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Abstract

Background: Inositol is a key cellular metabolite for many organisms. Cryptococcus neoformans is
an opportunistic pathogen which primarily infects the central nervous system, a region of high
inositol concentration, of immunocompromised individuals. Through the use of myo-inositol
oxygenase C. neoformans can catabolize inositol as a sole carbon source to support growth and
viability.

Results: Three myo-inositol oxygenase gene sequences were identified in the C. neoformans
genome. Differential regulation was suggested by computational analyses of the three gene
sequences. This included examination of the upstream regulatory regions, identifying ORE/TonE
and UAS,\ o sequences, conserved introns/exons, and in frame termination sequences. Homology
modeling of the proteins encoded by these genes revealed key differences in the myo-inositol active
site.

Conclusion: The results suggest there are two functional copies of the myo-inositol oxygenase
gene in the C. neoformans genome. The functional genes are differentially expressed in response to
environmental inositol concentrations. Both the upstream regulatory regions of the genes and the
structure of the specific proteins suggest that MIOX | would function when inositol concentrations
are low, whereas MIOX2 would function when inositol concentrations are high.

Background

Mpyo-inositol, a key cellular metabolite, is a simple six car-
bon ring sugar with one hydroxyl group on each carbon.
Mpyo-inositol is the precursor for the synthesis of phos-
phatidylinositol, an essential membrane lipid, an anchor
for proteins, and a core component of signal transduction
mechanisms [1,2]. Inositol and compounds derived from
inositol are among the major nonperturbing intracellular
osmolytes which accumulate in response to hypertonic

stress of the organism or tissue. Stepwise phosphorylation
of inositol yields the myo-inositol polyphosphates. Inosi-
tol hexakisphosphate, in particular, has been found in
soil, bacteria and most animals [2].

Cryptococcus neoformans is an opportunistic pathogen pri-
marily infecting individuals with compromised immune
systems. C. neoformans is found worldwide in soil and
pigeon droppings. Under environmentally dry condi-
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tions, the quiescent fungal spores in the soil or pigeon
guano can become airborne. Once in the air mammals
can inhale the dehydrated yeast spores. The immune sys-
tem of a non-immunocompromised individual typically
eliminates C. neoformans with out any symptoms of dis-
ease. If the host is immunocompromised the pathogen
can cause cryptococcosis. C. neoformans infections often
localize to the brain and central nervous system (CNS)
[3]. C. neoformans is unusual among the fungi in that the
pathogen can use inositol as a sole carbon source to sup-
port growth. Catabolism of myo-inositol in C. neoformans
is through the action of myo-inositol oxygenase (MIOX),
though this has not been confirmed as the only pathway
[4]. The inositol concentration in the cerebral spinal fluid
(CSF) is high (when compared to plasma levels [5]). C.
neoformans localized in the CNS could utilize myo-inositol
as a substrate for myo-inositol oxygenase (MIOX) in order
to generate glucuronic acid for energy production.

The conversion of myo-inositol to glucuronic acid by
MIOX involves the cleavage of the inositol ring between
the 6 C and 1 C, and a four-electron transfer with 1 atom
of oxygen incorporated into the glonate, xylulose and
xyulose-5-phosphate which can then enter the pentose
phosphate pathway resulting in energy production.

This enzyme has been extensively studied in many eukary-
otic organisms, recently crystallized, and modeled [6-9].
However, regulation of the MIOX protein in any organism
has only recently been examined. Transcription of the
MIOX gene in humans has been shown to respond to
osmotic response element (ORE) binding proteins and/or
the tonicity-responsive enhancer (TonE) binding protein
through conserved motifs [7,10]. Expression of genes reg-
ulated by ORE/TonE binding proteins have been shown
to increase when an AP-1 protein binding sequence is
located downstream. In conditions of high osmolarity,
this AP-1 mediated increase in transcription is inhibited
by A-Fos or Tam-67 [11]. The promoter of a renal specific
oxidoreductase with increased expression in diabetes mel-
litus, that has been experimentally determined to respond
to inositol in media, also contains the conserved ORE
motif GGAAA [6]. An additional transcriptional regulat-
ing sequence, known as an inositol upstream activation
sequence (UAS,yo), has the conserved core sequence of
CANNTG and has been identified upstream of several
genes encoding proteins involved in phospholipid metab-
olism [1].

In this study, three genes on separate chromosomes,
encoding the MIOX protein, were identified in the C. neo-
formans genome. The MIOX promoter region, transcrip-
tional regulatory sequences and myo-inositol binding
pocket in C. neoformans were characterized. Examination
of the genes revealed differential regulation. This exami-

http://www.biomedcentral.com/1471-2199/9/88

nation includes identification of upstream regulatory
sequences such as ORE, UAS 5, and TATA boxes, introns,
in-frame termination sequences, expressed sequence tags
(ESTs) and CpG islands for each sequence. Molecular
modeling of the three protein sequences indicated key dif-
ferences between the isoforms possibly affecting the abil-
ity of two isoforms to bind the myo-inositol substrate.

Results

MIOX Gene Identification and Characterization
Examination of the STGC C. neoformans genomic database
using  BLAST identified a sequence within
chr06.b3501.040616 that is a 100% match to the experi-
mentally determined N-terminal sequence [12] of the C.
neoformans MIOX protein (Figure 1). The sequence was
extracted along with an additional 3000 bases upstream
and downstream. A keyword search of the TIGR C. neofor-
mans computationally annotated database revealed three
possible MIOX genes on separate chromosomes. TIGR
sequence 180.m00186 mapped to chromosome 6,
189.m00292 mapped to chromosome 8 and 177.m03138
mapped to chromosome 7. Sequence 180.m00186 con-
tains the experimentally determined N-terminal region
and aligns to contig chr06.b3501.040616 (e-value 0.0) in
the STGC C. neoformans database. Sequence 189.m00292
aligns with contig chr09.b3501.040506 (e-value 2e-08)
and sequence 177.m03138 aligns with
chr07.b3501.040506 (e-value 2e-07). The sequence on
chromosome 6 (180.m00186) is referred to as MIOX1,
chromosome 8 (189.m00292) is referred to as MIOX2
and on chromosome 7 (177.m03138) is referred to as
MIOX3.

Computational analysis of the promoter region of MIOX1
revealed two possible conserved OREs containing the con-
sensus sequence GGAAA [6]. One of these putative ORE
sequences, GGGAAAATTGA, is located at -2137 upstream
from the transcriptional start site. Another putative ORE,
TGGAAAAAAAGA, is located -645 and is followed by an
AP-1 binding sequence (TGATTCA) located at -204. One
putative cis-acting inositol upstream activating sequences
(UAS;yo) CATGTGGAAT was located at -397, and
matches the experimentally determined sequence
[13](Table 1). MIOX1 has one predicted TATA box start-
ing at nucleotide -106. EST b9fo8h9.r1 in the TIGR data-
base aligned with bases -87-229, 280-455 with a 95%
identity. EST a7e05cn.r1 aligned with nucleotides 540-
764 823-947, and 1007-1058 with 93% identity (Table
2). Thus, the MIOX1 gene contains three introns with GT/
AG splice sites confirmed by comparison of the genomic
sequence to ESTs. Four in-frame termination signals were
located at the end of the genomic sequence.

The genomic region (TIGR189.m00292 plus +/- 3000
extracted from chr09.b3501.040506 STGC) upstream of
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Optimal alignment of C. neoformans myo-inositol oxygenase to the Mus musculus myo-inositol oxygenase.
MIOXI, MIOX2 and MIOX3 refers to the C. neoformans myo-inositol oxygenase protein isoforms. The predicted consensus
secondary structure for each sequence is below the respective amino acid. Helices are represented by h and are in red. Sheets
are represented by s and are in green. Each protein is predicted to have 10 helices and four sheets. Conserved amino acids
essential to enzyme function are highlighted in blue.
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Table I: C. neoformans Upstream Regulatory Sequences.
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Protein  ORE/TonE Sequence location ORE/TonE sequence  AP-I Location ~ AP-l sequence  UAS|\ o Location  UAS o Sequence
MIOX3 None None None
MIOX2 -2714 AGGAAAGCTG None None
-2636 TGGAAAACTG
MIOXI  -2137 GGGAAAATTGA -204 TGATTCA -397 CATGTGGAATT
-645 GGAAAAAAAGA

Within 3000 nucleotides up-stream of the MIOX| translation start two ORE/TonE sequences, one AP-I sequence and one UASINO were
identified. Within 3000 nucleotides up-stream of the translation start for MIOX2 two ORE/TonE sequences were identified. No consensus ORE/
TonE, AP-1 or UASINO sequences were found within 3000 nucleotide sequences upstream of the transcription start site for MIOX3.

the translational start of MIOX2 contains two conserved
ORE sequences AGGAAAGCTG and TGGAAAACTG
located at -3714 and -3636. Neither sequence was fol-
lowed by a conserved AP-1 sequence (Table 1). Two ESTs,
from the TIGR database were found to align with the cod-
ing region of MIOX2. EST d4e08j2.r1 aligns to bases -184-
37, 86-264 and 322-498 (98%). EST a9e06cn.r1 aligns
with nucleotides 664-846, and 900-1107 (96%) (Table
2). Three introns with GT/AG splice sites were confirmed
by comparison of the genomic sequence to ESTs. The AG
at the 3'end of the splice site of a fourth computationally
predicted intron was confirmed by comparison of the
genomic sequence to EST d4e08j2.r1. The GT at the 5' end
of this intron has not yet been confirmed by EST data.
Four in frame termination signals were identified.

Analysis of the genomic region (TIGR 177.m03138 plus
3000 +/- extracted from STGC chr07.b3501.040506) of
MIOX3 upstream from the transcriptional start site for the
MIOX3 protein has several computationally identified
possible ORE sequences. However, none of the sequences
are strictly identical to the experimentally determined
ORE sequences and none are followed by a known AP-1
binding site. The MIOX3 sequence was determined to

contain only one TATA box starting at nucleotide 27
(Table 1). No corresponding ESTs were identified in the
TIGR C. neoformans database with an alignment better
than 65% (Table 2). Computational analysis, along with
manual alignment of the coding DNA from TIGR data-
base to the genomic sequence, predicted four introns in
MIOX3. MIOX3 genomic 3'sequence has four in frame ter-
mination signals.

MIOX1 and MIOX2 have a relatively few CpG islands
when compared to MIOX3. MIOX3 has five CpG islands
in the upstream region that are approximately evenly
spaced and several islands located internal to the gene.
The five upstream CpG islands are located at -(51..327), -
(752..1006), -(1318.1661), -(1746..2007) and -
(2817..3080). MIOX2 has 2 CpG islands located from -
(457..684), and -(2555..2754). MIOX1 has three CpG
islands. One island is close to the transcriptional start
located at -(48-373). The other two CpG islands identi-
fied in the MIOX1 gene are further from the start site
located at -(2325..2545) and -(2609..2881).

As RNA stabilization can effect functional expression, the
predicted RNAs were examined. Secondary and tertiary

Table 2: Identification of Expressed Sequence Tags That Align with C. neoformans MIOX Gene Sequences.

Protein Expressed sequence Tags (EST) Nucleotide Match % identity

MIOX3 None identified

MIOX2 d4e08j2.rl -184-37, 86264, 322498 98
a%e06cn.rl 664-846, 9001107 96

MIOXI b9fo8h9.rl -87-229, 280455 95
a7e05cn.rl 540-764, 823-947, 1007-1058 93

Two ESTs were identified in the TIGR database for both MIOXI and MIOX2 with at least 93% identity. No ESTs were found for MIOX3 with an

identity above 65%.
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analysis of the computationally predicted RNA showed no
significant variance between the corresponding structures
of the three genes (data not shown).

MIOX Sequence alignment and Homology Modeling

In the Mus musculus MIOX protein the myo-inositol sub-
strate has been determined to be buried in a pocket
formed by two short sections of the protein and a hairpin
loop [8]. Multiple sequence alignment of the Mus muscu-
lus MIOX protein sequence and the three MIOX protein
sequences from C. neoformans reveals 100% identity for
the two short sections of the protein (Figure 1). Despite
the similarity of the protein sequences and the conserva-
tion of several key amino acids, homology modeling of
the putative proteins encoded by the three C. neoformans
genes revealed some significant differences (Figure 2 and
3). The following amino acid numbering is based on the
mouse protein [8]. Amino acid Asp-124 was previously
identified to be critical for the binding of iron, which is
necessary for optimal protein function. This amino acid
(Asp-124) is conserved in all three C. neoformans MIOX
proteins [8]. The hairpin loop consisting of 11 residues
(Leu-83, Val-84, Asp-85, Glu-86, Ser87, Asp 88, Pro-89,
Asp90, Val-91, Asp-92 Phe-93) in the Mus musculus pro-
tein has an essential role in binding the myo-inositol by
forming a lid that closes over the substrate in the active
site. This hairpin loop secures the inositol substrate in
place (Table 3). The first eight residues in the hairpin loop
sequence are strictly conserved in the MIOX1 protein. The
next three amino acids of the hairpin loop in the MIOX1
protein (amino acids nine to eleven) differ as follows: Thr
for Val-91 replacing a neutral residue with a non-polar,
Ser for Asp-92 inserting a neutral residue in place of an
acidic residue and Val for Phe-93 both non-polar residues
(Table 4, Figure 3). The first three residues (Leu, Val, Asp)
and residues five through eight (Ser, Asp, Pro Asp) in the
MIOX2 and the MIOX3 predicted hairpin loops align with
the experimentally determined hairpin loop identified in
the Mus musculus. The fourth residue of the hairpin loop
has a substitution of Ala for Asp in both the MIOX2 and
the MIOX3 proteins, replacing an acidic residue for a
smaller non-polar residue. Amino acid residues nine and
ten of the hairpin loop are the same as those located in the
MIOX1 protein (Thr and Ser). The last residue in the hair-
pin loop is Phe in the Mus musculus MIOX protein, Val in
the MIOX1 protein, and Ala in the MIOX2 and MIOX3
proteins.

Analysis of the homology models of MIOX2 and MIOX3
proteins in C. neoformans indicates three key differences.
The distance measured between Asp-112/lys-153 (2.66A)
and Asp-115/lys-283 (2.91A) in MIOX2 and Asp-160/lys-
201 (2.67A) and Asp-163/lys-331 (2.91A) in MIOX3 pro-
tein support the formation of salt bridges similar to the
Mus musculus MIOX protein. However, the distances
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measured between Ser-119/Arg-68 (12.15A) in MIOX2
protein and Ser-167/Arg-116 (12.15A) in MIOX3 protein
are too great to support the formation of a salt bridges
(Figure 3). The homology models generated for MIOX2
protein and MIOX3 protein support main chain hydrogen
bonds with Arg-68 and GIn-163 similar to the Mus mus-
culus MIOX. Optimal alignment of the three MIOX pro-
teins with Mus musculus indicates a substitution of Val-61
for Thr-32 in the MIOX2 and Val-109 for Thr-32 in the
MIOX3 protein. The substitution does not support the for-
mation of a main-chain hydrogen bond at this location
for either the MIOX2 or the MIOX3 protein (Table 5).

Discussion

C. neoformans appears to be the only organism in the ani-
mal and fungal kingdoms with multiple MIOX genes.
Examination of over 60 completed eukaryotic genomes
from the animal and fungal kingdoms revealed that if the
MIOX gene is present, there is only one highly conserved
copy (data not shown). Perhaps the three copies of the
MIOX gene in the C. neoformans genome represents a
physiological mechanism for survival in various environ-
mental inositol concentrations.

This computational study suggests there are at least two
sequences regulating transcription of the C. neoformans
MIOX genes, one involves ORE sequences, the other
involves UAS,y, sequences. ORE sequences were origi-
nally identified in vertebrates and UAS,, sequences were
demonstrated in the yeast Saccharomyces cerevisiae, but
these sequences are present in the C. neoformans genome.
As a basidiomycete the C. neoformans genome has been
shown to contain features similar to other yeasts yet its
gene organization is more complex resembling higher
eukaryotes [14]. Both MIOX1 and MIOX2 have two ORE/
TonE sequences upstream of the genes. MIOX protein
expression in humans has been demonstrated to be regu-
lated by ORE/TonE binding proteins [7,10]. In verte-
brates, the experimentally demonstrated binding sites for
each transcription factor are slightly different. The core
sequence TGGAAA is recognized by ORE binding protein,
whereas the core sequence GGAAAA is recognized by
TonE binding protein (also known as NFAT5[11]). Inter-
estingly, comparison of the C. neoformans promoter
regions of MIOX1 and MIOX2 reveals nucleotide differ-
ences in the identified ORE/TonE sequences suggesting
differential regulation of the two genes. MIOX1 has two
ORE like sequences with the conserved TGGAAA sequence
coupled with an AP-1 binding sequence. This would
render MIOX1 subject to A-Fos and Tam-67 inhibition.
Two TonE like sequences are located in MIOX2 however,
no AP-1 sequence was identified. The presence of the
TonE and the absence of the AP-1 binding sequences sug-
gests MIOX2 is up-regulated in the presence of inositol
but is not subject to inhibition by A-Fos or Tam-67 [11].
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Figure 2

Computationally Predicted Structure of C. neoform-
ans MIOXI. A. Stereo ribbon diagram, Fe(ll) atoms shown
in green and inositol in yellow. Key amino acids involved in
substrate lid stabilization shown in CPK coloration.

Unlike MIOX1 and MIOX2, the MIOX3 gene lacked a con-
served ORE/TonE sequence within 3000 base pairs
upstream of the transcriptional start site suggesting
MIOX3 is not regulated by the ORE or TonE transcription
factors.

In addition to the ORE and AP-1 sequences, MIOX1 also
contains a UASy sequence. Several C. neoformans genes
involved in phospholipid and phospholipid precursor
biosynthesis (including MIOX) have been experimentally
found to be regulated by the availability of inositol and
choline in the medium [4,12] Studies of the transcrip-
tional control coordinating expression of these genes in S.
cerevisiae led to the identification of an upstream activat-
ing sequence (UAS) with a core conserved sequence of
CANNTG [1,15]. The UAS,yo has been found to specifi-
cally regulate genes via the INO2p/INO4p bHLH tran-
scription factor complex in response to inositol and
choline [1]. The UAS;, sequence experimentally demon-
strated to serve for transcription activation is CAT(G/
A)TGAA(G/A/T)(T/A) [13]. The presence of a UAS,y, in
the upstream region of the C. neoformans MIOX1 but not
MIOX2 or MIOX3 genes further suggests that the genes are
differentially regulated. Moreover, MIOX1 may be active
when inositol concentration levels are low.

http://www.biomedcentral.com/1471-2199/9/88

Differential regulation is further supported by the identi-
fication of expressed sequence tags (ESTs) for MIOX1 and
MIOX2 but not MIOX3. ESTs identified for both MIOX1
and MIOX2 in this study confirmed the computationally
predicted start sites. Furthermore the splice site junctions
for MIOX1 and MIOX2 are supported by alignment of
ESTs to genomic DNA. ESTs for MIOX3 were not found
however, the splice sites computationally predicted for
MIOX3 are identical to the splice sites predicted by ESTs
alignment for MIOX2. Duplicated nonfunctional genes
are less likely to have ESTs [16]. Unexpressed genes, genes
expressed at very low levels or only under specific condi-
tions are also less likely to have associated ESTs/cDNAs.
Therefore the absence of ESTs for MIOX3 suggests either
the gene is only expressed under specific conditions or is
not expressed at all.

The identity of the MIOX2 and MIOX3 coding sequences
(80%) is significantly less than that of their amino acids
(91%). This can be attributed to changes in the wobble
position. Manual analysis of the aligned sequences
revealed the majority (78%) of the base changes to be in
the wobble position. The synonymous changes allowed
the identity of the DNA sequences to decrease but did not
change most of the amino acids encoded, thereby retain-
ing the protein sequence identity. The conservation of the
amino acid sequence despite changes in the DNA suggests
that the function of the protein is conserved through
selective pressure.

The MIOX substrate, myo-inositol, is held in the active site
by several key interactions. Three salt bridges created
between Asp-85/Lys127, Asp-88/Lys257 and Asp92/Arg-
39 form a lid that holds the substrate in the active site,
along with main-chain H-bonds with Thr-32, Arg-39 and
GIn-136 that stabilize the active site. All residues, essential
in myo-inositol binding were found to be conserved in C.
neoformans MIOX1 except Thr-32 and Asp-92. Optimal
alignment of the Mus musculus and C. neoformans MIOX1
protein sequences indicates a conservative substitution of
Thr-32 to Glu and Asp-92 to Ser. Thr and Glu are both
neutral residues and capable of participating in hydrogen
bonds, indicating that the main chain hydrogen bonds
found in Mus musculus are all conserved in MIOX1. Asp-
92 interacts with Arg-39 to form a salt bridge (dist 2.98A)
in the Mus musculus MIOX protein. Substitution of Ser for
Asp-92 in C. neoformans MIOX1 potentially disrupts the
salt-bridge formation however; the homology model gen-
erated in this study of MIOX1 indicates the distance
between the amino acids (3.44A) supports the formation
of a salt bridge at that location despite the substitution.

Protein sequence alignment and the homology models
generated for the MIOX2 and MIOX3 proteins of C. neo-
formans also indicate three key differences from the mouse
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Figure 3

Computationally Predicted Active Site of the C. neoformans MIOX Isoforms. Bonding distances between the key
amino acid side chains involved in the salt bridge stabilization of Ml substrate lid. Key amino acids shown in CPK colorization.

A: MIOXI protein. B: MIOX2 protein. C: MIOX3 protein.

MIOX protein. Unlike the changes in the MIOX1 protein
where the active site is preserved, mutations in the MIOX2
and MIOX3 residues suggest disruption of the active site
for myo-inositol possibly leading to decreased protein
activity. Optimal alignment of the mouse MIOX and C.
neoformans MIOX2 and MIOX3 protein sequences indi-
cates substitutions of Thr-32 to Val and Asp-92 to Ser. The
change from Thr to Val disrupts one of the three main-
chain hydrogen bonds that helps stabilize the myo-inosi-
tol lid. The loss of the H-bond between Val and the main
chain could be the cause of the increased distance
between the Ser and Arg salt bridge (12.15A) making the
formation of a salt bridge at that location beyond the

acceptable range. The destabilization of the lid may not
allow MIOX2 and MIOX3 proteins to function efficiently.

Conclusion

Multiple copies of the MIOX gene is unique to C. neoform-
ans among the animal and fungal kingdoms. This study
suggests that the C. neoformans genome has multiple cop-
ies of the MIOX gene which appear to be differentially
expressed under various physiological inositol condi-
tions. MIOX1 protein is predicted to be efficient in bind-
ing the myo-inositol substrate [12]. MIOX1 gene
expression is probably active in conditions of low inositol
via a UAS, up-regulated in the presence of inositol, yet
possible inhibited by high levels of inositol by A-Fos or

Table 3: Relative Positions of Amino Acids Involved in the Predicted Hairpin Loop Stabilizing the Binding of the Myo-Inositol

Substrate.
Protein Amino Amino Amino Amino Amino Amino Amino Amino Amino Amino Amino
Acid Acid Acid Acid Acid Acid Acid Acid Acid Acid Acid

MIOX3 Leu-158 Val-159 Asp-160  Ala-161 Ser-162 Asp-163 Pro-164 Asp-165  Thr-166 Ser-167 Ala-168
MIOX2 Leu-110 Val-111 Asp-112  Ala-113 Ser-114 Asp-115  Pro-116 Asp-117  Thr-118 Ser-119 Ala-120
MIOXI Leu-115 Val-116 Asp-117  Glu-118 Ser-119 Asp-120  Pro-121 Asp-123  Thr-124 Ser-124 Val-125
Mus Leu-83 Val-84 Asp-85 Glu-86 Ser-87 Asp-88 Pro-89 Asp-90 Val-91 Asp-92 Phe-93
musculus

The hairpin loop is strongly conserved between the four proteins with only a few exceptions: a substitution of Ala for Glu-86, and Ala for Phe-93 in
MIOX 2 and MIOX3 proteins, a substitution of Ser for Asp 92 in all three MIOX protein sequences and a conservative substitution of Val for Phe-

93 in the MIOXI protein sequence.
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Table 4: Amino Acids Involved in Salt-Bridges that Stabilize the myo-Inositol Substrate Lid.

http://www.biomedcentral.com/1471-2199/9/88

Protein Amino Acid Distance Amino Acid Distance Amino Acid Distance
MIOX3 Asp-160/Lys-201 267 A Asp-163/Lys-331 291 A Ser-167/Arg-116 12.15 A
MIOX2 Asp-112/Lys-153 2.66 A Asp-115/Lys-283 291 A Ser-119/Arg-68 12.15 A
MIOXI Asp-117/Lys-157 2.65 A Asp-120/Lys-287 291 A Ser-124/Arg-7| 3.55A
musculus Asp-85/Lys-127 231 A Asp-88/Lys-257 2.97 A Asp-92/Arg-39 2,98 A

The amino acids involved in the myo-inositol substrate lid are conserved among the four proteins with the exception of a substitution of Ser for Asp
in all three computationally modeled C. neoformans MIOX proteins. Predicted bonding distances indicate the salt bridge formation is conserved for
MIOXI. The distance measured between the substituted Ser and Arg in both computationally modeled MIOX2 and MIOX3 proteins (12.15 A)

does not support the formation of a salt bridge at these locations.

Tam-67 at the AP-1 site. This inhibition may be compen-
sated for by the up-regulation of MIOX2. Although the
MIOX2 enzyme is not predicted to be as efficient at hold-
ing the myo-inositol substrate in the active site, due to loss
of disulfide bridges between the lid and main-chain and
loss of main-chain hydrogen bonds, expression of MIOX2
should not be inhibited in elevated inositol levels due to
the absence of an AP-1 binding sequence. This differenti-
ated regulation of inositol catabolism could facilitate the
growth and viability of C. neoformans in various environ-
ments.

Methods

MIOX Gene Identification and Characterization

To locate the MIOX gene within the Cryptococcus neoform-
ans genome the N-terminus region of MIOX1 protein
(previously isolated in this laboratory) was submitted as a
query search to the TBLASTN program via BLAST at the
Stanford Genome Technology Center (STGC). A sequence
with 100% identity to the MIOX protein N-terminus
region plus 3000 bases +/- was then used to search for
c¢DNA's and ESTs in the TIGR C. neoformans gene indices
database using BLAST (blastn), and the were aligned with

Table 5: Stabilizing Amino Acids Involved in Main-Chain
Hydrogen Bonds.

Protein Amino Acid Amino Acid Amino Acid
MIOX3 Val 109 Arg-116 Gln-211
MIOX2 Val-61 Arg-68 GlIn-163
MIOXI Glu-66 Arg-71 GIn-168
musculus Thr-32 Arg-39 GIn-136

The main chain hydrogen bonds involving Arg and GlIn are predicted
to be conserved in all four proteins. MIOX2 and MIOX3 protein
share a substitution of Val for Thr disrupting the main chain hydrogen
bond found at that location in the Mus musculus protein. MIOXI
protein has a conservative substitution of Glu for Thr suggesting the
preservation of that main chain hydrogen bond.

GAP from the Wisconsin sequencing package on the W-
H2 server (GCG)[16]. Possible open reading frames
(ORF) were located using Map (GCG) Translate (GCG),
GENSCAN [17], and ORF Finder [18]. Putative promoter
regions were delineated by Promoter Prediction [19],
WWW Promoter Scan [20] HCtata [21] Genie [22] and
NetStart 1.0 [23] and manual examination. Exon bound-
aries were predicted using GAP (GCG), NetGene2 [24],
Splice Site Prediction [25], Genie [26] and GENSCAN.
ORE sequences and UASino sequences were determined
by manual analysis of the upstream regions of each MIOX
gene sequence. CpG islands were identified using the
Vista Genome [27] and European Molecular Biology Lab-
oratory servers [28].

MIOX Secondary Structure Prediction

Predictions of protein secondary structures for MIOX1,
MIOX2, MIOX3 were computed using J-pred [29], Pre-
dictProtein [30], PSIPRED [31], Discrimination of protein
Secondary structure Class (DSC) [32], Hydrophobic clus-
ter analysis (HCA) [33], PSSFinder [34], and SAM_T02
[35] methods. The results from each method were com-
pared and a consensus structure for each MIOX protein
was generated based on regions of similarity. Consensus
secondary structure sequences for each MIOX protein
were generated by comparing results obtained by all serv-
ers, and taking into account only the sequence regions
that were predicted at least 50% reliability or higher by at
least five servers. All alignments were generated with
CLUSTALW [36]or GAP then edited manually using
Bioedit [37].

Template Identification and Protein Modeling

The SWISS-MODEL Comparative Protein Modeling Server
[38], along with Modeler within the Accelerys Insight II
program suite, were utilized to generate 3D-models of the
putative MIOX proteins. The MIOX protein from Mus
musculus (PDB code: 2HUQ) was used as a template. Each
C. neoformans MIOX protein was manually aligned to the
template then submitted to the server. The N-terminal
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regions of the proteins have a high degree of variation
therefore the N-terminal region for each protein was not
modeled due to lack of a template. One model was gener-
ated in a fully automated way for each MIOX sequence
based on user defined alignment then verified using PRO-
CHECK [39].

Authors' contributions

Both EAM, LSK, contributed equally to the research and
writing of the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements

The authors are indebted to Beth Eldon and llva Cabrera for their com-
ments on the manuscript. These studies were supported by grants from the
National Institutes of Health (Al43025) and the Keck foundation.

References

I. Carman GM, Henry SA: Phosphatidic acid plays a central role in
the transcriptional regulation of glycerophospholipid synthe-
sis in Saccharomyces cerevisiae. J Biol Chem 2007,
282(52):37293-37297.

2. Michell RH: Inositol derivatives: evolution and functions. Nat
Rev Mol Cell Biol 2008, 9(2):151-161.

3. Casadevall SA, Perfect JR: Cryptococcus Neoformans. Volume |.
Ist edition. ASM Press; 1998.

4. Molina Y, Ramos SE, Douglass T, Klig LS: Inositol synthesis and
catabolism in Cryptococcus neoformans. Yeast 1999,
15(15):1657-1667.

5.  Spector R, Lorenzo AV: Myo-inositol transport in the central
nervous system. Am | Physiol 1975, 228(5):1510-1518.

6. Nayak B, et al: Modulation of renal-specific oxidoreductase/
myo-inositol oxygenase by high-glucose ambience. Proc Natl
Acad Sci USA 2005, 102(50):17952-17957.

7.  Prabhu KS, Arner RJ, Vunta H, Reddy CC: Up-regulation of
human myo-inositol oxygenase by hyperosmotic stress in
renal proximal tubular epithelial cells. | Biol Chem 2005,
280(20):19895-19901.

8.  Brown PM, Caradoc-Davies TT, Dickson JM, Cooper GJ, Loomes KM,
Baker EN: Crystal structure of a substrate complex of myo-
inositol oxygenase, a di-iron oxygenase with a key role in
inositol metabolism. Proc  Natl Acad Sci USA 2006,
103(41):15032-15037.

9.  Arner R}, Prabhu KS, Krishnan V, Johnson MC, Reddy CC: Expres-
sion of myo-inositol oxygenase in tissues susceptible to dia-
betic complications.  Biochem Biophys Res Commun 2006,
339(3):816-820.

10. Kim JA, Jeon US, Kwon MS, Lim SW, Kwon HM: Transcriptional
activator TonE-binding protein in cellular protection and dif-
ferentiation. Methods Enzymol 2007, 428:253-267.

I'l. lrarrazabal CE, Williams CK, Ely MA, Birrer M}, Garcia-Perez A, Burg
MB, Ferraris |D: Activator protein-1 contributes to high NaCl-
induced increase in tonicity-responsive enhancer/osmotic
response element-binding protein transactivating activity. |
Biol Chem 2008, 283(5):2554-2563.

12. Rosario C: Inositol Catabolism and cloning in Cryptococcus
neoformans. Long Beach: California State University Long Beach;
1998.

13.  Koipally J, Ashburner BP, Bachhawat N, Gill T, Hung G, Henry SA,
Lopes JM: Functional characterization of the repeated
UASINO element in the promoters of the INOI and CHO2
genes of yeast. Yeast 1996, 12(7):653-665.

14. Loftus B), et al.: The genome of the basidiomycetous yeast and
human pathogen Cryptococcus neoformans. Science 2005,
307(5713):1321-1324.

15.  Harrison SC: A structural taxonomy of DNA-binding domains.
Nature 1991, 353(6346):715-719.

16. Mounsey A, Bauer P, Hope I: Evidence Suggesting That a Fifth
of Annotated Caenorhabditis elegans Genes May Be Pseudo-
genes. Genome Research 2002, 12(5,,):770-775.

http://www.biomedcentral.com/1471-2199/9/88

17. Wisconsin sequencing package on the W-H2 server [http:/
www.sacs.ucsf.edu/Resources/webgcg/index.html]

18. GENSCAN Web Server [http://genes.mit.edu/GENSCAN.html]

19. ORF Finder (Open Reading Frame Finder) [htep://
www.ncbi.nlm.nih.gov/projects/gorf/]

20. Promoter 2.0 Prediction Server

[http://www.cbs.dtu.dk/serv

ices/Promoter/]
2. WWW Promoter Scan [http://www-bimas.cit.nih.gov/molbio/
proscan/]

22. BioWareDB.org [http://biowaredb.org/site/
index.php?Itemid=3 | &id=1226&option=com_content&task=view]

23. Genie: Gene Finder Based on Generalized Hidden Markov
Models [http://www.fruitfly.org/seq tools/genie.html]

24. NetStart 1.0 [http://www.cbs.dtu.dk/services/NetStart/]

25. NetGene2 Server [http://www.cbs.dtu.dk/services/NetGene2/]

26. Splice Site Prediction by Neural Network [http://www fruit
fly.org/seq_tools/splice.html]

27. Reese MG, Eeckman FH, Kulp D, Haussler D: Improved splice site
detection in Genie. | Comput Biol 1997, 4(3):311-323.

28. VISTA [http:/pipeline.lbl.gov/cgi-bin/gateway?2]

29. European Molecular Biology Laboratory
heidelberg.de/]

30. )-pred A Secondary Structure Prediction Server
www.compbio.dundee.ac.uk/~www-jpred/]

31. PredictProtein [http://www.predictprotein.org/]

32. PSIPRED [http:/bioinf.cs.ucl.ac.uk/psipred/]

33. Discrimination of protein Secondary structure Class (DSC)
[http://www.russell.embl.de/gtsp/secstrucpred.html]

34. Hydrophobic cluster analysis (HCA) [http://smi.snv.jussieu.fr/
hca/hca-form.html]

35. PSSFinder [http://www.softberry.ru/
berry.phtml?topic=pps&group=programs&subgroup=propt]

36. SAM_TO02 [http://www.softberry.com/all.htm]

37. CLUSTALW [http://www.ebi.ac.uk/Tools/clustalw2/index.html]

38. Bioedit [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]

39. Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An
automated protein homology-modeling server. Nucleic Acids
Res 2003, 31(13):3381-3385.

40. PROCHECK [http://www.biochem.ucl.ac.uk/~roman/procheck/
procheck.html]

[http://www.embl-

[http://

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18216771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1130554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1130554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17012379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17012379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17012379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17875422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17875422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17875422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8810039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8810039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8810039
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15653466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15653466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997343
http://www.sacs.ucsf.edu/Resources/webgcg/index.html
http://www.sacs.ucsf.edu/Resources/webgcg/index.html
http://genes.mit.edu/GENSCAN.html
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.ncbi.nlm.nih.gov/projects/gorf/
http://www.cbs.dtu.dk/services/Promoter/
http://www.cbs.dtu.dk/services/Promoter/
http://www-bimas.cit.nih.gov/molbio/proscan/
http://www-bimas.cit.nih.gov/molbio/proscan/
http://biowaredb.org/site/index.php?Itemid=31&id=1226&option=com_content&task=view
http://biowaredb.org/site/index.php?Itemid=31&id=1226&option=com_content&task=view
http://www.fruitfly.org/seq_tools/genie.html
http://www.cbs.dtu.dk/services/NetStart/
http://www.cbs.dtu.dk/services/NetGene2/
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278062
http://pipeline.lbl.gov/cgi-bin/gateway2
http://www.embl-heidelberg.de/
http://www.embl-heidelberg.de/
http://www.compbio.dundee.ac.uk/~www-jpred/
http://www.compbio.dundee.ac.uk/~www-jpred/
http://www.predictprotein.org/
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.russell.embl.de/gtsp/secstrucpred.html
http://smi.snv.jussieu.fr/hca/hca-form.html
http://smi.snv.jussieu.fr/hca/hca-form.html
http://www.softberry.ru/berry.phtml?topic=pps&group=programs&subgroup=propt
http://www.softberry.ru/berry.phtml?topic=pps&group=programs&subgroup=propt
http://www.softberry.com/all.htm
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824332
http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	MIOX Gene Identification and Characterization
	MIOX Sequence alignment and Homology Modeling

	Discussion
	Conclusion
	Methods
	MIOX Gene Identification and Characterization
	MIOX Secondary Structure Prediction
	Template Identification and Protein Modeling

	Authors' contributions
	Acknowledgements
	References

