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Abstract

Background: Genome integrity is constantly challenged and requires the coordinated
recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We
investigated the dynamics of XRCCI and PCNA that act as molecular loading platforms and play a
central role in this coordination.

Results: Local DNA damage was introduced by laser microirradation and the recruitment of
fluorescent XRCCI and PCNA fusion proteins was monitored by live cell microscopy. We found
an immediate and fast recruitment of XRCCI preceding the slow and continuous recruitment of
PCNA. Fluorescence bleaching experiments (FRAP and FLIP) revealed a stable association of
PCNA with DNA repair sites, contrasting the high turnover of XRCCI. When cells were
repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear
pool of PCNA, while XRCCI dynamically redistributed even to lesions inflicted last.

Conclusion: These results show that PCNA and XRCCI have distinct kinetic properties with

functional consequences for their capacity to respond to successive DNA damage events.

Background

Mammalian cells have to deal with a wide variety of dif-
ferent DNA lesions caused by cellular metabolites, replica-
tion  errors, spontaneous  disintegration = and
environmental influences. These lesions can occur at suc-
cessive times and in distant parts of the genome constitut-
ing a permanent threat to the genetic integrity. Numerous
repair pathways have evolved to reestablish and maintain
the genetic information [1,2]. The recent identification of
DNA methyltransferase I at repair sites indicated that not
only the genetic but also the epigenetic information is
restored [3].

The repair of DNA lesions involves multiple steps includ-
ing initial damage recognition, intracellular signaling and
the recruitment of repair factors. For the latter step so
called loading platforms are considered to play a central
role by locally concentrating and coordinating repair fac-
tors at sites of DNA damage. These loading platforms have
no enzymatic activity of their own but interact with
numerous proteins through highly conserved binding
motifs. XRCC1 (X-ray cross complementing factor 1) and
PCNA (proliferating cell nuclear antigen) both fulfill
these criteria and are therefore considered to act as central
loading platforms in DNA replication and repair
(reviewed in [4-6]).

Page 1 of 8

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17880707
http://www.biomedcentral.com/1471-2199/8/81
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Molecular Biology 2007, 8:81

XRCC1 was first identified in the Chinese Hamster ovary
(CHO) mutant cell line EM9 [7]. This cell line shows a
defect in single strand break repair (SSBR) and increased
sensitivity to alkylating agents and ionizing irradiation
resulting in elevated frequency of spontaneous chromo-
some aberrations and deletions. The importance of
XRCC1 is further underlined by the embryonic lethality of
XRCC1-/-mice [8]. The fact that XRCC1 interacts with var-
ious proteins involved in SSBR and base excision repair
(BER), including PARP-1, PARP-2 [9-11] Polymerase-f
[12,13] and DNA Ligase III [9,14] suggests that XRCC1
acts as a loading platform in these pathways. Interestingly,
XRCC1 also interacts with PCNA and it was proposed that
this interaction facilitates efficient SSBR during DNA rep-
lication [15].

PCNA forms a homotrimeric ring around the DNA allow-
ing both stable association with and sliding along the
DNA double helix. Therefore PCNA is often referred to as
a "sliding clamp" mediating interaction of various pro-
teins with DNA in a sequence-independent manner. Pho-
tobleaching experiments have shown that in DNA
replication PCNA acts as stationary loading platform for
transiently interacting Okazaki fragment maturation pro-
teins [16,17]. In the last few years it has become evident
that PCNA is not only essential for DNA replication but
also for various DNA repair pathways including nucle-
otide excision repair (NER) [18], base excision repair
(BER) [19,20], mismatch repair (MMR) [21-23] and
repair of double strand breaks (DSBs) [24,25]. Recently it
has been shown, that accumulation of PCNA at DNA
repair sites is independent of the RFC complex, which
loads PCNA onto DNA during DNA replication [26]. Fur-
thermore PCNA plays also an important role in postrepli-
cative processes such as cytosine methylation and
chromatin assembly [27,28]. In most cases, proteins
involved in these processes directly bind to PCNA through
a conserved PCNA-binding domain (PBD). This raises the
question of how binding is coordinated and sterical hin-
drance avoided in DNA replication and repair. Recent
studies have shown that posttranslational modifications
of PCNA such as ubiquitinylation and sumoylation [29-
34] mediate a switch between DNA replication and differ-
ent repair pathways.

To study the dynamics of the two loading platforms
XRCC1 and PCNA at DNA repair sites in Hela cells we
used a combination of microirradiation, live cell micros-
copy and photobleaching techniques. We found that
XRCC1 and PCNA exhibit distinct recruitment and bind-
ing kinetics at repair sites resulting in different capacities
to respond to successive DNA damage events.
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Results and discussion

XRCCI is less tightly associated with repair sites than
PCNA

XRCC1 and PCNA have no known enzymatic function,
are present at repair sites and interact with a high number
of different proteins suggesting that they act as loading
platforms in DNA repair. To investigate the role of XRCC1
and PCNA in DNA repair we performed immunostainings
of microirradiated Hela cells. We employed a confocal
laser scanning microscope to generate DNA damage at
preselected subnuclear sites with a long wavelength UV
diode laser in BrdU-sensitized cells as described before
[3,35]. Microirradiated sites stained positive for phospho-
rylated histone variant H2AX (yH2AX), a marker for dou-
ble strand breaks (DSBs), and poly(ADP-Ribose) which is
generated by PARP at single strand breaks (SSBs) (Addi-
tional file 1). This indicates that microirradiation with a
405 nm laser generates a mixture of different types of
DNA damage that are substrates for distinct DNA repair
pathways involving XRCC1 and/or PCNA. Immunofluo-
rescence stainings with specific antibodies revealed that
endogenous PCNA and XRCC1 are both present at DNA
damage sites as early as 2-4 min after irradiation (Figure
1A). To investigate the binding properties of XRCC1 and
PCNA at DNA repair sites we performed salt extraction
experiments. Microirradiated cells were permeabilized for
30 s followed by extraction with phosphate buffer con-
taining 500 mM NaCl for 1 min. Immediately after salt

A xrcct PCNA DAPI B xrceci PCNA DAPI

Figure |

Immunochemical detection of endogenous XRCCI and
PCNA at DNA repair sites. Widefield fluorescence images of
Hela cells are shown. Cells were fixed at indicated time
points after laser microirradiation. (A) Both, XRCCI and
PCNA, accumulate at laser-induced DNA damage sites. (B)
Microirradiated Hela cells were extracted with 0,5% Triton-
X100 and 500 mM NaCl prior to fixation. After in situ
extraction no endogenous XRCCI can be detected at micro-
irradiated sites while PCNA accumulations can still be
observed. Scale bars, 5 um.
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extraction, the cells were fixed and stained for endogenous
proteins showing that XRCC1 and PCNA were both
extracted in non-S phase cells that were not microirradi-
ated. In microirradiated non-S phase cells only XRCC1
was extracted while PCNA could still be detected at DNA
damage sites (Figure 1B), which is in good agreement with
an earlier study, where detergent resistant foci of PCNA
could be observed after local UV irradiation [36]. As pre-
viously reported [15] we also detected a partial colocaliza-
tion of XRCC1 with PCNA at replication sites, but noticed
dramatically different binding properties. Thus XRCC1
was readily extracted, whereas PCNA was still stably asso-
ciated with sites of DNA replication (Figure 1B). Taken
together these results show that endogenous XRCC1 and
PCNA are both present at DNA replication and repair sites
but exhibit different binding properties.

Recruitment and mobility of XRCCI and PCNA at DNA
repair sites

To further investigate the dynamics detected with salt
extraction experiments we combined the microirradiation
technique with live cell microscopy and photobleaching
analysis (FRAP). We first determined the recruitment
kinetics of XRCC1 and PCNA in living cells by quantifying
the amount of GFP- and RFP-tagged XRCC1 and PCNA
accumulated at microirradiated sites. The intensity values
were corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
pre-irradiation value.

A direct comparison of GFP- and RFP-tagged XRCC1 and
PCNA showed a significantly slower recruitment of PCNA
in contrast to the very fast accumulation of XRCC1 at
microirradiated sites (Figure 2A). The fluorescence inten-
sity of PCNA at the irradiated site increased during the
observation period of 5 min, while XRCC1 accumulation
reached a maximum about 1-2 min after irradiation (Fig-
ure 2B). These kinetic differences are in good agreement
with earlier studies comparing the recruitment of XRCC1
and PCNA to laser-induced DNA damage sites [37].

Having shown that XRCC1 and PCNA are recruited with
distinct kinetics we performed FRAP analysis to determine
their dynamics at laser-induced DNA damage sites. Two
separate spots were microirradiated in living cells coex-
pressing GFP-XRCC1 and RFP-PCNA. After 5 min one
region was bleached with a high energy laser pulse for 300
ms and the fluorescence recovery was determined. After
bleaching of the repair foci we observed complete recov-
ery of the XRCC1 signal within 24 s (Figure 3). Since flu-
orescence intensity at repair sites had already peaked and
did not increase any further, the measured recovery has to
be attributed to a rapid turnover of XRCC1.

http://www.biomedcentral.com/1471-2199/8/81
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Figure 2

Recruitment of XRCCI and PCNA at DNA damage sites in
living cells. (A) Schematic representation of the fluorescent
fusion proteins. (B) Live cell imaging of a microirradiated
Hela cell coexpressing GFP-XRCCI and RFP-PCNA. Accu-
mulation of GFP-XRCCI can be observed immediately after
microirradiation, while RFP-PCNA accumulates with a short
delay of about 2—10 s (indicated by arrows). (C) Quantitative
evaluation of recruitment kinetics showing mean curves.
Error bars represent the standard error of the mean. Imme-
diate and fast recruitment of GFP-XRCCI precedes slow and
constant recruitment of RFP-PCNA at DNA damage sites.
Scale bar, 5 um.

In contrast, no recovery of PCNA at DNA repair sites could
be observed within the observation period, which is in
good agreement with previous studies where DNA dam-
age was induced by chemical agents or irradiation with a
UV lamp [30,38].

To determine the dissociation kinetics of XRCC1 and
PCNA from DNA damage sites we performed FLIP experi-
ments in Hela cells expressing GFP-XRCC1 and RFP-
PCNA. 5 min after microirradiation half of the nucleus
was repeatedly bleached with a high energy laser pulse
over a time period of 150 s and the loss of fluorescence at
the microirradiated site located outside the bleaching area
was determined (Figure 4, inset). The intensity values
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Figure 3

Mobility of XRCC| and PCNA at DNA damage sites. (A)
Two separate subnuclear spots of a transiently transfected
Hela cell were microirradiated. The mobility of accumulated
fluorescent fusion proteins was determined by bleaching one
of the two spots 5 min after microirradiation and subsequent
recovery measurements. Inset shows the bleached microirra-
diated site. Scale bar, 5 um. (B) FRAP data from | | individual
experiments are shown as mean curves. Error bars represent
the standard error of the mean.

were corrected for background fluorescence and normal-
ized to the pre-bleach value.

Within the first 10-15 s both fusion proteins showed a
rapid loss of fluorescence due to depletion of highly
mobile, unbound fluorescent molecules within the region
of interest. After this initial phase XRCC1 and PCNA
exhibited dramatically different dissociation kinetics. We
could observe a rapid decrease of XRCC1 fluorescence to
10% of the initial intensity within the observation period
while the intensity of PCNA was only reduced to 34%
(Figure 4). This argues for a constant exchange of fluores-
cent XRCC1 molecules between the damage site and the
bleached half of the nucleus, while most RFP-PCNA mol-
ecules remained bound at DNA repair sites.

These results show that the two loading platforms XRCC1
and PCNA exhibit distinct recruitment kinetics and
mobility (association and dissociation rates) at DNA
repair sites, which is consistent with an involvement of
XRCC1 and PCNA in distinct repair pathways. On the one
hand, PCNA is involved in repair pathways where the syn-
thesis of long stretches of DNA requires a stable and
processive repair machinery. On the other hand, XRCC1 is
part of the short patch BER pathway where only a single
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Figure 4

Different binding kinetics of XRCC| and PCNA at DNA
repair sites. FLIP data from 9 individual experiments are
shown as mean curves. The scheme of the experiment is out-
lined in the inset. Two separate subnuclear spots of tran-
siently transfected Hela cells were microirradiated. Half of
the nucleus containing one irradiated site was repeatedly
bleached for | s over a total time period of 150 s, starting 5
min after microirradiation. The decay of the fluorescence
intensity at the microirradiated site within the non-bleached
half of the nucleus was measured and plotted over time.
Error bars represent the standard error of the mean.

nucleotide needs to be replaced and no processive and sta-
ble machinery is required.

To further investigate the role of XRCC1 and PCNA as cen-
tral loading platforms in DNA repair we extended our
photobleaching analysis to their respective interaction
partners DNA Ligase III and I. In a previous study we com-
pared the recruitment kinetics of theses highly conserved
DNA Ligases and found that they are recruited to DNA
repair sites with distinct kinetics. Using mutational analy-
sis and binding studies we could show, that DNA Ligase I
is recruited to repair sites through interaction with PCNA,
while DNA Ligase III is recruited via its BRCT domain
interacting with XRCC1 [35]. FRAP analysis revealed that
both DNA Ligases show a high turnover at repair sites,
with DNA Ligase I recovering faster than DNA Ligase III
(Additional file 2). Interestingly, DNA Ligase III showed
the same recovery rate as its loading platform XRCCI1,
while the mobility of DNA Ligase I and PCNA at repair
sites differed dramatically (Additional file 2).

These results demonstrate that these loading platforms
and their interacting repair factors have independent
binding properties at repair sites. We speculate that even
transient interaction of repair factors with their respective
loading platform enhances the efficiency of DNA repair by
local concentration of enzyme activities at repair sites,
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allowing faster recognition and binding of repair sub-
strates.

Flexible response of XRCCI and PCNA to multiple DNA
damage events

To investigate whether the different binding properties of
XRCC1 and PCNA have functional consequences we
tested their ability to respond to multiple DNA lesions.
Successive DNA lesions were introduced with a time inter-
val of 2.5 min at separate spots and the recruitment kinet-
ics were determined for each individual spot. We observed
a constant decrease of PCNA accumulation at sites irradi-
ated at later time points (Figure 5). In contrast, XRCC1
accumulation at early and late irradiated sites was similar.

These differences can be explained by the tight binding of
PCNA at repair sites leading to a depletion of the cellular
pool of PCNA molecules available for repair of subse-
quent damages.

In contrast, the dynamic binding of XRCC1 enables fast
exchange between multiple DNA damages sites separated
in time and space. Taken together these findings argue for
a role of PCNA as a stationary loading platform in DNA
repair allowing efficient and accurate repair, whereas the
fast recruitment and high turnover of XRCC1 enables a

.
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flexible response to multiple DNA damage events occur-
ring at distant sites and successive times in the genome.

Conclusion

In summary, we found that XRCC1 and PCNA exhibit dis-
tinct recruitment and binding kinetics at repair sites,
which goes beyond earlier studies comparing only the
accumulation of XRCC1 and PCNA at repair sites [37].
Efficient repair of DNA lesions requires avid recognition
of the damage and coordinated recruitment of a multi-
tude of repair factors. The principle dilemma faced by the
repair machinery is that the stable complex formation
required for processivity and completion of multi-step
processes is incompatible with a flexible response to later
changes like subsequent DNA damages. Our live cell
recruitment and photobleaching analyses showed that
XRCC1 and PCNA represent opposite strategies. We
clearly demonstrate that the stable binding of the proces-
sivity factor PCNA limits its capacity to respond to succes-
sive damage events. While the avid and transient binding
of XRCC1 might be sufficient for single nucleotide
replacement but allows a flexible response to multiple
consecutive DNA lesions. This type of live cell analysis
should also help to explore the flexibility of other repair
factors and complex cellular machineries in response to
changing requirements.
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Flexible response of XRCCI to multiple DNA damage events. (A) Consecutive/Successive DNA lesions were introduced with
a time interval of 2.5 min, starting 4 min after microirradiation of the first spot. One spot irradiated in close proximity to the
nucleoli was not evaluated (arrowhead) (B) The recruitment kinetics of XRCCI and PCNA at consecutively microirradiated
sites were evaluated and plotted over time. Representative curves of one Hela cell are shown.
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Methods

Cell culture and transfection

Hela cells were cultured in DMEM containing 50 pg/ml
gentamicin supplemented with 10% FCS. Cells grown on
p-slides (Ibidi) or on gridded coverslips were cotrans-
fected with jetPEI (PolyPlus Transfection) or TransFectin
transfection reagent (Bio-Rad) according to the manufac-
turers instructions. For microirradiation experiments cells
were sensitized by incubation in medium containing
BrdU (10 pg/ml) for 24-48 h.

Expression plasmids

Mammalian expression constructs encoding translational
fusions of human PCNA with either green (GFP) or red
(RFP) fluorescent protein were previously described [17].
Red variants of the previously described GFP-Ligase III [3]
and GFP-XRCC1 [39] were generated by replacing GFP
with RFP [40] and termed RFP-Ligase Il and RFP-XRCC1,
respectively. In all cases expression was under the control
of the CMV promoter. We tested all fusion proteins by
expression in 293T cells followed by western blot analysis.

Immunofluorescence and Detergent Extraction

Cells were fixed in 3,7% formaldehyde for 10 min and
permeabilized with ice-cold methanol for 5 min. The fol-
lowing primary antibodies (diluted in PBS containing 2%
BSA) were used: anti-y H2AX (Ser139) rabbit antibody
(Upstate), anti-PAR mouse monoclonal antibody (Trevi-
gen), anti-XRCC1 mouse monoclonal antibody (Abcam)
and anti-PCNA rat monoclonal antibody [41]. Secondary
antibodies (diluted 1:400 in PBS containing 2% BSA)
conjugated to Alexa Fluor 488, 555 or 647 (Molecular
Probes) were used. Cells were counterstained with DAPI
and mounted in Vectashield (Vector Laboratories). For in
situ detergent extraction, cells were permeabilized for 30 s
with 0,5% Triton X-100 in PBS and extracted for 1 min
with 500 mM NaCl in PBS before fixation.

Live-cell Microscopy, microirradiation and photobleaching
experiments

Live cell imaging, mircorirradiation and photobleaching
experiments were carried out with a Leica TCS SP2/AOBS
confocal laser scanning microscope equipped with a UV-
transmitting HCX PL 63x/1.4 oil objective. Fluorophores
were exited using a 488 nm Ar laser line and a 561 nm
diode laser line. The microscope was equipped with a
heated environmental chamber set to 37°C. Confocal
image series were typically recorded with a frame size of
256 x 256 pixels and a pixel size of 90 nm.

Microirradiation was carried out with a 405 nm diode
laser set to maximum power at 100% transmission. Prese-
lected spots of ~1 pm in diameter within the nucleus were
microirradiated for 1 s. Before and after microirradiation
confocal image series of one mid z-section were recorded
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at 2 s time interval (typically 6 pre-irradiation and 150
post-irradiation frames). For evaluation of recruitment
kinetics, fluorescence intensities at the irradiated region
were corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
pre-irradiation value.

For FRAP analysis, a region of interest was selected and
photobleached for 300 ms with all laser lines of the Ar-
laser and the 561 nm DPSS laser set to maximum power
at 100% transmission. Before and after bleaching, confo-
cal image series were recorded at 150 ms time intervals
(typically 10 prebleach and 200 postbleach frames). Mean
fluorescence intensities of the bleached region were cor-
rected for background and for total nuclear loss of fluores-
cence over the time course and normalized to the mean of
the last 4 prebleach values.

For FLIP analysis, one half of the nucleus was repeatedly
photobleached (typically 150 frames) with all laser lines
of the Ar-laser and the 561 nm DPSS laser set to maximum
power at 100% transmission for 1 s. Mean fluorescence
intensities of the bleached region were corrected for back-
ground and normalized to the initial value.

For quantitative evaluation of microirradiation and pho-
tobleaching experiments, data of at least 9 nuclei were
averaged and the mean curve as well as the standard error
of the mean calculated and plotted using Microsoft Excel
software.

Images of fixed cells were taken with a Zeiss Axiophot 2
widefield epifluorescence microscope using a Zeiss Plan-
Apochromat 63x/1.40 oil objective and a cooled CCD
camera (Visitron Systems).

Abbreviations
BER: base excision repair

DSBs: double strand breaks

FLIP: fluorescence loss in photobleaching

FRAP: fluorescence recovery after photobleaching
PCNA: proliferating cell nuclear antigen

SSBR: single strand break repair

SSBs: single strand breaks

XRCC1: X-ray cross complementing factor 1
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