Protein A sepha-
rose beads only (without any antibody), lll) PCR reaction of
cDNA obtained from the RNA immunoprecipitated from
anti B-actin coated beads, IV) PCR of cDNA obtained from
RNA reverse transcribed with primer pairs specific for the
entire coding region (1497). V) cDNA from RNA reverse
transcribed with nested primers for the carboxy-terminus
fragment (400 bp). VI) RT-minus sample; RNA immunopre-
cipitated with PTB antibodies without reverse transcription.

Cx55.5 mRNA in living cells under physiological condi-
tions and strengthens our assumption that PTB consti-
tutes a crucial factor involved in activating IRES mediated
translation of this neuronal connexin.

Discussion and conclusion

Internal ribosome entry sites (IRES) are RNA complexes
with extensive secondary structures. Several conserved
motifs have been described to be essential in the regula-
tion of IRES activity among which polypyrimidine tracts
are well documented [36]. Polypyrimidine tracts are
involved in the regulation of mRNA translational mecha-
nisms and the importance of oligopyrimidine sequences
have already been reported upstream of AUG initiation
codons in picornaviruses [37,38] and in the hepatitis C
virus [39-41]. In continuation of previous studies, we ana-
lyzed the internal IRES element of Cx55.5 for sequence
motifs of trans-acting factor(s), which are important for
the function of IRES activities. Sequence analyses showed
the presence of two stretches of polypyrimidine tracts,
PPT1 and PPT2 flanking the in frame IRES sequence of
Cx55.5. To investigate the influence of these polypyrimi-
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dine tracts on the activity of the IRES element, we deleted
PPT1 and PPT2 either alone or in combination. Subse-
quent reporter assays and Western blot analyses showed
that deletion of PPT1 had an appreciable effect on the
IRES activity, while deletion of PPT2 results in complete
loss of IRES activity. This result indicates that the 14 bp
stretch of PPT2 serves an important function in determin-
ing IRES activity of Cx55.5 albeit by altering the RNA fold.

In addition to their requirements for eukaryotic initiation
factors, the efficiency of most IRES elements is augmented
by non-canonical initiation factors know as ITAFs (inter-
nal initiation trans-acting factors) [42,43]. Since our ini-
tial results indicated an involvement of polypyrimidine
tracts in defining the IRES activity of Cx55.5, we investi-
gated the role of the polypyrimidine tract binding (PTB)
protein. The IRES activity of the wild type IRES element
and its deletion mutants was analyzed in the presence of
endogenous levels of PTB or upon overexpression of the
protein by transfection with huPTB. Overexpression
resulted in a significant increase of IRES activity of the
wild type IRES element. Deletion of the PPT1 element led
to a significant reduction as compared to the wildtype, but
the IRES element was still responsive in particular when
exogenous huPTB was added. Deletion of PPT2 alone or
in combination with PPT1 revealed a complete loss of
responsiveness. Our results suggest that the polypyrimi-
dine tract 2 (PPT2) is crucial for the IRES activity and that
PTB conveys a role in the regulation of the IRES activity of
Cx55.5.

A plausible explanation for the critical role of PPT2 in the
IRES activity is that it binds to additional crucial trans-act-
ing factor(s), which are important for the recruitment of
the ribosomal translational machinery. Alternatively, this
tract is important for the specific RNA secondary structure
and the role of PTB seems to stabilize the active confirma-
tion of the IRES element through binding to the RNA scaf-
fold [44]. Interestingly, the secondary structure prediction
using the RNA folding algorithm mFold [45] of the wild
type IRES element and its deletion mutants (see Addi-
tional file 1) revealed that the wild type IRES of Cx55.5
has an extended stem-loop structure with semi-conserved
Y-like configuration, described also for IRES elements
found in some picornaviruses [38,46]. Deletion mutation
of PPT1 showed overall a similar structure when com-
pared to the wild type RNA fold with a minor loss of the
small stem loop. In contrast, the deletion mutant PPT2
showed a complete remodeling of the structure, which
was predicted to be energetically less stable as compared
to the wild type IRES RNA fold.

The PTB protein is very well known in regulating IRES
activity of both viral IRES and cellular IRES elements
[37,38,47,48]. These data are of particular interest keep-
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ing in mind that PTB is primarily a nuclear protein, where
it plays a role in regulation of splicing events of eukaryotic
mRNAs [27]. To become functional in IRES related activi-
ties, PTB needs to shuttle from the cell nucleus to the cyto-
plasm. Recent evidence on the involvement of IRES
elements in internal translation of biologically active pro-
tein domains makes it essential that this processes need to
be regulated [48,49].

Shuttling events of PTB from the cell nucleus to the cyto-
plasm can be one step where regulation by internal and
external factors becomes effective. One such mechanism
has been described recently [49]. In this study, protein
kinase A phosphorylation (PKA) was found to modulate
shuttling of PTB by phosphorylation of a particular serine
residue. This modification results in an increase of the
cytoplasm-directed transport of PTB from the nucleus and
couples the PKA pathway with translocation events of
PTB.

In the context with our recent findings, which demon-
strated expression of an IRES driven carboxy-terminal
fragment (p11CT) of Cx55.5 and its translocation to the
nucleus of horizontal cells a link between PTB shuttling
and regulated expression of this fragment is challenging.
[18,19]. Due to the prominent role of gap junction cou-
pling in horizontal cells in primary processing of visual
stimuli and its dependence on dopamine regulation [49-
52], it will be of considerable interest to examine whether
a cAMP dependent mechanism involving dopamine
affects PTB shuttling and contributes to the strength of
intercellular horizontal cell coupling. Alternatively, retin-
oic acid, which exerts a profound effect on synaptic plas-
ticity of horizontal cells and involves PKA
phosphorylation to execute its signal transmission
potency [53] may comprise another candidate, which
could operate through the indicated mechanism.

Aside of the identification of PTB as a protein binding to
the Cx55.5 IRES element further binding proteins cover-
ing the range of ~35 to 60 kDa were identified by UV
crosslinking experiments. Some of them are in the size
range of proteins, which have been described to bind to
other IRES elements [54]. It remains to be established
whether these proteins constitute further component of
this complex, and whether they are also involved in func-
tional regulation of the Cx55.5 IRES element.

In summary, we demonstrate that the activity of the inter-
nal IRES element of the horizontal cell specific gap junc-
tion protein Cx55.5 is modulated by two polypyrimidine
tracts. We further provide evidence that the polypyrimi-
dine binding protein (PTB) works as a non-canonical fac-
tor in the regulation of the IRES activity. The physiological
meaning of the Cx55.5 IRES activity and in consequence
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the generation of the p11-CT protein in horizontal cell
function awaits further clarification.

Methods

Plasmid construction

The zebrafish Cx55.5 IRES element (631 nt to 989 nt;
position relative to the start codon) was cloned into the
Di-cistronic vector pRF-IR [19] and mutated using the
Transformer Site Directed Mutagenesis Kit (Clontech East
Meadow Circle, Palo Alto, CA, USA). A deletion of 9 bp
(nt 909 to nt 917) of the polypyrimidine tract 1 (PPT1)
was performed with the primer 5'-CCT GAT GCC TAG
ATT AAC CCA TCC-3' using plasmid pRF-IR as template.
The new construct was designated as pRF-IRDel1. 14 bps
of the second polypyrimidine tract (PPT2; nt 928 to nt
941) were deleted by introducing unique Sma I and Pvull
restriction sites at 5'- and 3' end of PPT2. The Sma I and
Pvu II restriction sites were used to remove the PPT2
sequence in plasmid pRF-IRDel2. For the simultaneous
deletion of PPT1, PPT2 and the intervening sequence of
11 bp, a unique EcoRV site was created at the immediate
5'-end of PPT1. The final construct pRF-IRDel3 was
obtained after restriction digest with EcoRV and Pvu II fol-
lowed by religation of the vector DNA. A cartoon of all
plasmids generated is shown in Fig. 1A and the Additional
File 2. A second set of constructs was generated by transfer
of the wild type IRES element (IR) and the three PPT dele-
tion mutants into the intercistronic region of the plasmid
PRE [19]. In this vector, the Firefly luciferase was replaced
by EGFP as second cistron (see Fig. 2A, Additional file 2).

The vector encoding the GST-human polypyrimidine tract
binding protein [pGEX2TK (huPTB)] was a kind gift from
Dr. M. Garcia-Blanco (Durham, N.C, USA). The entire
human PTB coding DNA sequence (nt 1- nt 1594) was
isolated using the EcoRI restriction sites and ligated into
the EcoRI site of the pEGFP-C1 vector (BD Biosciences
Clontech, CA, USA) to generate the construct pEGFP-C1-
PTB. This construct was further manipulated and the
EGFP gene at the N-terminus of the PTB gene removed.
The construct lacking EGFP was termed pC1-PTB. The
wild type Cx55.5-EGFP (WT) fusion construct in pEGFP-
N3 vector [19] was manipulated to delete PPT1 and PPT2
simultaneously as described above while preserving the
reading frame of the mutated protein. The mutant con-
struct was named PPTDel3 (see Additional File 2).

Monocistronic vector constructs lacking the Renilla luci-
ferase (RLuc) were generated for in vitro transcription
using the T7 promoter. For this purpose, the RLuc gene
was released from the parental vectors including the IRES
sequence or the three deletion mutants by restriction
digest with Nhe I and EcoRI. The plasmid backbones lack-
ing the RLuc gene were isolated and religated after Klenow
fragment treatment. The resulting plasmids were pT7-IR,
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pT7-IRDell, pT7-IRDel2 and pT7-IRDel3 (see Additional
File 2).

Cell culture, transfection, and reporter-assays

Neuro2A cells purchased from the ATCC collection (Man-
assas, VA, USA) were grown in 78 cm? tissue culture dishes
(Becton Dickinson, Heidelberg, Germany). For determi-
nation of IRES activity, 2x104 N2A cells were plated in 96
well flat bottom plates (Becton Dickinson) and processed
as previously described [19].

Western blot analysis

For western blot analysis, 2 x 10> N2A cells were seeded in
12 well plates (Becton Dickinson). After twelve hours,
transient transfections were performed using a 300 ng
plasmid DNA and the Effectene® transfection protocol
(Qiagen). For co-transfection, 100 ng of pC1-PTB plasmid
was included in the transfection mixture when indicated.
Further steps were performed as described by Ul-Hussain
etal. [19].

Protein expression and purification

The expression vector constructs pGEX2TK(huPTB) and
the parental control plasmid pGEX6P2 were transformed
into the BL21 host strain (Stratagene). Fusion protein
expression was induced for 16 hrs at 30°C after induction
with 1 mM IPTG. Bacteria were collected at 5,000 g and
protein lysates prepared using the French Press 2-FA-031
(Thermo Spectronic, Rochester, NY, USA). Precleared
lysates were subjected to affinity chromatography using
the AKTA-LC System, GST-Trap FF columns and standard
conditions as recommended by the manufacturer (Amer-
sham Biosciences). Peak fractions were desalted using
HITrap desalting columns (Amersham Biosciences), con-
centrated using Amicon Ultra-4 columns (Millipore), and
protein purity assessed by conventional SDS-PAGE.

In vitro transcription

For in-vitro transcription, pT7-IR, pT7-IR 1, pT7-IR 2 and
pT7-IR 3 were linearized 3' to the IRES element using the
Xho I restriction site. For labeling RNA, in vitro transcrip-
tion was performed using the MAXIscript T7 Kit (Ambion,
Inc., Austin TX, USA) in accordance to the manufactures
instructions. 5 pl of 32P CTP (10 pCi/ul; 3000 Ci/nmole)
(Amersham) was included in the reaction mixture. Unla-
beled competitor RNA was synthesized using MEGAs-
cript™ T7 Kit (Ambion). Labeled RNA probes were
purified using Sephadex G50 columns (Amersham).

RNA-EMSA

Internally labeled wild type IRES RNA and the various
deletion mutants were used for the electromobility shift
assay (EMSA). Approximately 20,000 cpm of labeled RNA
probes were mixed with 30 pg of cytosolic protein pre-
pared from N2A cells or 0.3 pg of purified GST-PTB fusion
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protein and further steps were performed as described in
[55]. After electrophoresis the gel was transferred to Wat-
mann paper, dried and visualized by autoradiography.

UV-cross linking

The RNA-protein complexes for UV-cross linking were
prepared as described above. For cold competition, unla-
beled RNA was added 5 minutes after the addition of the
RNA probe. After 30 minutes at RT the samples were trans-
ferred to ELISA plates and irradiated for 30 minutes at 4°C
with UV light (312 nm) in an UV Stratalinker model 1800
(Stratagene). 2 ul of RNase A (10 mg/ml), and 1 ul of
RNase T1 (100 units) (Fermantas), was added and sam-
ples incubated at 37°C for 30 minutes. RNA-protein com-
plexes were resolved by 10% SDS PAGE for 3 hours at 200
V. Subsequently, the gel was dried under vacuum and vis-
ualized by autoradiography. Densitometrical analysis was
performed using ImageJ software.

Ribonucleoprotein Immunoprecipitation Assay (RNP-IP)
N2A cells (2 x 10°) in 100 mm dishes were transiently
transfected with the expression vector having Cx55.5
cDNA. 36 hours after transfection, cells were harvested in
PBS and washed twice with 5 ml of PBS, resuspended in 5
ml of phosphate-buffered saline and processed as
described (53). In brief, Protein A Spharose beads were
coated either with ant-PTB or anti-B-actin antibody for 2
h at 4°C followed by extensive washing with RIPA buffer.
Bound RNA was released from crosslinked protein-RNA
complexes by heating the samples at 70°C for 45 min fol-
lowed by RNA extraction using Trizol reagent according to
the manufactures protocol (Invitrogen). The RNA was
reverse transcribed with random hexamers and MMLV
reverse transcriptase (Invitrogen) according to the manu-
facturer's protocol. PCR was performed using two sets of
primers specific to the coding region of Cx55.5. Set I:
sense 5'-ATG GGA GACTGG AACTIT CIT GG-3' and anti
sense 5'-AAT TTG TAA GTC TGT GGG AGC-3'. The ampli-
con size is 1497 bp. Set II: sense 5'-CAA TGC ATA GCT
GGC ATT TCA TTG-3' and antisense 5'-GTG GAG TGA
CAG AGT TGC AAG-3'. The amplicon generated by Set 11
corresponds to 400 bp of the carboxy-terminal domain of
Cx55.5.
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Additional material

Additional file 1

Cx55.5 RNA fold prediction models indicating the impact of polypyri-
midine tracts on the RNA folding. Secondary structure prediction using
mFold algorithm of the wild type IRES element (wt) and the PPT deletion
mutants dPPT1, dPPT2, dPPT3 corresponding to IRDell, IRDel2 and
IRDel3 (see Figures 1, 2).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-9-92-S1.tiff]

Additional file 2

Summary of plasmid constructs. Summary table including all plasmid
constructs used in the present study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-9-92-S2.doc]
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