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Abstract
Background: Genetic experiments have clarified that p63 is a key transcription factor governing
the establishment and maintenance of multilayered epithelia. Key to our understanding of p63
strategy is the identification of target genes. We perfomed an RNAi screening in keratinocytes for
p63, followed by profiling analysis.

Results: C/EBPδ, member of a family with known roles in differentiation pathways, emerged as a
gene repressed by p63. We validated C/EBPδ as a primary target of ∆Np63α by RT-PCR and ChIP
location analysis in HaCaT and primary cells. C/EBPδ is differentially expressed in stratification of
human skin and it is up-regulated upon differentiation of HaCaT and primary keratinocytes. It is
bound to and activates the ∆Np63 promoter. Overexpression of C/EBPδ leads to alteration in the
normal profile of p63 isoforms, with the emergence of ∆Np63β and γ, and of the TA isoforms, with
different kinetics. In addition, there are changes in the expression of most p63 targets. Inactivation
of C/EBPδ leads to gene expression modifications, in part due to the concomitant repression of
∆Np63α. Finally, C/EBPδ is found on the p63 targets in vivo by ChIP analysis, indicating that
coregulation is direct.

Conclusion: Our data highlight a coherent cross-talk between these two transcription factors in
keratinocytes and a large sharing of common transcriptional targets.

Background
p63 is a transcription factor -TF-homologous to the
tumour suppressor p53 and to p73 [1]. This class of pro-
teins activate and repress genes as a result of binding to
promoters and enhancer regions. Six isoforms can be
found as a result of different transcription initiation sites
and alternative splicing. p63 proteins contain -TA- or lack
-∆N- a transcriptional activation domain at the N-termi-

nal, and the sterile alpha motif -SAM- domain, presuma-
bly a protein-protein interaction module. The resulting
proteins have dissimilar transcriptional properties and, as
a result, different biological behaviour. The paramount
importance of p63 in development has been broadly illus-
trated by genetic experiments in different organisms. Mice
lacking p63 die soon after birth with severe defects in
limb, craniofacial and skin development [2,3]. The major
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isoform present in keratinocytes and other epithelia -
∆Np63α- is essential for ectodermal development in
zebrafish [4]. In humans, several syndromes showing
abnormalities in limbs, skin and annexes are caused by
mutations in the p63 gene [5]. In general, therefore, p63
is essential for the biology of multilayered epithelia.

Several TFs have an established role in keratinocytes pro-
grams [6], but few of them have so far been linked to p63
regulation. This topic is quite relevant since renewal of
stem cells and ongoing active terminal differentiation
most likely requires the progressive fine tuning of transc-
triptional programs, unlikely to be masterminded by a
single TF.

C/EBPs are a family of six B-Zip TFs that activate and
repress transcription under different differentiation and
growth arrest conditions [7]. C/EBPα and C/EBPβ are
required for differentiation of adipocytes [8-10]. Inactiva-
tion of C/EBPε in KO mice leads to lack of natural killer
cells [11]. C/EBPδ KO has a mammary phenotype, with an
alteration in the involution of the mammary glands upon
lactation [12,13]. Adipocyte differentiation is also
impaired in cells that lack C/EBPδ when cultured in vitro,
similarly to C/EBPβ [14].

By inactivating p63 in HaCat and primary cells, it was pos-
sible to investigate the roles of p63 in keratinocytes, nota-
bly the importance for differentiation and cell adhesion
programmes [15,16]. At the same time, however, p63
plays a major role in maintaining the proliferative poten-
tial of stem cells of the multilayered epithelia [1]. Through
the use of RNAi inactivation coupled to gene expression
profiling, as well as ChIP on chip experiments, several labs
have recently identified hundreds of p63 targets [15-20].
Specifically, C/EBPδ emerged in the RNAi profiling of
human HaCaT cells and primary keratinocytes as a target
of p63 [18,19]. This prompted us to validate it and char-
acterize the p63-C/EBPδ connections by RT-PCR, ChIPs
and immunofluorescence in human keratinocytes.

Results
Validation of C/EBPδ as a target of p63
We performed RNAi inactivation of p63 in human HaCaT
cells followed by gene expression profiling with the
Affymetrix platform [19]; one of the genes that was specif-
ically increased under these conditions was C/EBPδ. This
gene was similarly found to be affected in primary kerati-
nocytes in Ref. [18]. We confirmed this data by perform-
ing RT-PCR to examine the mRNA levels of C/EBPδ, as
well as two other members of the family. Upon p63 inac-
tivation, a strong increase was specifically obeserved for
C/EBPδ, but not for C/EBPα, while C/EBPβ showed a
modest increase (Fig. 1A). β-actin, an invariant mRNA,
was used to normalize samples. ∆Np63 was decreased, as

expected (Fig. 1A). The pattern was also seen after RNAi
inactivation of p63 in primary human keratinocytes (KCs,
Fig. 1A, Lower Panel). In this setting, we also checked the
protein levels of C/EBPδ by immunofluorescence: Fig. 1B
shows that under normal growth conditions, KCs are
weakly but uniformly stained with anti-p63 and anti-C/
EBPδ antibodies; removal of p63 by RNAi transfections
(Central Panels) lead to a substantial increase in the C/
EBPδ staining (Left and Merge Panels). To ascertain
whether C/EBPδ repression is a primary event, we per-
fomed ChIP assays, using multiple anti-p63 and control
(anti-Flag and anti-NF-Y) antibodies. The anti-p63 anti-
body we produced and purified recognize all isoforms of
p63 [See Ref. [17] for details]. Scanning the human C/
EBPδ upstream region, we identified a cluster of potential
p53/p63 binding sites around 1 Kb upstream from the
transcriptional start site. These sites are in a cluster that is
conserved with the mouse sequence (Fig. 1C, Lower
Panel). ChIP analysis with HaCaT and primary KC chro-
matin showed strong positivity with the two p63 antibod-
ies (Fig. 1C). Because HaCaT cells contain two p53 alleles
mutated in the DNA-binding domain [21], hence generat-
ing proteins presumably incapable of DNA-binding, only
in primary cells did we include an antibody against p53:
p53 was as positive as p63, an indication that both pro-
teins are bound to the C/EBPδ promoter (Fig. 1C). As a
control, we amplified a region of the human α-globin
gene, which was devoid of any binding with any of the
binding analyzed (Fig. 1C, Upper Panel). We conclude
that C/EBPδ is under direct regulation of p63 in human
keratinocytes.

C/EBPδ is regulated upon keratinocytes differentiation
The role of C/EBPδ in skin differentiation is unknown. As
a first step to shed light on this, we wished to know
whether it is regulated during differentiation models of
human keratinocytes. HaCaT cells can be differentiated
upon withdrawal of serum and calcium addition: the cells
stop growing, alter their morphology, and express several
markers of suprabasal keratinocytes. We checked the lev-
els of C/EBPs by RT-PCR analysis at two times following
the differentiation stimulus: early -3 hours- and late, 3
days. The results are shown in Fig. 2A, Upper Panels: the
Keratin 1 -cK1- marker was increased, a very modest
increase of C/EBPδ, and no change of C/EBPβ or C/EBPα
was scored; the invariant histone-like NF-YB was used as
an internal control. An increase in C/EBPδ protein level
was seen in Western blots (Fig. 2A, Lower Panels) p63 was
checked and showed a concomitant reduction. Protein
levels were normalized with NF-YB and laminB. Immun-
ofluorescence analysis confirmed that C/EBPδ is increased
after differentiation, in contrast to C/EBPα and C/EBPβ
(Fig. 2B). cK1 was used to monitor differentiation (Fig. 2B
and 2D). Similar experiments with KCs showed a greater
increase of C/EBPδ at the mRNA level in RT-PCR (Fig. 2C)
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Validation of C/EBPδ as a target of p63Figure 1
Validation of C/EBPδ as a target of p63. A. Evaluation of C/EBPα, C/EBPβ and C/EBPδ, by semi-quantitative RT-PCR anal-
ysis in control and cells treated with siRNA of p63. β-actin was used as an internal control. In the lower Panel, primary human 
keratinocytes (KCs) were treated similarly and RT-PCR performed for ∆Np63α and C/EBPδ; the invariant GAPDH was 
included as internal control. B. Confocal microscopy immunofluorescence analysis of primary KCs treated with control and 
p63 RNAi oligos. Fixation and staining with the indicated antibodies was performed at 48 hours post-transfections. Note that 
the laser settings of the C/EBPδ image of p63-inactivated cells had to be lowered considerably due to extemely strong fluores-
cence. C. Chromatin Immunoprecipitation analysis of the C/EBPδ-1 Kb (Indicated by the square box), using HaCaT cells (Left 
Panel) and the indicated antibodies: NF-YB, p63 (Santa Cruz H137; Dako 4A4) and control -Ctl- anti-Flag antibodies (Sigma). 
Right Panel, ChIPs with primary KCs, anti-p63 4A4 (Dako), anti-p63α specific polyclonal [19], anti-p53 (Ab7 Calbiochem). As a 
control, ChIPs from KCs were used to amplify the α-globin promoter. In the bottom part, the p53 and p63 sites at -1000 of 
the human C/EBPδ promoter are shown, in an area of conservation with the mouse gene. HBA1 is the human α-globin pro-
moter.
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and at the protein level in immunofluorescence (Fig. 2D).
mRNA levels of cK14 decreased after differentiation, as
expected (Fig. 2C). We conclude from these data that C/
EBPδ is subject to regulation during differentiation of
HaCat cells and primary human keratinocytes, suggesting
that it might play a role in the process.

C/EBPδ is differentially expressed in human skin
Differential expression in keratinocytes cultured in vitro
suggests that C/EBPδ might be differentially expressed in
the skin. To verify whether this is the case, we evaluated
human skin sections of healthy individuals by immun-
ofluorescence confocal microscopy, double staining with

p63 and C/EBPδ antibodies. Fig. 3 shows representative
immunofluorescence images from two sections. Consist-
ent with previous reports, p63 is strictly confined to nuclei
of epidermis and abundant in the basal layer, with expres-
sion progressively fading in spinous cells and absent in
the granular and corneum strata. C/EBPδ staining is
absent in the derma and confined to keratinocytes: it is
nuclear and maximal in the granular layer and overlapp-
ping with p63 in the spinous layer (Yellow staining in the
Merge Panel). Interestingly, C/EBPδ also shows co-stain-
ing in some, but not all, cells of the basal compartment of
interfollicular skin (Indicated by arrows in the Merge
Panel of Fig. 3). Parallel staining with secondary anti-

Regulation of C/EBPδ in HaCaT and primary keratinocytesFigure 2
Regulation of C/EBPδ in HaCaT and primary keratinocytes. A. Upper Panel. RT-PCR analysis of the C/EBPs in HaCaT 
cells before and after 3 and 72 hours in differentiation medium. cK1 was used as control for differentiation, NF-YB as internal 
control. Lower Panel. Western blot analysis of HaCat extracts with the indicated antibodies. B. Immunofluorescence analysis 
of growing and differentiated HaCaT [72 hours] using the indicated antibodies. cK1 was used to control for differentiation. Ctl 
refers to cells stained with the rabbit secondary antibody only. C. RT-PCR analysis as in A, except that primary human kerati-
nocytes were used, before or after 3 days in differentiation medium. cK1 and cK14 were used as markers of differentiation. D. 
Same confocal experiments as in B, using human primary keratinocytes.
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mouse and anti-rabbit antibodies were essentially nega-
tive, ensuring that the signals observed above are specific.
In conclusion, C/EBPδ is keratinocyte-restricted and
clearly regulated in human skin, reinforcing the idea that
it is involved in regulating genes during differentiation of
keratinocytes. Furthermore, the expression patterns sug-
gest that p63 and C/EBPδ may influence their reciprocal
levels by transcriptionally regulating each other.

Regulation of ∆Np63 by C/EBPδ
To study the role of C/EBPδ on p63 expression, we over-
expressed C/EBPδ in primary keratinocytes. RT-PCR anal-
ysis of p63 isoforms is shown in Fig. 4A (Left Panels).
∆Np63α, the only detectable isoform in mock transfected
cells [15-19], increases at 24 hours; surprisingly, ∆Np63β
and ∆Np63γ were strongly induced at the same time
point. None of the TA isoforms were initially detectable,
but they became apparent after 48 hours. In parallel, we
inactivated C/EBPδ by siRNA interference in the same cel-
lular setting, using three different oligonucleotides: Fig.
4A (Right Panels) shows that using two of these siRNAs
the endogenous C/EBPδ drops to low levels in RT-PCR
analysis; oligo 2 was then used for further analysis of the

p63 isoforms upon C/EBPδ removal. ∆Np63α indeed
decreased dramatically, while none of the other isoforms
was expressed, confirming the role of C/EBPδ in ∆N regu-
lation. These data indicate that the ∆N -and TA- p63 pro-
moters are potentially under control of C/EBPδ in
keratinocytes.

To test this, we searched for C/EBP sites by using different
algorithms in the human ∆Np63 promoter, and found a
consensus of two juxtaposed boxes at -2400, in a region
that shows considerable homology in the mouse gene
(Fig. 4B). This led us to verify the activation of the ∆Np63
promoter using Luciferase constructs of different lengths,
from -3000 to -200 relative to the transcriptional Start
Site. As the promoter is known to be dependent from NF-
Y, a ubiquitous activator [22,23], we included it in our
cotransfections assays as a positive control. These experi-
ments were performed in U2OS, which provide a back-
ground that is free of the possible dominant self-
regulating activity of p63 on its own promoter [22]. We
found that NF-Y and C/EBPδ singularly activated the -
3000 contruct (Fig. 4C). Remarkably, addition of the two
TFs together yielded a clear cooperative effect. However,

Regulation of C/EBPδ in human skinFigure 3
Regulation of C/EBPδ in human skin. Fixed samples of two representative human interfollicular skin sections were double 
stained with anti-p63 4A4 and the C/EBPδ antibodies. Analysis was performed by Immunofluorescence Confocal microscopy. 
Arrows in the merge Panel indicate nuclear staining of cells that are positive for both antibodies, in the basal layer. Yellow sig-
nals in the spinous layer refer to cells co-expressing the two factors. B, basal layer; S, spinous layer; G, granulous layer; C, cor-
neum stratum. In the CTL Panels, we stained a skin section only with mouse and rabbit secondary antibodies used above.
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C/EBPδ is bound to and regulates the ∆Np63 promoterFigure 4
C/EBPδ is bound to and regulates the ∆Np63 promoter. A. Left Panel. Human KCs were transfected with mouse C/
EBPδ. RNAs were extracted at the indicated time and RT-PCR is shown for the indicated genes: controls (mC/EBPδ, GAPDH) 
and different p63 isoform (upper Panels). Right Panel. RNAi of C/EBPδ with three different oligos. C/EBPδ mRNA was checked 
for inhibition. B. Bioinformatic analsysis of the ∆Np63 promoters for C/EBP sites with different algorithms: a cluster of sites 
commonly detected at position -2400 is shown. Analysis was performed with rVista [63], CONSITE [64] and CUSTOM. 
Shown are also mouse conservation and a schematic representation of the amplified region. C. Transfection analysis of ∆Np63 
constructs [22] without and with NF-Y and/or C/EBPδ. D. ChIP analysis of the upstream regions of ∆Np63 with the indicated 
antibodies, using chromatin from primary KCs.
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shorter constructs (-1300, -400 and -200) did not show
any significant increase upon C/EBPδ overexpression,
while still retaining some NF-Y inducibility, most likely
due to core promoter CCAAT boxes detailed in Refs. [22]
and [23]. The decrease in NF-Y inducibility with respect of
the -3000 construct is probably due to a functional
CCAAT box binding NF-Y in this region (See ChIP below).
The simplest explanation for these results is that the -2400
C/EBP sites are vital for induction. To confirm that the
activation observed is a primary phenomenon, we per-
formed scanning ChIPs analysis on different regions of
the C/EBPδ promoter in human KCs; Fig. 4D shows that
C/EBPδ and NF-Y are found in the upstream region, in at
least three different positions. Note that predicted and
actual sites do not always ovelap (Fig. 4C and 4D). Taken
together, these data indicate that (i) C/EBPδ binds and
activates the ∆Np63 promoter in keratinocytes, (ii) point
at the -2400 binding sites as important for regulation, (iii)
confirm that NF-Y is a bona fide activator of the ∆Np63
promoter.

Consequences of C/EBPδ overexpression/inactivation on 
expression of p63 targets
The finding that C/EBPδ regulates p63 prompted us to
ascertain whether it would affect the expression of some
of p63 targets recently identified, in overexpression and
RNAi inactivation experiments in human primary kerati-
nocytes (Fig. 5). We also analyzed by RT-PCR markers of
differentiation, such as cK1 and cK14, and Desmocollin
(DSC) 1 and 3, important for keratinocyte biology and
presumptive C/EBPδ targets [24,25]. C/EBPδ overexpres-
sion lead to variations in all genes tested, with the excep-
tion of cK14. PCNA, a marker of cell proliferation and
itself a p63 target [17] decreased modestly after 48 hours,
suggesting a slowdown, but not a stop in proliferation.
DSC1, but not DSC3, was activated by C/EBPδ overexpres-
sion. Essentially all p63 targets identified in our recent
screenings varied in expression, some decreasing, others
increasing. Interestingly, some of these genes showed a
response at 24 hours, others -EGF-R, c-Jun, E- and T-cad-
herin- a delayed one.

RT-PCR analysis of keratinocytes in which C/EBPδ was
inactivated showed an equally dramatic change in gene
expression. In most cases, there is a perfect match with
overexpression: genes that are activated, 24 or 48 hours
after C/EBPδ transfections are down-regulated by RNAi,
consistent with a positive role of C/EBPδ in their regula-
tion. The exception is ESR, whose undetectable levels
could not be further decreased by C/EBPδ inactivation.
The genes that are repressed in overexpression are
increased by RNAi, except EGF-R and Desmocollin 3, in
which a dominant role of p63 can be envisaged. In sum-
mary, the C/EBPδ RNAi and overexpression experiments

are consistent with this TF being important for the expres-
sion of many p63 targets.

p63 targets are bound by C/EBPδ in vivo
To verify whether the effect of C/EBPδ on expression of
the p63 targets analyzed above is a primary event, we per-
formed ChIP analysis with an anti-C/EBPδ antibody in
primary KCs and in HaCaT cells. The regions analyzed
were the same that showed p63 binding [Ref. [19]. Fig. 6].
Essentially all targets are bound by C/EBPδ, both in
HaCaT and in primary KCs, the only exception being
Zeb1. Except c-Jun and ETAR, these regions contain one or
more C/EBP consensus sequences, as defined by analyz-
ing the common sites derived by the use of the CONSITE,
rVISTA and CUSTOM algorithms used in Fig. 4; some are
in core promoters, others in upstream locations. The pat-
tern of p63 is somewhat similar, with one target -ETAR-
absent in primary KCs. NF-Y sites are found in expected
locations, except for E-cadherin, which was shown to be a
positive promoter for NF-Y. Note that NF-Y binding on C/
EBPδ in primary keratinocytes differs in Fig. 1 (not
present) and 6 (present). Individual variations might

Overexpression and functional inactivation of C/EBPδ in pri-mary KCsFigure 5
Overexpression and functional inactivation of C/
EBPδ in primary KCs. Human KCs were transfected with 
mouse C/EBPδ. RNAs were extracted at the indicated time 
and RT-PCR is shown for the indicated p63 target genes (Left 
Panels). In the Right Panels, C/EBPδ inactivation was per-
formed in human KCs with siRNA oligonucleotide 2 of Fig. 4 
and with a scramble oligo, in parallel. RT-PCR analysis of the 
genes in Left Panels is shown. The increase of c-Jun in RNAi-
treated cells can only be visualized by low cycles RT-PCR, 
where a signal from the control oligo RNA is not detectable. 
On the Right part of the Figure, the effect of RNAi inactiva-
tion of p63 is depicted, according to published data and to 
Ref. 19.
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account for these discrepancies, as we have also noticed
differences in positivity in p63 among keratinocytes
derived from individual donors with respect of some of
the targets [S.B. M.A.V., R.M. unpublished observation].
These exceptions notwithstanding, we conclude that the

majority of p63 targets are bound by C/EBPδ in vivo in pri-
mary and immortalized keratinocytes.

C/EBPδ binds to p63 targetsFigure 6
C/EBPδ binds to p63 targets. ChIP analysis of NF-Y, C/EBPδ and p63 on different genes targeted by p63 in HaCat cells 
(Right Panels) and in human primary KCs (Left Panels). The regions considered were described for p63 [19] and are detailed in 
the cartoon. The analysis of C/EBP (Triangles) consensus sequences according to the three algorithms used in Fig. 4 is depicted. 
Circles refer to the p63 consensus recently described by Orrt et al [65]. Slashed circles refer to p53 consensus. The position 
of the amplicons is indicated.
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C/EBPδ-p63 targets are regulated during differentiation
The reciprocal roles of p63 and C/EBPδ for keratinocyte
differentiation suggests that coregulated genes would be
differentially regulated during this process. We checked
their expression levels by RT-PCR analysis in primary
keratinocytes induced to differentiate (Fig. 7). The process
was monitored as in Fig. 2 with cK1 and cK14 -the former
increasing, the latter decreasing- and normalized with
GAPDH and NF-YB RNAs. All genes showed remarkable
changes. In particular, the coregulated JunB and c-jun var-
ied, while JunD did not. In keeping with the increase in C/
EBPδ levels after differentiation, activated genes -TGFβ-
RII, T-Cad, JunB- showed a positive variation, irrespective
of p63 expression (See Fig. 2). Other genes behaved dis-
similarly with respect to C/EBPδ: E-Cadherin and EGF-R,
which are repressed, increased considerably upon differ-
entiation. We conclude that all coregulated targets tested
change during differentiation, but this complex process,
as in the case of p63, cannot be fully recapitulated through
variations generated by a single TF.

Discussion
The concerted modulation of specific gene expression pro-
grams is controlled by transcription factors. In specific
pathways of response to external stimuli, one, or a few,
TFs play a dominant role in this response. Matters are far
more complex in multi-cellular systems involving termi-
nal differentiation and the specification of exquisite fea-
tures. What emerged is the concept of "master" regulators,
whose role is to confer cell identity and to drive gene reg-
ulation programs accordingly. In the muscle system, for
example, some of these masters -MyoD, Myogenin, MEF2-
were identified and their gene regulation programs stud-
ied: they apparently show a preference for fellow TFs
genes. A robust hierarchical cascade of specific programs
is adjusted in such multisteps and multi-functions pro-
grams [26]. Interestingly, this network is not restricted to
TFs exquisitely expressed in muscle, since ubiquitous, or
near ubiquitous TFs are an integral part of the network
[27]. Similarly, the recent identification of hundreds of
p63 targets in various cell types [Reviewed in [28-30]]
highlighted links with TFs that are known, or likely, to
play an important role in skin biology [28].

The direct cross-talk between p63 and C/EBPδ, originally
emerging from p63 RNAi screenings [18,19] is confirmed
by ChIP and C/EBPδ RNAi experiments. The decrease in
∆Np63α by inactivation of C/EBPδ strongly argues in
favour of an activating role of C/EBPδ on ∆Np63 tran-
scription, confirmed by overexpression; reporter con-
structs experiments and ChIPs point at important
upstream sites at -2.4 Kb. Interestingly, the synergistic acti-
vation observed with NF-Y is a further argument in favour
of the physiologic role of this particular member of the C/
EBP family in ∆N p63 regulation: NF-Y, itself a poor acti-

Regulation of C/EBPδ targets during differentiationFigure 7
Regulation of C/EBPδ targets during differentiation. 
The targets of C/EBPδ are evaluated in primary KC before 
and after 72 hours of differentiation by semi-quantitative RT-
PCR analysis.
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vator, acts primarily in conjunction with a neighbouring
TF [Reviewed in [31]]. In the MHC Class II promoters, for
example, only the relevant RFX-5, and not other RFXs, is
capable to synergize with NF-Y [32].

An intriguing finding is the differential regulation of p63
splicing isoforms in keratinocytes upon C/EBPδ overex-
pression. Normally, these cells express exclusively
∆Np63α and it is currently unclear whether TA isoforms
are induced upon differentiation in vitro, since different
results were reported [Reviewed in [33] and [34]]. Overex-
pression of C/EBPδ led to the appearance of ∆Nβ and γ,
and -later- of the TA isoforms. Thus, C/EBPδ acts not only
to support the activity of the ∆N promoter in general, but,
directly or indirectly, to impinge on an isoform switch
that modifies the p63 portfolio. ∆Np63β and γ induction
was also observed upon activation and differentiation of
cells of the corneal limbus [35], and a role of TA isofoms
in differentiation has been proposed [34]. The switch
could have a far reaching effect on expression of p63
targes, particularly in the upper epidermal layers, since the
∆N and TA isoforms have often quite dissimilar transcrip-
tional effects.

How modification of the splicing is accomplished is
unclear, at the moment; it has become recently evident,
however, that regulation of transcription and RNA
processing are highly coordinated events and that specific
transcription factors -and cofactors- are known to play a
role in pre-mRNA processing [36]. Interestingly, one of
the cofactors involved is CARM1 [37], an arginine meth-
yltransferase which modifies other factors promoting
exon-skipping [38]. CARM1 is activated by ∆Np63α [19]
and it was shown to be involved in other differentiation
systems [39]. Thus, it is possible that p63 regulators, such
as C/EBPδ, impact on factors loaded on the ∆N promoter
and travel along the gene with PolII complexes to adjust
splicing events.

Our results indicate that many, perhaps most of the p63
targets are coregulated by C/EBPδ. An intersection
between C/EBPs and p53 family members was noticed
before. Typical p53-induced pro-apoptotic targets are not
activated in the absence of C/EBPδ in KO mammary cells
and anti-apoptotic genes are not repressed [13]. The two
factors are apparently engaged in a positive feed-back
loop, with many genes commonly controlled: Cyclin D1,
Bfl1, SGP2, Gas1, Bak and IGFBP5. In addition, expres-
sion of C/EBPδ is induced upon Vitamin D treatment in
prostate cells, leading to a dramatic arrest in clonal expan-
sion [40], presumably through VDR, another p63 target
[41]. Given the pivotal role of p63 in prostate develop-
ment [42], the interplay between p63 and C/EBPδ could
be both direct and indirect, through VDR. Note that the

overlap between p53 and p63 targets in the skin is large,
but not absolute [17,18].

HaCaT cells are an epithelial line derived from the back of
adult human skin that spontaneusly underwent immor-
talization in vitro [43]; they exhibit normal differentiation
and have provided a valuable tool for studying regulation
of keratinization in human cells. The interpretation of
data concerning p63 in HaCaT is often complicated by the
presence of two mutated p53 alleles [44], which are
known to impinge on the p63 pathways. This is appar-
ently ot the case for C/EBPδ, but for other p63 targets we
are analyzing, there are dramatic differences in regulation
between HaCat and KCs (S.B., R.M, in preparation). In
light of the overlap between the targets of the two TFs, this
implies that a mutated p53 might subvert the tumor sup-
pressive and pro-differentiation role of C/EBPδ.

Based on current knowledge derived mostly from RNAi
experiments, a tentative view of the influence of p63 and
C/EBPδ is presented in Fig. 5. The picture is complicated
by the effect of p63 inactivation through C/EBPδ RNAi
and by the differential role of TAp63 [45] activated at late
time points. With two exceptions, EGF-R and DSC3, all
genes show a consistent behaviour in overexpression and
RNAi. Genes that are repressed by p63, ETAR, AIM2, T-
Cadherin, JunB, and should be up-regulated by p63
decrease, are rather decreased, an indication that they are
mostly rely on C/EBPδ. Some of these -AIM2, T-Cadherin,
JunB- limit growth. A role of C/EBPδ as a tumor suppres-
sor was established by the finding that knock-out MEFs
show genomic instability, impaired contact inhibition
and reduced serum dependance [46]. For the p63-
repressed c-Jun, up-regulation by C/EBPδ could either be
because of removal of p63 or repression by C/EBPδ, as
indicated by overexpression at late time points. As for
genes activated by ∆Np63, such as EGF-R, TGFβ-RII and E-
cadherin, the latters could be under joint control; EGF-R,
which drops after C/EBPδ and p63 RNAi, could decrease
after C/EBPδ overexpression at 48 hours through the
increase of TAp63 isoforms, shown to be strong repressors
of the EGF-R promoter. This would be consistent with a
growth control and pro-differentiative role of both TAp63
and C/EBPδ. Similarly, removal of the repressive ∆Np63
[See Ref. [19]] by C/EBPδ RNAi is consistent with an
increase in PCNA mRNA and with a small, late decrease in
overexpression. In conclusion, it is clear that coregulation
of p63/p53 and C/EBPδ is part of a larger program that
controls cell-cycle progression and differentiation. To
reconstruct the network, it will now be necessary to obtain
unbiased information about the panel of C/EBPδ targets
in keratinocytes, through the use of RNAi and ChIP on
chip technology.
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C/EBPδ belongs to a family of TFs important for several
differentiation pathways, including adipocytes, liver and
haematopoietic lineages [7]. Specifically, it has been asso-
ciated to the early phases of adipocyte differentiation,
together with C/EBPβ. It is induced upon several environ-
mental changes that lead to growth arrest [47-51] and
serum withdrawal in mammary cells and lung epithelia
cells [52]. Overexpression leads to growth arrest in mam-
mary and prostate epithelial cell lines [53-55]. The growth
arrest features are common to other C/EBPs [Reviewed in
[56]]. Our findings that C/EBPδ is up-regulated during
cell-cycle exit and differentiation of immortalized HaCaT
and primary keratinocytes, and the decrease in expression
of PCNA, a proliferative marker, are in agreement with
these results.

Nothing is known about C/EBPδ expression during epi-
dermal development of mouse skin. Despite careful exam-
ination, the available antibodies are unable to stain
mouse cells in immunofluorescence analysis [B.T, R.M.,
unpublished]. In humans, little variation of expression of
C/EBPδ was detected in the different phases of maturation
of skin annexes, the hair follicle and the sebaceous gland,
unlike other members of the family [57]. At the opposite,
we observe here that C/EBPδ staining is not uniform in
human interfollicular skin, suggesting that the reciprocal
interplay with p63 is complex. Co-expression is seen in
selected basal cells, which is in line with the activating role
of C/EBPδ on the ∆N promoter; in other cells of the same
layer, strongly positive for p63, C/EBPδ fades: this is also
consistent with the negative role of p63 on C/EBPδ expres-
sion. There is a coexpression and a balance in the spinous
layer, and in the upper granular layer, with cells exiting
from a proliferation status and terminally differentiating,
C/EBPδ is prominent. In transfection assays, Desmocollin
3, which is expressed in basal cells, is transactivated by C/
EBPδ and C/EBPβ, the suprabasal Desmocollin 1 by C/
EBPδ and C/EBPα [24]. We confirm that both these genes
require C/EBPδ expression, as determined by RNAi exper-
iments. Thus our results are consistent with C/EBPδ play-
ing a dual role in skin differentiation, both in very early
and late stages. In the former, it could limit, through its
growth suppressive properties the growth potential of
early progenitors. In the later stages, it may coordinate
cell-cycle exit and induce differentiation markers. Our
observations could now be extended in other systems,
notably in the mammary gland and in prostate, in which
both TFs have been singularly been shown to play key
roles.

One caveat to the C/EBPδ role in skin is the fact that KO
mice have no apparent alterations. However, this might
be due to redundancy with C/EBPβ: it was reported that
C/EBPβ is expressed in the cytoplasm of basal keratinoc-
ytes and becomes nuclear in the spinous layer [58]. C/

EBPβ KO mice have skin hyperplasia with downplay of
keratin 1 and 10 expression [59] and C/EBPβ is important
for keratinocyte survival [60]. Of particular significance
are the data recently reported by the group of Vinson on a
transgenic model expressing a dominant negative C/EBP -
termed A-C/EBP- in basal keratinocytes: these mice have
hyperplasia of the basal epidermis and increased apopto-
sis of the upper layers [61]. p53 and pro-apoptotic mark-
ers are induced and C/EBPβ dramatically reduced; as A-C/
EBP is not C/EBPβ-specific, C/EBPδ might contribute to
the observed phenotype. Given the well known complex-
ity within this family, through homo- and heterodimeri-
zations, production of dominant negatives through the
use of internal AUG within C/EBPβ, much work lies ahead
to establish their role in the different layers of epidermis.

Conclusion
We identified a direct and mutual link between p63 and a
member of the C/EBP family of transcription factors, C/
EBPδ. The following relevant findings are the reported: (i)
C/EBPδ expression is confined to keratinocytes and it is
up-regulated in cells committed to differentiation; it is
increased in in vitro differentiation systems, both of
HaCaT and primary keratinocytes. (ii) C/EBPδ activates
transcription of the ∆Np63 promoter, and it appears to be
part of the mechanisms that control p63 splicing. (iii) It is
involved in regulation of other p63 targets regulated dur-
ing differentiation, as verified by RNAi, overexpression
and ChIP assays. We therefore suggest that the mutual link
between these TFs is important for the correct differentia-
tion of keratinocytes.

Methods
Cells and culture conditions
First passage primary human keratinocytes -KCs- were
derived from breast of healthy individuals and grown on
a feeder-layer of lethally irradiated 3T3 cells in DMEM F12
added of Insulin (5 µg/ml), EGF-R (10 ng/ml) hydrocor-
tisone (0.4 µg/ml), T3 (2 nM), Cholera toxin (0.1 nM)
and transferrin (5 µg/ml). HaCaT were grown in DMEM
or in low calcium medium when assayed for differentia-
tion, which was added with 1.4 mM CaCl2 in 0.1% serum
conditions. Primary KCs were differentiated by adding
CaCl2 (1.4 mM final concentration) in the presence of
10% foetal calf serum.

RT-PCR and transfections
HaCaT cells were transiently trasfected using Oligo-
fectamine or Lipofectamine 2000 (Gibco-BRL, USA) for 3
hours with 150 ng/cm2 of human p63 siRNA oligonucle-
otide (ACAATTTCATGTGTAACAGCA) which targets ami-
noacids 265–272 in the central DNA-binding domain of
p63. After incubation overnight in DMEM, transfection
was repeated for 3 additional hours. RNA was extracted
from HaCaT cells using an RNA-Easy kit (Qiagen). 2.5 ×
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105 first passage primary human keratinocytes from
healthy individuals were similarly transfected with Nucle-
ofector (Amaxa, D) according to the Manufacturer' condi-
tions with the off-target siRNA control oligos (5'-AUGAA
CGUGAAUUGCUCAA-3', 5'-UAAGGCUAUGAAGAGAU
AC-3', 5'-AUGUAUUGGCCUGUAUUAG-3', 5'-UAGCGA
CUAAACACAUCAA-3'; Dharmacon D-00181001), or
with three different oligonucleotides targeting human C/
EBPδ (S1: GAUGCAGCAGAAGUUGGUGuc; S2: GACU-
CAGCAACGACCCATuu; S3: GGAAAAGACUGAGCAUG
CUuu).

RNA was extracted 24 or 48 hours after transfections. For
cDNA syntesis, 4 µg of RNA were used with M-MLV-RT kit
(Invitrogen, USA). Semi-quantitative PCR analysis were
performed with specific primers [see additional file 1].

In Figure 4, 2 × 105 U2OS were transfected with Lipo-
fectamine (Gibco-BRL) using 1,2 µg of reporter plasmids,
200 ng of C/EBPδ, 70 ng of the NF-YA, NF-YB, NF-YC plas-
mids, and carrier for a total DNA concentration of 2 µg.
Six independent transfections in duplicate were per-
formed.

Chromatin immunoprecipitations
ChIP analysis were carried out with the method described
in Ref. [19] with an anti-C/EBPδ antibody (Active Motif
#39006), anti NF-YB (Diagenode), anti-p53 (Ab7, Calbi-
ochem) and anti-p63 abs (SantaCruz SC137, 4A4 DAKO,
Diagenode). For the oligos used see additional file 1.

Western blot and Immunofluorescence
Western blot analysis was performed using standard pro-
cedure with a Pierce secondary antibody and detection
system. Skin sections derived from thighs of healthy
donors are shown in Figure 3. Cryopreserved human skin
sections were fixed in 4% fresh paraformaldehyde for 10'
and incubated o/n with the primary antibodies anti-p63
[17] and anti-C/EBPδ (Active Motif #39006). After 1 hour
incubation with the fluorocrome-conjugated secondary
antibodies, the slides were stained with DAPI and
mounted in Vectashield. Fluorescence was analysed with
a Leica confocal microscope.

Note added in proofs
After submission of this manuscript, Barbaro et al. (J. Cell
Biology 177, 1027–1049, 2007) reported that C/EBPδ
and p63 are coexpressed in stem cells of the corneal limb
epithelium and share common gene targets. These
authors also resported that C/EBPδ binds to the ∆Np63
promoter.
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