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Abstract

Background: To discover prostate cancer biomarkers, we profiled gene expression in benign and
malignant cells laser capture microdissected (LCM) from prostate tissues and metastatic prostatic
adenocarcinomas. Here we present methods developed, optimized, and validated to obtain high
quality gene expression data.

Results: RNase inhibitor was included in solutions used to stain frozen tissue sections for LCM,
which improved RNA quality significantly. Quantitative PCR assays, requiring minimal amounts of
LCM RNA, were developed to determine RNA quality and concentration. SuperScript I™ reverse
transcriptase was replaced with SuperScript Ill™, and SpeedVac concentration was eliminated to
optimize linear amplification. The GeneChip® IVT labeling kit was used rather than the Enzo
BioArray™ HighYield™ RNA transcript labeling kit since side-by-side comparisons indicated high-
end signal saturation with the latter. We obtained 72 g of labeled complementary RNA on average
after linear amplification of about 2 ng of total RNA.

Conclusion: Unsupervised clustering placed 5/5 normal and 2/2 benign prostatic hyperplasia cases
in one group, 5/7 Gleason pattern 3 cases in another group, and the remaining 2/7 pattern 3 cases
in a third group with 8/8 Gleason pattern 5 cases and 3/3 metastatic prostatic adenocarcinomas.
Differential expression of alpha-methylacyl coenzyme A racemase (AMACR) and hepsin was
confirmed using quantitative PCR.

Background cer and assessment of cancer aggressiveness. Specific pop-
Gene expression was profiled in prostate cells to discover  ulations of benign and malignant cells were collected
candidate biomarkers for early detection of prostate can-  from frozen prostate tissues using laser capture microdis-
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section (LCM). RNA was isolated from the cells and
amplified to obtain sufficient quantities of labeled anti-
sense RNA for microarray expression profiling. Numerous
publications have described amplification methods [1-
15] and linear amplification [16] has been used exten-
sively. Optimization and standardization of methods will
likely improve overall correlations between microarray
studies [17], especially for experiments involving LCM.
Methods upstream of RNA amplification, including fro-
zen tissue processing, are crucial for preserving RNA integ-
rity and obtaining accurate results from microarray
experiments. A complete protocol for LCM, linear ampli-
fication of RNA, and microarray expression profiling is
presented here. The protocol includes a quantitative PCR
(qPCR) method for determining RNA concentration and
integrity that is amenable to limited quantities of RNA
obtained from LCM samples. Confirmation of microarray
results using qPCR is also presented.

Results

Optimization of RNA quality in tissues processed for LCM
The quality of total RNA extracted from stained tissues
was assessed using an Agilent bioanalyzer [18]. Significant
RNA degradation occurred during the staining protocol,
probably due to reactivation of endogenous nucleases in
aqueous solutions. RNase inhibitor was, therefore,
included in all staining solutions except xylene, in which
it is insoluble. Electropherograms of total RNA extracted
from serial sections of three representative prostate tissue
specimens that were unstained, stained in the absence of
RNase inhibitor, or stained in the presence of RNase
inhibitor are presented in Fig. 1. Relative to unstained tis-
sues, RNA degradation occurred in tissues stained in the
absence of RNase inhibitor, as evidenced by a shortening
and broadening of the 28S ribosomal RNA peak at about
48 seconds. In all cases, degradation was decreased when
tissues were stained in the presence of RNase inhibitor, as
evidenced by recovery of the 28S ribosomal RNA peak
height.

Quantitative measures of RNA degradation, Degradation
Factors and RNA Integrity Numbers [18,19], based on the
electropherograms presented in Fig. 1 are provided [see
Additional file 1]. These quantitative measures were in
accordance with visual interpretations. We also developed
a gPCR assay to characterize RNA integrity using primer
pairs specific for the 5' and 3' ends of the PSA transcript.
The qPCR results [see Additional file 2] correlated well
with quality assessments based on electrophoretic traces.
Interestingly, tissues that appeared similar in terms of
RNA integrity when unstained were observed to differ sig-
nificantly in RNA degradation after staining, especially in
the absence of RNase inhibitor.

http://www.biomedcentral.com/1471-2199/8/25

LCM and determination of RNA concentration and quality
Specific cell populations based on primary Gleason pat-
tern [20,21] were collected using LCM. Epithelial cells
were captured from five benign tissues and two cases with
benign prostatic hyperplasia (BPH). Primary Gleason pat-
tern 3, 4, and 5 cells were collected from seven, two, and
eight cases, respectively. Tumor cells were also collected
from three cases of prostate cancer lymph node metas-
tases. LCM images taken before, during, and after capture
of primary Gleason pattern 3 cells are presented [see Addi-
tional file 3].

We attempted to use a NanoDrop® spectrophotometer to
quantify the limited amounts of LCM RNA because the
small sample requirement (1-2 uL) precludes the need for
sample dilution. Measurements typically were not repro-
ducible, presumably because the sample concentrations
were at or below the detection limit of 1.5 ng/uL [22].
Determination of RNA quality using the Agilent bioana-
lyzer also lacked reproducibility, even though the total
RNA Pico assay has a qualitative range of 200-5000 pg/uL
[23]. We, therefore, developed a qPCR assay to assess RNA
quantity and integrity.

A primer set specific for the 3' end of the B-actin transcript
was designed to quantify relative RNA concentrations. j3-
actin was used for normalization rather than GAPDH
because GAPDH expression levels have been shown to
correlate with pathologic stage in human prostate tumors
[24]. The 3' B-actin primer set was combined with another
primer set specific for the middle (M) region of the B-actin
transcript to determine 3'/M [B-actin ratios for assessment
of RNA quality. The primer sets are designated 3' and M
because the amplicons they generate fall within the target
sequences used to design the 3' and M beta-actin probes
on the Affymetrix U133 Plus 2.0 array. The ratio of the
RNA quantities determined using the two primer sets is
indicative of RNA quality. This is because oligo(dT)
primer is used to synthesize cDNA template for amplifica-
tion in qPCR, allowing only transcripts with intact 3' ends
to be detected. Transcripts shortened due to degradation
are detected as having less amplification of their upstream
ends and, therefore, higher 3'/M ratios.

Results of the analysis of RNA quality and concentration
based on qPCR with B-actin primers are presented in Fig.
2 for samples obtained after LCM of 27 prostate tissues.
Since the 3'/M B-actin ratios were all two or lower, this was
established as a quality control parameter for proceeding
with linear amplification. One case, 586-GP5, was
observed to be an outlier with a 3'/M beta-actin ratio of
0.6, and this result was reproduced. Yields of RNA
obtained for the different cases varied substantially. Yield
was not observed to correlate with quality since even sam-
ples with low yield (e.g., 1593-GP5) had good quality
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Preservation of RNA integrity by inclusion of RNase
inhibitor in solutions for staining frozen tissue sec-
tions. (A-C), electropherograms of total RNA samples from
serial sections of frozen tissues that were unstained (UN),
stained in the absence of RNase inhibitor (WOUT), or
stained in the presence of RNase inhibitor (W).

RNA. We, therefore, sought to determine if there was a
correlation between yield and number of cells collected
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for the different cases. We used the number of laser pulses
performed during capture of cells as an approximation of
the number of cells collected for each case. There was no
discernable correlation between yield and number of laser
pulses or tissue type [see Additional file 4]. Individual
cases appear to differ significantly in RNA content, mak-
ing it difficult to determine how many cells must be col-
lected to obtain sufficient RNA for linear amplification.

Comparison of the IVT and Enzo kits

To determine whether to use the IVT kit [25,26] or the
Enzo kit in our linear amplification protocol, we per-
formed a side-by-side comparison. Samples of total RNA
from Gleason pattern 3 and Gleason pattern 5 microdis-
sected cells were amplified and labeled using each kit. Dif-
ferent amounts of total RNA from Gleason pattern 3 and
Gleason pattern 5 cells, 0.7 ng and 5.3 ng, respectively,
were amplified to determine if 2- to 10-fold less than the
minimum recommended amount of input RNA could
yield sufficient labeled cRNA for hybridization to a micro-
array. This was important since it was not feasible to
obtain 10-100 ng of RNA from microdissected cells for
most of the 27 prostate tissues analyzed (Fig. 2). Further-
more, to avoid concentrating the RNA [see Additional file
5], the total amount of RNA needed for linear amplifica-
tion should be contained in 4 pL or less (see Materials and
Methods). This volume is limited by the minimum vol-
ume of buffer, 11 uL, needed to elute RNA from the puri-
fication column.

A sufficient yield of labeled cRNA (21-72 pg) was
obtained for each sample to hybridize 15 pg to a U133
Plus 2.0 array. Correlation plots were generated using un-
normalized expression data from GCOS 1.1. Signal corre-
lations (R2) were 0.94 for inter-assay comparisons (Fig-
ures 3A and 3B). Saturation of signal intensities for
transcripts expressed at higher levels was apparent for tar-
gets prepared using the Enzo kit since the plots assumed a
banana shape at higher signals. In agreement with these
results, previous studies indicated that use of the Enzo kit
to prepare targets for hybridization to the U133 Plus 2.0
array resulted in some degree of saturation of signal inten-
sities for transcripts expressed at very high levels com-
pared with data obtained on the U133A array, and the IVT
kit alleviates the high-end saturation effect observed with
the Enzo kit [25]. We chose to use the IVT kit in our linear
amplification protocol.

We investigated the reproducibility of the final steps of the
procedure, namely fragmentation of additional aliquots
of the Gleason pattern 5 cRNA samples labeled using the
IVT kit or the Enzo kit, hybridization of the fragmented
cRNA to U133 Plus 2.0 arrays from a different lot, wash-
ing, staining, and scanning (referred to as hybridization
replicates). Enzo saturation was again evident in the cor-
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Yield and integrity of RNA isolated from laser capture microdissected cells. (Left axis), 3'/M beta-actin ratios deter-
mined by qPCR as a measure of the quality of RNA samples obtained by LCM of a total of 27 cases of benign prostate, benign

prostatic hyperplasia (BPH), primary Gleason pattern 3 (GP3), pattern 4 (GP4), pattern 5 (GP5), and metastatic prostate can-

cer (Met). (Right axis), relative yields of LCM RNA samples based on qPCR with primers specific for the 3' end of the beta-

actin transcript.

relation plot of the hybridization replicates, and the inter-
assay signal correlation (R?) was 0.95 (Fig. 3C). For com-
parison, Fig. 3D shows a scatter plot correlation of expres-
sion data from replicate Gleason pattern 5 samples
amplified and labeled on different days using the IVT kit.
The replicates were treated the same except that different
amounts of total RNA (approximately 2 ng and 5 ng) were
used for amplification, and the microarrays were scanned
using two different GeneChip® Scanner 3000 instruments.
The intra-assay correlation (R? = 0.96) was better than the
inter-assay correlations (R2 = 0.94-0.95), and no banana
shape was evident.

The hybridization replicates allowed another interesting
analysis to be performed. Signal correlation (R2) between
replicate hybridizations was plotted against signal inten-
sity for Gleason pattern 5 samples labeled using the IVT

kit or the Enzo kit. Correlations between hybridization
replicates decreased rapidly with decreasing signal inten-
sity both for samples labeled using the IVT kit and the
Enzo kit [see Additional file 6]. Average signal intensities
obtained with the IVT kit were significantly lower than
those obtained with the Enzo kit, shifting the entire plot
to the left. Signal correlations between hybridization rep-
licates represented a best-case scenario; therefore, repli-
cates of the entire linear amplification procedure were
also analyzed. For any given intensity value, the correla-
tion was significantly higher between the hybridization
replicates than the replicates of the entire linear amplifica-
tion protocol.

Linear amplification of LCM RNA
Equivalent amounts (about 2 ng) of total RNA from nor-
mal epithelial cells, BPH cells, Gleason pattern 3 cells,
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Signal correlation scatter plots for inter-assay and intra-assay comparisons of the IVT and Enzo transcript
labeling kits. Samples of total RNA from Gleason pattern 3 (GP3) and pattern 5 (GP5) laser capture microdissected cells
were linearly amplified, labeled using the IVT kit or the Enzo kit, and hybridized to HG-U133 Plus 2.0 arrays. Signal correlation
of inter-assay analysis comparing GP3 samples (A), GP5 samples (B), and hybridization replicates (see Results) of GP5 samples
(C) labeled using the IVT or Enzo kit. (D), signal correlation of intra-assay analysis comparing replicate GP5 samples amplified
on different days starting with 2 ng or 5 ng of total RNA, labeled using the IVT kit, and scanned using two different GeneChip®
Scanner 3000 instruments. Note that the intensity level ranges for transcripts labeled with the IVT and Enzo kits are different.

Gleason pattern 5 cells, and lymph node metastases that
were microdissected from 25 total cases were amplified
and labeled using the IVT kit as described in Methods.
SuperScript™ III, rather than SuperScript™ II, was used to
synthesize cDNA since it was found to be more processive
[see Additional file 7]. The average yield of labeled cRNA
was 72 ug (ranging from 42-94 ug). The average size of
the biotinylated cRNA was about 750 base pairs for each
of the 25 cases. The average fold amplification during the
first round was 60-fold, which was significantly greater
than the 4-10-fold recommended by the Working Group
[27]. The average fold amplification during the second
round was about 800-fold, whereas it should have been
about 400-fold according to the Working Group [27]. A
so-called "normalizer sample" was amplified along with
the other 25 samples. This sample consisted of RNA from
microdissected Gleason pattern 4 cells. Aliquots of the
normalizer sample were stored at -80°C to allow one alig-
uot to be amplified with each subsequent batch of test
samples to serve as a replicate and an indicator of batch-
to-batch variability.

Probesets detected as present were binned into low,
medium, and high expression level categories [see Addi-
tional file 8] [see Additional file 9]. The coefficient of var-
iance for the number of probesets in each bin was
generally low (less than 6%). We observed no apparent
correlation between the yield or RNA integrity based on
the 3'/M B-actin assay and the number of probesets in dif-
ferent bins. Unsupervised clustering using less than 2000
genes grouped 5/5 normal and 2/2 BPH cases in one
clade, 5/7 Gleason pattern 3 cases in another clade, and
the remaining 2/7 pattern 3 cases in a third clade that also
included 8/8 Gleason pattern 5 cases along with 3/3
lymph node metastases (Fig. 4). The normalizer sample
(Gleason pattern 4) clustered with the high-grade sam-
ples.

Principal components analysis [see Additional file 10]
showed segregation of samples along Eigengene vector 1
to be predominately by Gleason pattern. From left to
right, a progression was observed from benign prostatic
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Figure 4

Unsupervised clustering based on gene expression profiling of benign prostatic epithelial, primary prostate
cancer, and metastatic prostate cancer cells laser capture microdissected from 26 cases. Results of unsupervised
clustering using the dChip PM-only model (A and B) or the PM/MM difference model (C and D) to calculate expression values,

which were (B and D) or were not (A and C) log transformed.

Approximately 1500-2000 genes with the highest standard

deviation/mean (not log transformed) or the highest standard deviation (log transformed) were used in the analysis. Green:

benign; teal: benign prostatic hyperplasia; blue: Gleason pattern

3; orange: Gleason pattern 5; pink: metastatic prostate cancer;

normalizer: normalizer sample (Gleason pattern 4, see Results).

epithelial and BPH cells to Gleason pattern 3, Gleason
pattern 5, and metastatic cells.

We used qPCR to confirm differential expression of alpha-
methylacyl coenzyme A racemase (AMACR) and hepsin
detected using microarrays. Aliquots of the same samples
that were amplified and labeled to generate microarray
results were also analyzed by qPCR before and after linear
amplification. Relative expression levels of AMACR and
hepsin measured by qPCR in unamplified samples corre-
lated well with results obtained with amplified samples
and with microarray results (Fig. 5). Both AMACR and
hepsin were upregulated in prostate cancer compared to
benign prostatic epithelial cells. The mean fold difference

for AMACR expression between prostate cancer and
benign cells was 5.3 (p = 0.02) in unamplified samples,
4.5 (p = 0.014) after linear amplification, and 4.2 (p =
0.004) as determined by microarray analysis. The mean
fold difference for hepsin expression between prostate
cancer and benign cells was 5.7 (p = 0.00004) for unam-
plified samples, 4.4 (p = 0.0003) after linear amplifica-
tion, and 4.3 (p = 0.00003) as determined by microarray
analysis. The fidelity of differential gene expression was,
therefore, preserved during the linear amplification proce-
dure. Correlations between microarray and qPCR data
after linear amplification were 0.83 and 0.87 for AMACR
and hepsin expression, respectively. Expression of hepsin
was highest on average in Gleason pattern 3 cells (5.6 +
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2.9 hepsin/beta-actin ratio), and was observed to decrease
in high grade, Gleason pattern 5 and lymph node metas-
tasis, samples (2.6 + 1.5) to a level intermediate between
benign (0.7 + 0.4) and low grade, Gleason pattern 3, cells
(Figures 5D-5F). Interestingly, a similar pattern was
observed for AMACR expression (Figures 5A-5C).

Discussion and conclusion

Specific cell populations were captured based on primary
Gleason pattern, and their gene expression profiles were
analyzed. In general, unsupervised clustering grouped
cases in accordance with Gleason pattern. However, the
grouping was not perfect in this regard since two of seven
Gleason pattern 3 cases clustered with Gleason pattern 5
cases and lymph node metastases. The molecular profile
may provide more detailed information than the Gleason
pattern, indicating that the Gleason 3 cases are more
aggressive, or have the potential to be more aggressive,
than expected based on histology alone.

In agreement with previous results [28-35] we found that
the type II transmembrane serine protease hepsin is
approximately 5-fold overexpressed in prostate cancer
cells compared to benign prostatic epithelial cells. Fur-
thermore, metastatic cells and Gleason pattern 5 cells,
which grouped together in unsupervised clustering, had
hepsin expression levels intermediate between Gleason
pattern 3 and benign cells. Hepsin immunohistochemis-
try has indicated that the staining intensity of hormone-
refractory metastatic cancers is intermediate between
localized prostate tumors (Gleason score 6-8) and benign
prostate [29]. The lymph node metastasis cases we ana-
lyzed were not hormone-refractory, indicating that hepsin
expression may not be regulated by hormones. Also in
agreement with previously results [29,31,35-37] we
observed up-regulation of AMACR expression in prostate
cancer relative to benign cells (about 5-fold). The expres-
sion pattern of AMACR was similar to that of hepsin in
that AMACR expression in high grade, Gleason pattern 5
and metastatic cancer, cells was intermediate between low
grade, Gleason pattern 3, and benign cells. Interestingly,
AMACR expression has been reported to be lower in hor-
mone-refractory metastatic prostate cancer than hor-
mone-naive-localized prostate cancer [37], suggesting that
AMACR protein expression might be regulated by andro-
gens. A subsequent report [38] suggests, however, that
AMACR expression is not hormone-dependent, but that it
may be a marker of tumor differentiation. This is consist-
ent with the data presented here showing decreased
AMACR expression in Gleason pattern 5 cells and non-
hormone-refractory lymph node metastases relative to
Gleason pattern 3 cells. Interestingly, in a recently pub-
lished gene expression study of laser microbeam micro-
dissected populations of prostate cancer, prostatic
intraepithelial neoplasia (PIN), and normal prostatic epi-

http://www.biomedcentral.com/1471-2199/8/25

thelial cells [39] hepsin was not found to be differentially
expressed between normal epithelium and PINs and pros-
tate tumors, but AMACR was found to be up-regulated.

Recommendations of the Working Group [27] for fold
amplification during the first and second rounds of linear
amplification may not be based on experiments where
minimum amounts of input RNA were amplified (less
than 200 ng). Therefore, the relevance of these recom-
mendations to such experiments is unclear. The ability to
successfully amplify small amounts of total RNA is
becoming increasingly important. LCM is labor-intensive,
especially given the need for significant numbers of bio-
logical replicates when analyzing human specimens. Min-
imizing the requirements for input RNA can have a
significant impact on study feasibility. In addition, inter-
est in analyzing individual cells continues to grow [40].

Standards for the size of biotinylated cRNA obtained from
two cycle amplification protocols are needed. For one
cycle experiments, the Working Group recommends that
the biotinylated cRNA should be 500-3,000 base pairs in
size, and that samples that do not meet these criteria
should be discarded [27]. However, two cycle amplifica-
tion protocols are biased to the 3' ends of transcripts.

We developed qPCR assays to assess RNA quality and
quantity. Our qPCR assay for RNA quality is analogous to
the 3'/5' and 3'/M ratios for GAPDH and B-actin that are
quality control parameters for Affymetrix microarrays
[41]. Arcturus has also provided a qPCR protocol to assess
RNA quality in formalin fixed paraffin embedded tissues
[42]. Quantitative PCR assays are fairly reproducible [see
Additional file 11] and extremely sensitive, requiring sig-
nificantly less sample than the NanoDrop® ND-1000 spec-
trophotometer and the Agilent 2100 bioanalyzer for
analysis of RNA quality and quantity. In addition, qPCR is
a more direct, functional assay for mRNA quality than
analysis of ribosomal RNA as a surrogate for mRNA using
the Agilent bioanalyzer. It is also noteworthy that meas-
urements of absorbance at 260 nm can be misleading
because degraded RNA will also contribute to the absorb-
ance, which could give an erroneously high estimate of
intact RNA concentration.

Using the U133 Plus 2.0 arrays, the reliability of the signal
was observed to decrease dramatically with decreased
intensity [see Additional file 6]. It may be possible to
increase the sensitivity by hybridizing larger amounts of
labeled targets to the arrays. As expected, correlations
between hybridization replicates were significantly better
than correlations between replicates of the entire protocol
performed on different days. The correlation between bio-
logical replicates would be expected to be even less.

Page 7 of 14

(page number not for citation purposes)



BMC Molecular Biology 2007, 8:25

http://www.biomedcentral.com/1471-2199/8/25

167 A gPCR before linear amplification
£ c
§ 12 3
g J
2. :
o £
(@] 7}
< 4 Q
= 2
<
0-
. 107 B gPCR after linear amplification
£ £
& :
T 61 £
2 i o
o 4 z
o B
S 2 ﬂ H g
<
< 0 o = = 0 a o D B = ﬁ ﬂ n B8 D
> 20000 1 @ Microarray data - 80001 F
‘@ i3
& 15000 1 S 6000 -|
E £
S 10000 - S 4000
8 g
T 5000 A H 5 2000
g 8
2 glemaea ol HNDalUHD olalll | .l EX
ANNO~ ANO OANONOOT™ QOOOANOHIOM NHOM ANNO= ANO OANONOOT™ VOOANOHOM oM
BB5ST BS BBISSIT CIBIST2B A3B B3583 28 BBEISII CIBEI=2B I8BB
H_J\_Y_}\ ~ J U ~ J H_} H_J\_Y_}\ ~ J - ~ J H_}
benign BPH GP3 GP5 Met benign BPH GP3 GP5 Met
Figure 5

Confirmation of microarray data using qPCR. Relative expression levels of AMACR (A-C) and hepsin (D-F) in benign
prostatic epithelial, primary prostate cancer, and metastatic prostate cancer cells laser capture microdissected from 25 cases
were measured using qPCR (A, B, D, E) and HG-U 133 Plus 2.0 arrays (C and F). Quantitative PCR was performed using cDNA
synthesized from RNA samples before (A and D) and after (B and E) linear amplification. For microarray analysis, RNA samples

were linearly amplified and labeled using the IVT kit.

We compared the IVT and ENZO kits using signal correla-
tion plots. However, it is difficult to determine which kit
is superior in the absence of a comprehensive set of
known differences in gene expression. A better compari-
son could be achieved by performing spike-in experi-
ments [25,26] or comprehensive qPCR confirmation of
differentially expressed genes.

Methods

Frozen tissue sectioning

Surgical specimens with written patient consent were
obtained from the Mayo Clinic Specialized Program of
Research Excellence in Prostate Cancer (SPORE) tumor
bank with Institutional Review Board approval (#1937-
00). After radical prostatectomy, tissues from patients that
had not received preoperative hormonal therapy, chemo-

therapy, or radiation therapy were flash frozen in liquid
nitrogen and stored at -80°C. Fisherbrand Superfrost
uncharged slides (Fisher Scientificc Hampton, NH) were
baked at 220°C for at least two hours. Frozen tissue sec-
tions were cut at 5 um in a -20°C cryostat and placed on
slides pre-chilled at 4°C. After the tissue adhered to the
slide, the slide was immediately placed on a flat piece of
dry ice. The slides were placed in a chilled slide box on dry
ice, transported under dry ice, and stored at -80°C. Sec-
tions from each tissue specimen were stained with hema-
toxylin and eosin and analyzed by a pathologist.

Staining of frozen tissue sections, LCM, and RNA isolation
Frozen tissue sections were stained using the HistoGene™
LCM Frozen Section Staining Kit (Arcturus, Mountain
View, CA) according to the manufacturer's protocol [43],
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with the following modifications. ProtectRNA™ RNase
inhibitor (1x final concentration, catalog number R7397,
Sigma-Aldrich) was added to each solution, except xylene.
Slides were transferred on dry ice from the -80°C freezer
to the laboratory bench and immediately placed in 75%
ethanol. Incubation in 100% ethanol was extended to five
minutes. Following incubation in xylene for five minutes,
slides were dried for 60 seconds under vacuum in a dessi-
cator.

To analyze RNA integrity in stained tissue sections, RNA
was prepared by pipetting 100 UL of extraction buffer
directly onto the tissue section on the glass slide and using
the pipet tip to gently scrape the tissue into the buffer,
which was then transferred into an RNase-free microcen-
trifuge tube. RNA was extracted and purified using the
PicoPure™ RNA Isolation Kit (Arcturus) according to the
manufacturer's protocol, including on-column DNase
treatment (Qiagen, Valencia, CA).

Immediately after staining a tissue section, LCM was per-
formed by a pathologist using a PixCell® Il instrument
(Arcturus). Thirty minutes on average (+ 15 minutes) were
spent collecting cells from a tissue section. RNA was
extracted from the captured cells and purified as described
above. Extracts from homogeneous populations of cells
captured on multiple caps from one to six serial sections
of each case were combined onto a single RNA purifica-
tion column to achieve a sufficient yield and concentra-
tion of RNA for linear amplification.

RNA quality was assessed using an Agilent 2100 bioana-
lyzer (Agilent Technologies, Palo Alto, CA) and/or a qPCR
assay for 3'/5' PSA or 3'/M B-actin (described below). RNA
quantity was assessed using a NanoDrop® ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington,
DE) and/or a qPCR assay for the 3' end of the beta-actin
transcript (described below).

Quantitative PCR

First-strand cDNA synthesis was performed using Super-
Script™ II or III (Invitrogen, Carlsbad, CA) and
oligo(dT);, ;5 (Invitrogen) according to the manufac-
turer's instructions. One UL of LCM RNA was used per 20
UL ¢cDNA synthesis reaction. Typically, 0.25 uL of the
resulting cDNA reaction was used per qPCR reaction, and
samples were analyzed in triplicate. Primer sequences are
provided [see Additional file 12]. Quantitative PCR was
performed using a 7900HT instrument (Applied Biosys-
tems, Foster City, CA) and SYBR® Green PCR master mix
(Applied Biosystems). Thermal cycle parameters were as
follows: 50°C for 2 minutes, 95°C for 10 minutes, 40
cycles of denaturation at 95°C for 15 seconds and anneal-
ing and extension at 64°C for one minute. Dissociation
curves were generated by denaturation at 95°C for 15 sec-

http://www.biomedcentral.com/1471-2199/8/25

onds and annealing at 60° C for 15 seconds followed by a
gradual increase in temperature (2% ramp rate) to 95°C.
Standard curves were generated for each primer pair with
serial dilutions of cDNA prepared using a mixture of total
RNA isolated from benign and malignant prostate tissues.
The results from the tested samples were compared to the
corresponding standard curves generated in the same
experiment to determine the sample RNA yield. Melting
curve analysis was used to assess PCR specificity.

Target synthesis and hybridization

Target amplification and labeling were performed accord-
ing to the Affymetrix protocol [41], with the following
modifications. Since the starting amount of total RNA was
only two ng, the poly-A RNA control stock was diluted
five-fold more than recommended for a starting amount
of 10 ng of total RNA. The T7-oligo(dT) primer/poly-A
controls mix was prepared two-fold more concentrated
than recommended to allow one L to be combined with
four pL of total RNA sample for first cycle, first-strand
cDNA synthesis. The total RNA sample/T7-oligo(dT)
primer/poly-A controls mix was incubated at 65°C for
three minutes. SuperScript™ III (Invitrogen) was used to
synthesize cDNA for one hour at 50°C. In the second
cycle, purified cRNA was incubated with random primers
for five minutes at 65 ° C. SuperScript™ III (Invitrogen) was
used to synthesize first-strand cDNA for one hour at
50°C. First-strand cDNA was incubated with T7-oligo(dT)
primer for three minutes at 65°C in preparation for sec-
ond-strand cDNA synthesis. After cleanup of double-
stranded cDNA, 0.5 puL was saved for qPCR analysis, and
the remaining cDNA was used to synthesize biotin-
labeled cRNA. Labeling of cRNA transcripts with biotin
was performed using the GeneChip® IVT Labeling Kit (IVT
kit; Affymetrix, Santa Clara, CA) or the Enzo BioArray™
HighYield™ RNA Transcript Labeling Kit (Enzo kit; Enzo
Life Sciences, Farmingdale, NY). Labeling reactions were
incubated for 16 hours. Yield of biotinylated cRNA was
measured using a NanoDrop® ND-1000 spectrophotome-
ter (NanoDrop Technologies). Unfragmented and frag-
mented cRNA samples were analyzed on an Agilent 2100
bioanalyzer (Agilent Technologies). Fifteen pg of frag-
mented cRNA were hybridized to U133 Plus 2.0 arrays
(Affymetrix), washed, stained, and scanned according to
the Affymetrix protocol [41].

Data analysis

To generate signal correlation scatter plots for replicate
samples prepared with the IVT kit or the Enzo kit, un-nor-
malized expression data from GCOS 1.1 were plotted for
all genes except the Affymetrix control genes.

Unsupervised clustering was performed using dChip ver-
sion 1.3 software. All 26 arrays were first normalized to
the array with median intensity (1041-GP3). The PM-only
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or PM/MM model was used with expression values that
were or were not log, transformed. Approximately 1500-
2000 genes with the highest standard deviation/mean
(not log, transformed) or the highest standard deviation
(log, transformed) were used to perform unsupervised
hierarchical clustering.

Abbreviations
LCM - laser capture microdissected

AMACR - alpha-methylacyl coenzyme A racemase
qPCR - quantitative PCR

GAPDH - Glyseraldehyde-3-phosphate dehydrogenase
BPH - benign prostatic hyperplasia
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Additional material

Additional File 1

Quantitative measures of RNA degradation, DegFact and RIN, based on
electrophoretic traces shown in Fig. 1. Larger DegFact (scale of 0-100%)
and smaller RIN (scale of 1-10) indicate more degradation. 817A: pros-
tate cancer tissue; 817B: matched benign prostate tissue; 957B: benign
prostate tissue; UN: unstained; WOUT: stained without RNase inhibitor;
W: stained in the presence of RNase inhibitor; YELLOW: degradation can
be detected; ORANGE: severe degradation; RED: highest alert, strong
degradation. To standardize interpretation of RNA integrity, quantitative
measures of RNA degradation based on electropherograms have been
developed. With increasing degradation, heights of 18S and 28S peaks
gradually decrease and additional ‘degradation peak signals' appear in a
molecular weight range between small RNAs and the 18S peak [19]. The
degradation factor (DegFact, %Dgr/18S) is defined as the ratio of the
average degradation peak signal (30-41 seconds) to the 18S peak signal
(41-42.5 seconds) multiplied by 100 [19]. The larger the degradation
factor, the more degraded the sample. The RNA Integrity Number (RIN)
allows for classification of eukaryotic total RNA based on a numbering sys-
tem from 1 to 10, with 1 being the most degraded and 10 being the most
intact [18]. Degradation factors and RINs based on the electrophero-
grams in Figures 1A-1C are listed in Additional file 1. For all three cases,
degradation factors were higher and RINs were lower for sections stained
in the absence of the RNase inhibitor relative to serial sections that were
unstained. Degradation factors were decreased and RINs were increased
for tissues stained in the presence compared to the absence of RNase inhib-
itor, indicating a protective effect against RNA degradation. Thus, the
quantitative measures were in accordance with visual interpretations.
Interestingly, tissues that appeared similar in terms of RNA integrity when
unstained were observed to differ significantly in RNA degradation after
staining, especially in the absence of RNase inhibitor. As shown in Addi-
tional file 1, the degradation factors were similar for 817A (9.7) and
817B (9.6) when the tissues were unstained; however, the degradation
factors for 817A (14.6) and 817B (30.9) were very different after stain-
ing without RNase inhibitor. Even in the presence of RNase inhibitor, a
significant difference remained between 817A (12.6) and 817B (18.5).
Thus, differences in tissue quality that are not apparent before staining
can become evident after staining. It can be more informative, therefore,
to analyze tissue sections for RNA integrity after fixing, staining, and
dehydrating rather than analyzing unstained tissues.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S1.ppt]

Page 10 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2199-8-25-S1.ppt

BMC Molecular Biology 2007, 8:25

http://www.biomedcentral.com/1471-2199/8/25

Additional File 2

3'/5"' PSA ratios determined by qPCR as a measure of RNA integrity to
analyze the effect of preparing sections on cold or room temperature slides
and staining in the presence or absence of RNase inhibitor. To character-
ize RNA integrity, we developed a qPCR assay using primer sets specific
for the 5" and 3' ends of the PSA transcript. The ratio of the RNA quantity
determined using the two primer sets is indicative of RNA quality in the
sample. Larger 3'/5" ratios indicate greater degrees of RNA degradation.
This is because oligo(dT) primer is used to synthesize cDNA template for
amplification in qPCR, allowing only transcripts with intact 3' ends to be
detected. Transcripts shortened due to degradation are detected as having
less amplification of their 5' ends and, therefore, higher 3'/5' ratios. Addi-
tional file 2 shows 3'/5" ratios of PSA generated by qPCR of cDNA pre-
pared using RNA from the same samples analyzed in Figures 1A-1C. The
qPCR results correlate well with quality assessments based on electro-
phoretic traces. By any measure, 817B stained without RNase inhibitor
was observed to be the most degraded followed by 817B stained in the
presence of RNase inhibitor. Additional file 2 also shows a consistent trend
towards higher 3'/5' PSA ratios for frozen sections placed on glass slides
at room temperature compared to serial sections prepared on cold (4°C)
slides prior to quick freezing on dry ice and storing at -80°C. 817A: pros-
tate cancer tissue; 817B: matched benign prostate tissue; 957B: benign
prostate tissue.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S2.ppt]

Additional File 3

LCM of Gleason pattern 3 cells using the AutoPix™ instrument. (A) before
capture, (B) selection of cells for capture (highlighted in red), (C) pro-
curement of cells by binding to the cap membrane, (D) after capture, and
(E) captured cells (HistoGene™ stain, x100).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S3.jpeg|

Additional File 4

Number of laser pulses performed during LCM does not correlate with
RNA vyield. This graph plots the number of laser pulses versus the yield of
total RNA for cells collected from the indicated tissue types using the indi-
cated laser spot sizes. BPH: benign prostatic hyperplasia; GP3: Gleason
pattern 3; GP5: Gleason pattern 5; met: metastatic prostate cancer.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S4.ppt]

Additional File 5

SpeedVac concentration degrades RNA. The Affymetrix protocol for two-
cycle cDNA synthesis [41] calls for 10-100 ng of total RNA in a volume
of 3 pL or less, necessitating a minimum concentration of about 3 ng/uL.
This was not obtained for any of the 27 cases. The effect of SpeedVac con-
centration on RNA integrity was therefore investigated. A 20 uL sample
of LCM RNA was concentrated to 1 uL in a SpeedVac, followed by addi-
tion of 19 pL of nuclease-free water. This sample was analyzed side-by-
side with an equivalent amount of the same sample prior to concentration
using an Agilent 2100 bioanalyzer. The 288 ribosomal RNA peak for the
concentrated sample was significantly shorter than that of the sample that
was not concentrated, indicating that the RNA was degraded during con-
centration (upper graph). Linear amplification of RNA degraded by
SpeedVac concentration resulted in a significantly smaller size distribu-
tion of labeled cRNA (lower graph). Therefore, LCM RNA samples were
not concentrated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S5.ppt]

Additional File 6

Signal correlation between replicates plotted against signal intensity. Sam-
ples of total RNA from Gleason pattern 5 (GP5) laser capture microdis-
sected cells were linearly amplified, labeled using the IVT or Enzo kit, and
hybridized to HG-U133 Plus 2.0 arrays. Hybridization replicates and rep-
lication of the entire procedure using the IVT kit were performed as
described in Results. Signal correlation between replicate samples was
plotted against signal intensity using expression data generated with
dChip version 1.3. Replicates prepared using the IVT kit were normalized
relative to each other, and replicates prepared using the Enzo kit were nor-
malized as a separate group since average signal intensities were signifi-
cantly lower with the IVT kit than the Enzo kit. The PM-only model was
used to calculate expression values, which were not log transformed. Probe
sets, excluding Affymetrix controls, were then sorted by expression level for
one of the replicate samples in each group. Signal correlations between
replicates were calculated for the top 20,000 expression values divided
into 20 consecutive bins, each with 1000 expression values. The maxi-
mum signal intensity in each bin was plotted against the correlation
between replicate signals across that bin. The minimum signal in each bin
is approximately equal to the maximum signal in the next (lower signal
intensity) bin, which is plotted in the graph.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S6.ppt|
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Additional File 7

SuperScript™ I11 is more processive than SuperScript™ II. The Affymetrix
protocol for eukaryotic target preparation [41] calls for use of Super-
Script™ II reverse transcriptase to synthesize cDNA. According to Invitro-
gen, SuperScript™ I1I outperforms SuperScript™ II in terms of producing
high yields and full-length cDNA [46]. We, therefore, compared the two
enzymes. One UL of each of six different RNA samples generated by LCM
of prostate cancer tissue was used in a cDNA synthesis reaction with
SuperScript™ II or SuperScript™ II1. Equivalent amounts of the cDNA
reactions were used in qPCR reactions with primer pairs specific for the 3'
or 5' ends of the PSA transcript. Quantitative PCR with primers specific
for the 3' end of PSA showed consistently higher transcript levels in the
c¢DNA samples synthesized using SuperScript™ Il compared to those syn-
thesized with SuperScript™ III (top graph). However, primers specific for
the 5' end of PSA detected equivalent amounts of transcripts in samples
synthesized by the two different enzymes (middle graph). Thus, lower 3'/
5' PSA ratios were consistently achieved for cDNA samples synthesized
using SuperScript™ I1I compared to samples synthesized using Super-
Script™ II (bottom graph). These results indicate that SuperScript™ I11 is
more processive than SuperScript™ 11 because it generates longer tran-
scripts rather than generating a larger number of shorter transcripts. This
is important because oligonucleotide probes on Affymetrix arrays are
selected within regions 600 nucleotides upstream of transcript ends [47].
We, therefore, used SuperScript™ III for linear amplification of RNA.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S7.ppt]

Additional File 8

Number of undetected (Absent) probesets or Present probesets classified
into Low (Intensity < 5.98), Medium (5.98 < Intensity < 7.62), or High
(Intensity > 7.62) bins, 3'/M ratios for f-actin, and the total RNA yields
based on the 3' factin qPCR assay. The intensity thresholds for bins were
selected by the analysis of log, transformed expression levels of publicly
available U133PLUS2 microarray data on the prostate benign and tumor
tissues. [44,45]. The 33 and 66 percentile of the intensity values for the
"present" probesets of all the samples in the study were selected for thresh-
olds. Of note, the distribution of probesets in Low, Medium, and High
bins is fairly uniform with a coefficient of variance < 6% for the three
bins.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S8.doc]

Additional File 9

Number of undetected (Absent) probesets or Present probesets classified
into Low (Intensity < 6.15), Medium (6.15 < Intensity < 8.17), or High
(Intensity > 8.17) bins. Thresholds for the Low, Medium, and High
intensity bins were selected by identifying the 5 percentile (about 4.1) and
95 percentile (about 10.2) intensity values for the probesets in Varam-
bally et al. data. [44,45] and dividing the range into three equal bins.
Column designations are as described [see Additional file 8].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S9.doc]

Additional File 10

PCA of Loess normalized microarray data. Genedata Expressionist (Gene-
data, Basel, Switzerland) was used to perform principal components anal-
ysis following normalization of gene expression values using the LOWESS
algorithm. Samples tend to segregate along the primary Eigengene vector
from left to right according to increasing level of pathologic state ranging
from benign to metastatic cases.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S10.ppt]

Additional File 11

Reproducibility plot of qPCR assay. Measurements were repeated on dif-
ferent days for 8 cDNA samples using primers specific for 3' and 5' regions
of PSA. The agreement between the two measurements is generally very
good.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S11.ppt]

Additional File 12

Primers used for quantitative PCR. The sequences of the primers used for
the qPCR assays are provided.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-8-25-S12.doc]
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