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Abstract
Background: The homeodomain-containing transcription factor PITX3 was shown to be essential
for normal eye development in vertebrates. Human patients with point mutations in PITX3
demonstrate congenital cataracts along with anterior segment defects in some cases when one
allele is affected and microphthalmia with brain malformations when both copies are mutated. The
functional consequences of these human mutations remain unknown.

Results: We studied the PITX3 mutant proteins S13N and G219fs to determine the type and
severity of functional defects. Our results demonstrate alterations in DNA-binding profiles and/or
transactivation activities and suggest a partial loss-of-function in both mutants with the G219fs form
being more severely affected. No anomalies in cellular distribution and no dominant-negative
effects were discovered for these mutants. Interestingly, the impairment of the G219fs activity
varied between different ocular cell lines.

Conclusion: The G219fs mutation was found in multiple families affected with congenital cataracts
along with anterior segment malformations in many members. Our data suggest that the presence/
severity of anterior segment defects in families affected with G219fs may be determined by
secondary factors that are expressed in the developing anterior segment structures and may
modify the effect(s) of this mutation. The S13N mutant showed only minor alteration of
transactivation ability and DNA binding pattern and may represent a rare polymorphism in the
PITX3 gene. A possible contribution of this mutation to human disease needs to be further
investigated.

Background
Cataracts remain a leading cause of blindness worldwide

accounting for 42% of all blindness [1,2]. In one large
study, about 30% of all congenital/infantile cataracts was
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attributed to genetic factors as identified by the presence
of multiple affected family members or the association of
other dysmorphology suggestive of a genetic syndrome
[3]. The etiology of about 87% of unilateral and 50% of
bilateral cataracts remains unknown [3], and is likely to
have some genetic basis as well. In recent years, multiple
genes underlying human congenital cataracts have been
identified and opened the way to functional studies and a
better understanding of lens development [4].

PITX3 is a homeodomain transcription factor found to be
responsible for human congenital cataract that can be
associated with abnormal development of the anterior
segment. PITX3 belongs to the paired-like group and a
bicoid-like subgroup. The bicoid-like homeodomains are
characterized by a lysine at position 50 (position 9 of the
third helix) in the homeodomain, which is known to
selectively recognize the 3' CC dinucleotide adjacent to
the TAAT core sequence [5-8].

The function of the PITX3 gene in ocular development is
highly conserved in vertebrates. The mouse and rat Pitx3
genes were identified in 1997 and demonstrate strong
expression during lens and brain development [9,10]. The
mouse Pitx3 gene was shown to be involved in aphakia, a
recessive mutant phenotype characterized by small eyes
lacking the lens [11-13]. Recent publications demon-
strated that Xenopus and Danio rerio pitx3 genes are highly
similar in sequence, expression, and function to their
mammalian homologs [14-16]. Morpholino-induced
knockdown of pitx3 at early embryonic stages in zebrafish
resulted in a lens and retinal phenotype similar to the one
seen in the aphakia mouse mutant [16-18].

Originally, two different PITX3 mutations were reported
in human patients [19]. The first mutation was a C-termi-
nal 17-bp insertion that resulted in a frameshift and
abnormal configuration of ~1/3 of the protein (G219fs);
this mutation was found in a multigenerational family
with anterior segment ocular dysgenesis and cortical cata-
racts [19,20]. The second mutation was a serine to aspar-
agine substitution in the N-terminal region of the protein
[S13N]; this mutation was found in a mother and child

affected with congenital cataract. Several recent publica-
tions reported a recurrence of the same 17-bp insertion
mutation in seven families of different ethnic back-
grounds affected with congenital posterior polar cataract
that, in some cases, included anterior segment defects [21-
25]. An additional C-terminal single-nucleotide deletion,
G217fs, was identified in two families affected with poste-
rior polar cataract; this mutation is predicted to result in a
truncation of the normal protein sequence around the
same site (only two amino acids upstream) as the recur-
rent 17-bp insertion [21,24]. Interestingly, in one family
two siblings from a consanguineous marriage were found
to be homozygous for the mutation and demonstrated
microphthalmia and central nervous system defects [24].
To date, no mutations in the homeodomain region of
PITX3 have been identified.

Distribution of PITX3 mutations is remarkably different
from that seen in other homeodomain proteins including
its close family member, PITX2. PITX2 mutations are clus-
tered in the homeodomain region with several C-terminal
and no N-terminal mutations identified to date [26,27].
The majority of PITX2 mutations were shown to result in
a complete loss-of-function with a few partial loss-of-
function, one gain-of-function and one dominant-nega-
tive mutations being reported as well [6,28-34].

In contrast to PITX2 mutations, the homeodomain region
remains intact in PITX3 mutants identified thus far, while
the C-terminal or N-terminal regions are affected. The
mechanism(s) by which these mutations obstruct normal
function of PITX3 have never been investigated. The N-ter-
minal and C-terminal regions of PITX1&2 proteins have
been implicated into protein-protein interactions that
affect PITX protein binding/activation of target promoters
[28,35,36]. Therefore PITX3 mutations may be highly sus-
ceptible to modulation by secondary factors and express
variable phenotypes depending on the genetic back-
ground. Alternatively, mutations in non-DNA-binding
domains of this transcription factor may lead to mutant
proteins that are dominant-negative to wild-type activity.
Characterization of PITX3 mutations is important for bet-

Table 1: Human disorders associated with PITX3 mutations

PITX3 genotype Protein defect Human ocular phenotype # independent 
reports

Reference

WT/G38A S13N (N-term) congenital total cataract with glaucoma 1 19
WT/650delG G217fs (C-term) congenital posterior polar cataract 2 21; 24
650delG/650delG G217fs (C-term) microphthalmia 1 24
WT/657ins17 G219fs (C-term) congenital posterior polar cataract 4 21–23; 25

congenital posterior polar cataract with anterior segment dysgenesis 2 21
congenital cortical cataract with anterior segment dysgenesis 1 19
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ter understanding of the human phenotypes associated
with alterations in this gene.

Results
Analysis of PITX3 normal sequence and mutations
The PITX3 mutations identified thus far are represented by
alterations of the N- or C-terminal domains (Table 1). We
analyzed PITX3 predicted protein sequences in different
species for conservation at the mutant nucleotide posi-
tions (Figure 1A). The S13 position was found to be 100%
conserved in all known Pitx3 proteins from humans to
zebrafish while the eighty-three C-terminal amino acids
that are missing in the G219fs mutant demonstrate ~60%

identity between different species. This analysis suggested
important roles for both regions in normal protein func-
tion. For control, an additional PITX3 mutant was
included in our study, K111E, which was constructed to
carry a mutation at position 50 of the homeodomain that
changes a lysine into glutamic acid. The K111E alteration
is identical to the K88E mutation in PITX2 homeodomain
that was shown to have severe DNA-binding and transac-
tivation defects and also demonstrated a dominant-nega-
tive effect [33,34].

These PITX3 sequences encoding wild-type and mutant
proteins were inserted into the pcDNA3.1 expression plas-

PITX3 wild-type and mutant proteinsFigure 1
PITX3 wild-type and mutant proteins. A. Conservation of Pitx3 regions in different species. Amino acids that are identi-
cal in all or at least four proteins are highlighted in dark and light grey, correspondingly. Positions of mutations are shown in 
red. H.s- Homo sapiens, M.m.- Mus musculus, R.n.- Rattus Norvegicus, C.f.- Canis familiaris, D.r.- Danio rerio, X.l.- Xenopus laevis. B. 
Drawing of PITX3 wild-type and mutant proteins. The homeodomain is shown as green box, the OAR domain is shown as blue 
box and positions of mutations are indicated in red.
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mid in frame with myc epitope (Figure 1B), transfected
into B3 lens epithelial cells and analyzed for expression by
Western blots. As expected, a ~37 kDa band was detected
for the wild-type, S13N and K111E forms and a slightly
larger product was observed in cells transfected with the
G219fs- expressing plasmid. The wild-type and mutant
recombinant proteins were examined in respect to their
cellular localization, DNA-binding and transactivation
capabilities as well as potential dominant-negative effects.

Analysis of cellular distribution of PITX3 wild-type and 
mutant proteins
In order to analyze cellular distribution of wild-type and
mutant PITX3 proteins, expression plasmids were trans-
fected into B3 lens epithelial cells and then the cells were
collected for immunostaining with myc antibody (Figure
2). The transfected cells were examined in four low power
fields; the numbers of positive cells varied from 250 to
274 (~30% transfection efficiency). Consistent with its
role as a transcription factor, 99% of the wild-type PITX3
protein was localized to the nucleus. The PITX3 mutant
forms demonstrated similar distribution with 99% of
G219fs, 96% of S13N and 91% of K111E proteins being
found exclusively in the nucleus and the remainder show-
ing both cytoplasmic and nuclear staining (Figure 2).

Analysis of DNA-binding patterns of PITX3 wild-type and 
mutant proteins
We analyzed the DNA-binding properties of wild-type,
S13N and G219fs mutant PITX3 proteins by electro-
phoretic mobility shift assay (EMSA). Some previously
reported studies demonstrated that, similar to other PITX
factors, mouse Pitx3 is able to bind to and transactivate
promoters containing bicoid (TAATCC) sequences (tyro-
sine hydroxylase promoter; 7). Therefore an oligonucle-
otide containing two bicoid sites [34] was employed for
EMSA. The bicoid-like sequences TAAGCT and AAAGCC
were also shown to bind Pitx3 but were not examined in
our study [7,8].

EMSA assays demonstrated that wild-type PITX3 protein
forms DNA-protein complexes with the bicoid probe as
expected. The pattern consisted of several bands of differ-
ent electrophoretic mobility (Figure 3). The B3 lens epi-
thelial cell extracts obtained after transfection with an
empty pcDNA3.1 plasmid were used to confirm that the
bicoid-probe binding activity is not a property of B3 cells
or vector sequences. Addition of an antibody against
human PITX3 resulted in the formation of a supershift
and disappearance of all complexes (Figure 3). The fastest-
migrating EMSA band probably corresponds to PITX3
binding DNA as a monomer and the slower moving
bands may represent PITX3 homodimer- or PITX3 het-
erodimer- DNA complexes with other proteins. Multiple

Subcellular localization of PITX3 wild-type and mutant proteinsFigure 2
Subcellular localization of PITX3 wild-type and mutant proteins. A. Image of a slide that was stained with a myc anti-
body that recognizes recombinant PITX3. B. Image of a slide that was stained with DAPI. C. Example of detection of nuclear 
and cytoplasmic localization.D. Summary of cell counts for nuclear and cytoplasmic localization for different PITX3 forms.
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homeodomain proteins were shown to bind DNA as
monomers and homodimers [34,37-39] or in association
with other proteins [40,41].

Both the S13N and G219fs mutant proteins appear to
retain their ability to bind DNA as monomers (Figure 3);
however, formation of lower mobility complexes was
affected to varying degrees. The DNA-binding profile of
the S13N mutant was comparable to wild-type protein
with only the largest multiprotein-DNA complex being
affected. For the G219fs protein, the two main low elec-
trophoretic mobility complexes were found to be absent
(Figure 3). The K111E mutant showed no binding to the
bicoid probes, as expected. Equivalent amounts of the myc-
tagged PITX3 proteins were present in the nuclear extracts
that were used in these experiments.

Analysis of transactivation activity of PITX3 wild-type and 
mutant forms in lens epithelial and corneal stromal cells
To analyze the transactivation activities of the PITX3 wild-
type and mutant forms, we employed the bicoid-TK-luc
target promoter that has been previously used to charac-
terize activities of another member of this family, PITX2
[6].

When the wild-type PITX3 was co-transfected with the
bicoid-TK-luc plasmid into B3 lens epithelial or corneal
stromal cells, a ~5-fold increase in reporter gene activity
was consistently observed (Figure 4). When PITX3
mutants S13N and G219fs were co-transfected with the
same reporter, the increase in reporter activity was found
to be 77% and 46% of the wild-type level in lens epithelial
cells and at 76% and 78% in corneal stromal cells, respec-
tively (Figure 4). In contrast, when the K111E mutant was
co-transfected with the target promoter, no activation was

DNA-binding patterns of PITX3 wild-type and mutant proteinsFigure 3
DNA-binding patterns of PITX3 wild-type and mutant proteins. EMSA (left panel) showed alterations in the binding 
patterns of S13N, G219fs and K111E proteins in comparison to wild-type. The normal pattern of WT PITX3-DNA binding 
consisted of several bands with the low mobility complexes likely representing homo- or hetero- dimer DNA interactions 
(black arrows) and the fast moving band corresponding to PITX3 monomers binding DNA (black arrowhead); all complexes 
disappeared after addition of anti-PITX3 antibody to reaction (right panel; supershift band is indicated with black asterisk). No 
DNA-protein complexes were observed for K111E mutant and some low mobility complexes (indicated by black arrows) 
were not present in EMSAs performed with S13N or G219fs mutant extracts. Western blot (bottom) confirms the presence 
of PITX3 forms in the corresponding cells.
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observed in lens cells and only a slight up-regulation was
detected in corneal cells.

To examine whether the mutant proteins exert a domi-
nant-negative effect, the bicoid-TK-luc reporter, wild-type
and mutant forms were co-transfected into lens epithelial
cells. In these assays, the amount of wild type PITX3 plas-
mid was kept at 0.5 µg and bicoid-TK-luc reporter at 1 µg
while varied amounts of mutant constructs (from 0.5 µg
to 1.5 µg) were added. To ensure that the total amount of
DNA was equivalent in all assays, some reactions were
adjusted with pcDNA3.1 vector DNA. No dominant-neg-
ative activity was detected for either the S13N or G219fs
mutants while the control K111E mutant demonstrated a
dominant-negative effect as expected (see above; Figure
5).

Discussion
PITX3 represents a homeodomain-containing transcrip-
tion factor that was shown to be essential to normal
embryonic eye and brain development in vertebrates.
Identified disease-causing human PITX3 mutations are
represented by three sequence alterations, one affecting
the coding region for the N-terminal and the other two
affecting the C-terminal regions of the protein. No muta-
tions in the region encoding the homeodomain, a com-
mon site for pathologic mutations in this protein class,

Examination of PITX3 mutant forms for dominant-negative effectFigure 5
Examination of PITX3 mutant forms for dominant-
negative effect. The data are presented as luciferase values 
observed in co-transfections of the reporter with the PITX3 
plasmids relative to the activity of same reporter with empty 
pcDNA3.1 vector only; all experiments were performed in 
B3 lens epithelial cells. Data for S13N (top), G219fs (middle) 
and K111E mutants (bottom) are shown. The green line con-
nects values observed in transient co-transfections of 0.5-, 1-
, 1.5- and 2-µg of wild-type PITX3 and the reporter (1 µg). 
The blue line connects values observed in transient co-trans-
fections of 0.5-, 1-, 1.5- and 2-µg of mutant PITX3 with the 
reporter (1 µg). The values observed in experiments when 
the reporter (1 µg) was co-transfected with 0.5 µg of wild-
type PITX3 together with increasing amounts of S13N, 
G219fs or K111E mutants (0.5-, 1- and 1.5-µg) are joined by 
a red line.

Transactivation of bicoid-Tk-luc reporter in lens and corneal cells by wild-type and mutant PITX3Figure 4
Transactivation of bicoid-Tk-luc reporter in lens and 
corneal cells by wild-type and mutant PITX3. After 
normalization to β-galactosidase activity, the data are pre-
sented as luciferase values observed in co-transfections of 
bicoid-Tk-luc with various PITX3 forms relative to the activity 
of same reporter with empty vector only (pcDNA3.1). Val-
ues observed in transient transfections into B3 lens epithelial 
cell line are shown in grey and corneal stromal cells in black; 
error bars that denote SD are indicated.
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have been reported. The PITX3-S13N (N-terminal) muta-
tion was identified in a family with autosomal-dominant
congenital total cataract while the recurrent C-terminal
mutation, PITX3-G219fs, was found in multiple pedigrees
affected with dominant forms of cataracts often accompa-
nied by severe anterior segment dysgenesis.

The N-terminal S13N mutation appears to be located
within a conserved stretch of 11-amino acids, EARS-
PALSLSD. This motif seems to be specific to the PITX3
family and was not found in any other PITX proteins. The
function of this motif and, in fact, the entire PITX3 N-ter-
minal arm is not clear at this point although, in general,
N-terminal regions of homeodomain proteins were
shown to be involved in DNA-binding, dimerization,
phosphorylation and interaction with cofactors [42-45].
The C-terminal G219fs mutation results in a truncation of
the normal PITX3 sequence at ~2/3 of its normal length
and inclusion of ninety-four additional erroneous resi-
dues. The region around the OAR domain and the last
twelve residues appear to be most conserved; the OAR
domain represents a stretch of 14-amino-acids that were
found to be identical in various paired-like homeodomain
proteins [19,46,47]. The functions of these domains are
not fully determined yet; studies of Cart1 and Prx2, other
OAR-containing proteins, showed that the OAR domain
seems to perform an inhibitory function as deletion of the
domain resulted in increased DNA binding or transactiva-
tion of target promoters [48,49]. The C-terminal parts of
other PITX proteins were shown to play multiple regula-
tory roles and be involved in specific protein-protein
interactions with such factors as Pit-1 or Lef-1 [28,50]. In
summary, the studied mutations affect the configuration
of different conserved regions of the PITX3 protein. Since
these regions are involved in various and yet to be deter-
mined interactions, the functional consequences of the N-
and C-terminal mutations may be different and therefore
provide diverse mechanisms for associated ocular defects.

Both the S13N and G219fs mutant proteins as well as the
K111E control mutant were found to be expressed and to
localize to the nucleus, similar to wild-type PITX3. The
K111E protein was found to have the highest incidence of
cytoplasmic occurrence, which may be due to K111E
interference with a likely nuclear localization signal
located one amino acid downstream from the affected site
(see Figure 1A). The RRAKWRK sequence in the third helix
of the PITX3 homeodomain is similar to the sequences
identified in several other homeodomain proteins as nec-
essary and, in conjunction with the integrity of the helix 3
domain, sufficient for the nuclear transport of PDX-1,
PITX2 and SHOX [51-55].

Defective functions of the S13N and G219fs mutant pro-
teins were revealed in electrophoretic mobility shift assays

and transactivation activity assays. The normal pattern of
wild-type PITX3- DNA binding consisted of several bands
with the low mobility complexes likely representing
homo- or hetero- dimer DNA interactions and the fast
moving band corresponding to PITX3 monomers binding
DNA; similar patterns were reported for the PITX2 protein
[34]. EMSA demonstrated that both mutants form high
mobility complexes of similar intensity to wild-type pro-
tein and therefore appear to retain the ability to bind DNA
as monomers. At the same time, the formation of lower
mobility complexes was somewhat disturbed for S13N
and significantly affected for the G219fs mutant. There-
fore the ability of mutants to form these complexes and/
or to bind DNA as homo- or hetero-dimers seems to be
damaged. The severe alteration in formation of higher
order protein-protein DNA-binding complexes by the
G219fs mutant is not surprising since the PITX C-terminal
region was shown to play an important role in dimeriza-
tion and interactions with other proteins [34].

Both the S13N and G219fs mutants demonstrated a
decrease in the transactivation activity of a promoter con-
taining bicoid elements in lens epithelial and corneal stro-
mal cell lines. Interestingly, the transactivation activity of
the mutant proteins was higher in corneal cells in compar-
ison to lens cells with the G219fs mutant demonstrating
the most remarkable difference, 46% and 78% of WT
activity in lens and corneal cells, respectively. The studied
S13N and G219fs proteins contain normal homeodo-
main sequence and, as demonstrated by EMSA, are still
capable of interacting with DNA. Therefore, it is possible
that these mutations may act in a dominant-negative fash-
ion by blocking wild-type proteins from efficient binding
to bicoid sites. Another possibility would be that these
mutants may make inactive dimers with wild-type protein
and thus impair wild-type protein function [[33,34] and
[56]]. No dominant-negative effect was evident in co-
transfection assays of mutant and wild-type PITX3 forms.

The S13N form demonstrated only minor functional
alterations in comparison to G219fs mutant. This is con-
sistent with the fact that this is a relatively conservative
amino acid transition (both the serine and asparagine res-
idues are uncharged under physiologic conditions). It
should also be taken in consideration that the G219fs
mutation was found in several unrelated large pedigrees
affected with congenital posterior polar cataract while the
S13N change was only identified in a single pedigree con-
sisting of a mother and child affected with congenital total
cataracts. Our functional studies discovered only mild
alterations of S13N function in comparison to wild-type.
Therefore it is possible that S13N represents a rare variant
in the PITX3 gene that is contributing to, but not causing,
the disease in this family. At the same time, further studies
into PITX3 function(s) are required to be able to fully
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explore the properties of this mutant and its possible
involvement in human disease.

The variability of the phenotype associated with the
G219fs mutation may be explained by the contribution of
secondary factors modifying the ability of this mutant to
transactivate target promoters. This effect was evident in
human corneal cells transfected with the G219fs-mutant/
bicoid-reporter when a significant rescue of transactivation
activity was observed in comparison to experiments per-
formed in human lens cells. It is plausible to suggest that,
in some patients, certain allelic combination of interact-
ing factors is capable of rescuing G219fs transactivation
activity so that levels of functional PITX3 reach a thresh-
old required for normal development of the anterior seg-
ment structures while in other patients this function can
not be restored and therefore results in various abnormal-
ities of the anterior segment.

Conclusion
Variable alterations in the DNA-binding profile and trans-
activation activity were identified in two PITX3 mutant
forms associated with ocular phenotypes, S13N and
G219fs. Mutant transactivation activity was found to be
variable between human lens and corneal cells suggesting
the presence of secondary factors able to modify/rescue
mutant protein function. The observed partial rescue of
mutant activity in corneal cells may provide an explana-
tion for the fact that only a subset of human patients with
PITX3 mutations demonstrate anterior segment/corneal
anomalies while cataract/lens defects are present in all
cases. Identification of secondary factors that modify PITX
3 function in developing corneal tissues may facilitate bet-
ter prediction of ocular features in affected individuals.
Corneal abnormalities represent the most challenging fea-
ture to treat in these patients and identification of modi-
fying factors will lead to better understanding of the
underlying mechanism(s). In addition, since the studied
N- and C-terminal PITX3 mutant forms demonstrated
only partial loss-of-function, the lack of mutations in the
PITX3 homeodomain region in families with cataract/
anterior segment ocular dysgenesis may be due to the fact
that these types of mutations result in a more severe alter-
ation of PITX3 function and therefore produce a more
pronounced phenotype or result in prenatal death.

Methods
DNA constructs
The human PITX3, PITX3_S13N, and PITX3_G219fs
cDNAs were cloned into the pcDNA3.1 MycHisC expres-
sion vector containing the T7 promoter and an in-frame
C-terminal c-Myc epitope (Invitrogen). PITX3_K111E was
created using the Gene Editor site-directed mutagenesis
kit (Promega). The bicoid-Tk-luciferase reporter contains

the herpes simplex thymidine kinase minimal promoter
with four bicoid elements [6,33,34].

Cell culture, transfection and luciferase assays
B3 human lens epithelial cells were obtained from ATCC
(CRL-11421™) and cultured in medium as suggested by
the supplier. Human corneal stromal cells were a gener-
ous gift of Dr. Watsky (University of Tennessee) [57] these
cells were propagated in the DMEM medium containing
10% FBS. We examined human lens and corneal cells for
expression of endogenous PITX3 and compared it with
expression of our recombinant proteins: in lens epithelial
cells, endogenous PITX3 protein represented 1/55- 1/100
fraction of recombinant proteins while no endogenous
PITX3 protein was detected in human corneal cells by
Western blotting (low levels of PITX3 transcript were
identified by RT-PCR). Densitometry analysis was per-
formed on a Macintosh computer using the public
domain NIH Image program [58]. The B3 human lens epi-
thelial cells and human corneal stromal cells were cul-
tured in 6-well tissue culture plates. In transfection assays,
the manufacturer's protocols were followed (Invitrogen);
in short, 1.5 µg of reporter DNA, 1.5 µg of effectors DNA,
0.5 µg of pcDNA_lacZ (for normalization of transfection
efficiency), 1.75 µl of reagent Plus and 5.25 µl of Lipo-
fectamineLTX or 2000 (Invitrogen) were added to every
well in 0.5 ml of OPTI-MEM medium. When B3 lens epi-
thelial cells were grown in 24-well plates, the cells were
transfected using 1/5 of the volume of transfection mix-
ture for 6-well plates. The cells were collected 24 hours
after transfection and assayed for luciferase using luci-
ferase assay system (Promega). β-galactosidase activity
was measured in lysates using β-Galactosidase Assay Sys-
tem (Promega). Each experiment was performed in three
replicates and transfections were independently repeated
at least three times.

Electrophoretic Mobility Shift Assay
Oligonucleotide,
5'GATCCTAATCCCGTCGCGTCGTAATCCGGATC3' con-
taining two bicoid sites separated by 10 nucleotides (Bcd
2x 10n; [34]) was used in this study. For oligonucleotide
labeling and detection, Biotin 3' End DNA Labeling Kit
(Pierce) and LightShift Chemiluminescent EMSA Kit
(Pierce) were used. Nuclear extracts were prepared from
B3 cells transiently transfected with the corresponding
plasmid. Nuclear proteins were released by high-salt
extraction buffer after the cytoplasmic fraction was
removed using CelLytic NuCLEAR extraction kit (Sigma).
Recombinant protein concentrations in each extract were
estimated by Western blot and densitometry. The amount
of extract for each binding reaction was normalized by
recombinant protein concentration and the difference in
salt concentration was adjusted with extraction buffer. 20
fmol of biotin end-labeled probe were mixed with bind-
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ing buffer containing 50 ng/µl of Poly [d(I-C)]. Binding
reactions were incubated at RT for 15 minutes. For super-
shift, 1 µg of goat polyclonal Pitx3 antibody (Santa-Cruz)
or 1 µg of mouse monoclonal Myc-Tag (9B11) antibody
(Cell Signalling) was added to the binding reaction mix,
and incubation was extended to 30 minutes at RT. Electro-
phoresis was performed using 10-cm long 1× TBE 5%
polyacrylamide gels for one hour at 80 V; the gels were
then blotted onto positively charged nylon membrane
(Roche) for 30 minutes at 400 mV with 1× TBE.

Western blot and immunocytochemistry
For Western blot, 2 µg of whole cell extract from trans-
fected cells were electrophoresed into 10% SDS-polyacry-
lamide gel, transferred to polyvinylidine difluoride filters
(Millipore), and immunoblotted using Myc-Tag (9B11)
Monoclonal antibody (Cell Signaling). After reaction with
a secondary antibody conjugated with HRP, signal was
detected with PIERCE ECL Western Blotting Substrate. For
reaction immunocytochemistry, B3 lens epithelial cells
were cultured on cover slips until 50 to 80% confluency.
After 4% paraformaldehyde fixation, 9B11 Myc-tag anti-
body (Cell Signaling) and FITC-conjugated Goat Anti-
Mouse IgG were added for detection of positive cells.
VectaShield with DAPI (Vector Laboratories) was used to
antifade mounting medium. For observation of positively
stained cells, Nikon Ecripse600 Fluoroscope was utilized.
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