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Abstract

Background: In eukaryotic cells, each molecule of H/ACA small nucleolar RNA (snoRNA)
assembles with four evolutionarily conserved core proteins to compose a specific
ribonucleoprotein particle. One of the four core components has pseudouridine synthase activity
and catalyzes the conversion of a selected uridine to pseudouridine. Members of the pseudouridine
synthase family are highly conserved. In addition to catalyzing pseudouridylation of target RNAs,
they carry out a variety of essential functions related to ribosome biogenesis and, in mammals, to
telomere maintenance. To investigate further the molecular mechanisms underlying the expression
of pseudouridine synthase genes, we analyzed the transcriptional activity of the Drosophila
member of this family in great detail.

Results: The Drosophila gene for pseudouridine synthase, minifly/Nop60b (mfl), encodes two novel
mRNAs ending at a downstream poly(A) site. One species is characterized only by an extended 3'-
untranslated region (3'UTR), while a minor mRNA encodes a variant protein that represents the
first example of an alternative subform described for any member of the family to date. The rare
spliced variant is detected mainly in females and is predicted to have distinct functional properties.
We also report that a cluster comprising four isoforms of a C/D box snoRNA and two highly
related copies of a small ncRNA gene of unknown function is intron-encoded at the gene-variable
3'UTRs. Because this arrangement, the alternative 3' ends allow mfl not only to produce two
distinct protein subforms, but also to release different ncRNAs. Intriguingly, accumulation of all
these intron-encoded RNAs was found to be sex-biased and quantitatively modulated throughout
development and, within the ovaries, the ncRNAs of unknown function were found not
ubiquitously expressed.

Conclusion: Our results expand the repertoire of coding/non-coding transcripts derived from the
gene encoding Drosophila pseudouridine synthase. This gene exhibits a complex and interlaced
organization, and its genetic information may be expressed as different protein subforms and/or
ncRNAs that may potentially contribute to its biological functions.
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Background

H/ACA ribonucleoprotein particles (RNP) in eukaryotes
consist of four highly conserved core proteins and one
molecule of H/ACA small nucleolar RNA (snoRNA), and
most of them direct pseudouridylation of target RNAs at
specific sites (reviewed in [1,2]). In this process, one of the
core proteins acts as a pseudouridine synthase, while the
H/ACA snoRNA selects the residues to be isomerized via
specific base-pairing. Proteins catalyzing the conversion
of uridines to pseudouridines belong to a highly con-
served family, well-characterized examples of which
include Archaea, yeast and trypanosome Cfb5p [3-5],
Drosophila MFL/NOPG60B [6,7], rat NAP57 [8], and
mouse and human dyskerin [9]. In eukaryotes, these pro-
teins accumulate in the nucleolus and participate in vari-
ous cellular functions including processing and
modification of ribosomal RNA (rRNA) and maintenance
of telomere integrity in mammals (reviewed in [10,11]).
Genetic depletion experiments in different organisms
have invariably shown that these proteins are essential for
viability [4,7,12,13], indicating that they have important
biological roles. The finding that human dyskerin is
involved in two congenital diseases further supports this
notion. Mutations in these proteins are responsible for X-
linked dyskeratosis congenita (DC) [9] and for Hoyeraal-
Hreidarsson syndrome, now recognized as a severe DC
allelic variant [14]. Functional conservation of pseudouri-
dine synthases is so remarkable that the archaeal aCbf5p
protein has recently been shown to assemble efficiently
with a yeast H/ACA snoRNP core component, Nop10,
and with human telomerase RNA, which has a H/ACA box
motif [15]. The biological role of RNA pseudouridylation
is still debated. It has been suggested that it contributes to
rRNA folding, rRNP assembly and ribosomal subunit
assembly. Subtle enhancing of ribosomal functions such
as codon recognition has also been proposed [16].
Remarkably, recent data indicate that mutations in mam-
malian dyskerin impair translation from IRES (Internal
Ribosomal Entry Site) elements, thus specifically affecting
cap-independent translation of a subset of mRNAs [17].
However, the role of H/ACA snoRNPs extends beyond
ribosome biogenesis. In fact, although rRNA is the most
common modification target, spliccosomal snRNAs or
tRNAs can also be modified [1,2]. Furthermore, "orphan"
snoRNAs that lack complementarity with 1RNA or
snRNAs have also been described, and it is plausible that
they target cellular RNAs that remain unidentified. Since
proteins of the Cbf5p family are essential for biogenesis
and accumulation of H/ACA snoRNAs, mutations in them
might trigger diverse effects. For example, different muta-
tions of human dyskerin have been associated with
reduced levels of distinct subsets of H/ACA snoRNAs [18],
raising the possibility that some pathological aspects of
DC may be related to the particular functions of the spe-
cifically-affected forms. Indeed, the repertoire of functions
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attributed to members of the Cbf5 family is wide and con-
tinually increasing; these genes may be involved in many
biological processes. In yeast, Cbf5p was first described as
a low-affinity centromeric DNA binding protein [19].
Subsequently, depletion of Cbf5p was shown to cause
nucleolar fragmentation and to disrupt the nucleolar
localisation of tRNA [20]. In mice, DKC1 alleles carrying
hypomorphic mutations led with very high frequency to
tumour development, indicating that the gene acts as a
potent oncosuppressor [21]. A novel role in snoRNA
metabolism has recently been reported for the yeast and
mammalian proteins: they are directly involved in the
early steps of H/ACA snoRNP assembly, since they are
cotranscriptionally recruited at the 3' end of the nascent
H/ACA snoRNAs [22-24]. In trypanosomes, RNAi-
induced silencing of Cbf5 has been shown not only to
eliminate pseudouridylation on the spliced leader RNA
(SL RNA), but also to abolish its modification at the
fourth cap-4 nucleotide [5]. As a result of defects in the SL
RNA and decreased modification of the U small nuclear
RNAs, trans-splicing was inhibited at the first step of the
reaction.

Considering the wide range of biological effects directed
by members of the Cbf5 gene family, it is plausible that
this functional complexity might rely, at least in part, on
the production of multiple transcripts with different prop-
erties. Since a complex expression pattern is often
observed for multifunctional genes in higher eukaryotes,
we planned to analyse the molecular organization and
transcriptional activity of the Drosophila orthologue in
greater detail, with the aim of better defining its coding
properties and shedding new light on its complex func-
tions. In previous studies, we isolated the gene encoding
Drosophila pseoudouridine synthase, called minifly (mfl;
also called Nop60b) [6,7], and showed that the use of
alternative 3' UTRs resulted in two main mRNAs, 1.8 and
2.0 kb in length. These two species had different expres-
sion profiles, with the 1.8 kb mRNA constitutively
expressed in both sexes throughout the life cycle, and the
2.0 kb species mainly expressed in females and maternally
transmitted to the developing embryos [7]. However, the
two transcripts had identical protein coding potentials
and differed only in their 3' untranslated regions
(3'UTRs). As with genes encoding proteins involved in the
synthesis, structure or function of the translational appa-
ratus, mfl was shown to belong to the 5' TOP family (Tract
Of Polypyrimidines) [7,25]. Members of this family share
a C residue at the +1 position followed by a 5-15 nt
polypyrimidine tract in a short 5' non-translated region;
their mRNAs typically show growth-dependent transla-
tional regulation [26]. We also showed that mfl hosts a
snoRNA gene of the H/ACA class within one of its introns.
This gene, named snoH1, directs pseudouridylation of
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Drosophila 18S rRNA at position U1820 [7], modifica-
tion of which residue is conserved from yeast to man.

In this paper we report that snoH1 is just one member of
a variegated cluster of small ncRNA genes hosted within
mfl introns, revealing that this gene exhibits a much more
complex overlapping coding/noncoding architecture than
previously suspected. In addition, we show that mfl pro-
duces two novel coding transcripts. While one of these
mRNAs is characterized only by an extended 3'UTR, the
second is alternatively spliced, accumulates mainly in
females, and encodes a rare variant protein that is pre-
dicted to have distinct functional properties. So far, mfl is
the only eukaryotic pseudouridine synthase gene for
which multiple mRNAs have been reported, and the
description of the variant protein and the various ncRNAs
it can encode may provide useful insights into the various
functions of other members of this conserved family.

Results

Identification of two novel mfl coding transcripts

In previous primer-extension experiments we detected
and mapped a single mfl transcription start site [7] (see
Fig.1A). We also noticed that a very short upstream region
of about 300 bp separates mfl from the close, divergently-
transcribed gene mrpl17. On the basis of these observa-
tions, we considered that further transcript heterogeneity
is more likely to derive from the alternative 3' ends. There-
fore, the transcriptional activity of the gene was first re-
examined by 3'-RACE (Rapid Amplification of cDNA
Ends). Based on the structures of the previously-described
1.8 and 2.0 kb mRNAs (depicted in Fig. 1A) [Gen Bank:
AF017230, AF089837], internal primers were derived
from the sequence of exons 5, 6, 8 and 9 (see Methods for
sequences) and used to search for additional poly(A) sites,
using poly(A)+ RNA extracted from male and female adult
flies as template. In addition to the two expected bands, a
longer product was obtained in each 3'-RACE reaction,
revealing the presence of a poly(A) site further down-
stream (Fig. 1B). These additional products were mark-
edly more abundant in the female RNA preparation,
implying a sex-bias in the use of this novel 3' site. Subse-
quent nucleotide analyses of these amplification products
confirmed that mfl encodes a third mRNA that differs
from the 1.8 and 2.0 kb species only in the presence of
three additional exons in a longer 3'UTR (Fig. 1A) [Gen
Bank: DQ857345]. Northern analysis of the poly(A)+
RNA preparations probed with the novel downstream
exons revealed a transcript of about 2.2 kb, expressed
mainly in females (Fig. 1C). This is the expected length for
an mRNA species starting at the previously-mapped 5' site
and terminating at the novel 3' end, further confirming
that the 1.8, 2.0 and 2.2 kb mRNAs are distinguished
solely by 3'-end heterogeneity. We then searched for cis-
acting control elements affecting mRNA stability, location
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or translation within these overlapping 3'UTR sequences.
However, no functional motif currently annotated in the
UTResource database [27] was identified in any of these
regions. Further experiments will therefore be required to
establish whether these sequences include still-unidenti-
fied regulatory motifs. Strikingly, Northern analyses of
poly(A)+ RNA revealed that a large polyadenylated tran-
script of about 4.4 kb also derives from this downstream
region (Fig. 1C). This species had already been detected in
adult female or embryonic RNA preparations by more
upstream mfl genomic probes [7], but previous attempts
to isolate cDNA clones representing this form proved
unsuccessful even after extensive screening of various
cDNA libraries. Since in the present set of experiments we
again failed to identify any product representing this RNA,
its structure remains elusive, so we cannot exclude the
possibility that this species represents a variant transcript
extending much further, or an unprocessed RNA precur-
SOT.

We next tried to connect the novel 3' exon cluster with
more upstream exons by RT-PCR, with the aim of detect-
ing alternative splicing events within the coding sequence
of the gene. For this purpose, we used poly(A)+ RNA from
male and female adult flies as template, and various com-
binations of forward primers positioned inside the coding
region (over exons 2, 5 and 6) with reverse primers posi-
tioned along the 2.2 kb-specific 3'UTR exons (exons 10,
11 and 12; see Methods). In each combination, primers
derived from exons 5 or 6 always yielded a single amplifi-
cation product, markedly more abundant in females;
sequence analysis invariantly confirmed the structure of
the 2.2 kb mRNA previously obtained by 3'-RACE. In con-
trast, two types of products were always obtained when a
forward primer from exon 2, in each combination of
reverse primers, was used to reverse-amplify female RNA.
In addition to the expected band, a minor product of
smaller size was noticed in each reaction. As an example,
the result of an exon 2-12 RT-PCR amplification from
female RNA is reported in Fig. 2A. In this case, in addition
to the 2 kb product expected from the 2.2 kb mRNA, an
additional product of 740 bp was observed.

Sequence analysis of the additional shorter products
obtained in this set of experiments revealed an alternative
splicing event that joins the 5' splice donor of exon 3 to
the 3' splice acceptor of exon 9. To confirm the presence
of this spliced mRNA, the same 5' primer was used in
combination with either a 3' primer spanning the 3-9
exon junction, able to detect only the alternatively spliced
RNA subform, or one spanning the 5-6 exon junction,
able to detect the whole set of transcripts generated by the
canonical splicing pattern comprising the 1.8 kb constitu-
tive mRNA and the 2.0 and 2.2 kb maternal species. Both
primer pairs yielded positive amplification of a fragment
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Molecular structure of mfl mRNAs. (A) Restriction map of the genomic region encompassing the minifly gene (S, Sall; E,
EcoRI; B, BamHI; N: Notl) [GenBank: AF 097634]. Below, organization of the previously-described 1.8 [GenBank: AF017230]
and 2.0 kb [GenBank: AF089837] mfl mRNAs [7], compared with that of the newly identified 2.2 [GenBank: DQ857345] and
1.0 kb mRNA species [GenBank: DQ857346]; note that subsequent releases of the Drosophila genome sequence have
revealed that a small intron splits the formerly-designated exon 8 [7] into two moieties, currently indicated as exon 8 and 9.
Exonic regions spanned by mfl ORFs are depicted in black. The positions of the intron-encoded H/ACA snoRNA H/ gene [7]
and of the DmSnR60 and snm60 isoforms are also shown. (B) The products of the 3'RACE reactions were separated on 2%
agarose gels and visualised by ethidium bromide staining. Lane I, GeneRuler 100 bp DNA ladder (MBI Fermentas). Lane 2,
products obtained after amplification with a forward primer derived from exon 5, in combination with the oligo-adaptor
reverse primer. Specific fragments of about 800, 650 and 400 bp were obtained; each fragment represents the specific 3' end of
a different mfl mRNA, the length of which (in kb) is indicated on the left. Lanes 2 and 3 show negative controls in which no
reverse transcriptase or no input RNA were added to the reaction. (C) Northern blot analysis of poly(A)+ RNA extracted
from male and female adult flies with a genomic probe derived from exon 12 (probel: see the genomic map for position). This
probe specifically detects the novel 2.2 kb mRNA, most abundant in females, and a large transcript of about 4.4 kb of which the
structure remains to be defined. The amount of RNA loaded on each lane was checked by hybridization with a probe derived
from aTub84B. The RNA marker | (Roche) was utilised (on the right).
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mfl encodes a novel alternatively-spliced mMRNA. At the top, a schematic drawing of the splicing patterns generating mfl
mRNA:s; the position and structure of the primers utilised in RT-PCR assays are indicated. Hindlll-digested A DNA was used as
marker; base pairs are indicated on the right. (A) RT-PCR performed with poly(A)+RNA isolated from adult females and an
exon 2—12 primer pair (P1/P2). The 2000 bp fragment is specific for the 2.2 kb mRNA, while the 740 bp fragment derives from
the 1.0 kb alternatively-spliced subform. (B) RT-PCR was performed with poly(A)+RNA isolated from male (M) and female (F)
adult flies. Female or male samples were amplified using the same forward primer (P, derived from exon 2) in combination
with a reverse primer spanning the alternative 3—9 exon junction (P3; lanes |1-2) or the canonical 5-6 exon junction (P4; lanes
3—4); in lanes 5-6, the three primers were added to the same reaction. The 1200 bp fragment represents all three transcripts
generated by the canonical splicing pattern, while the 540 bp fragment derives specifically from the 1.0 kb mRNA. In lanes 7-8,
a 90 bp fragment representating the aTub84B transcript was amplified as internal control of the quantity of RNA.

with the expected size; moreover, both products were
obtained at a significantly higher level in females, indicat-
ing that, as previously described for the 2.0 kb [7] and also
for the 2.2 kb species described above, the variant mRNA
exhibits a sex-preferential expression profile (Fig. 2B).

A full-length cDNA clone representing this novel mRNA
was obtained by combining 5' and 3' RACE experiments.
Gene-specific primers were designed to amplify the 5' end
of the transcript and to give fragments partially overlap-
ping with the 3'-RACE products (see Methods). A short
overlapping sequence in the 5' and 3' products allowed us
to construct a virtually full length cDNA by restriction
digestion at the common BamH1lsite. The fragment
obtained was about 1 kb and its nucleotide sequence
[GenBank: DQ857346] indicated that the novel mRNA

starts at the unique, previously-mapped transcription start
site [7]. Intriguingly, this transcript is characterized by the
skipping of five internal exons and the absence of any
internal stop codon, indicating that it may encode a novel
protein subform (Fig. 1A). Given that the 1.0 kb mRNA
species was barely detected in the Northern analyses of
poly(A)+ RNA preparations, we used quantitative real-
time PCR to check its relative abundance in the poly(A)+
RNA preparations obtained from various sources: adult
females, manually dissected adult ovaries and cultured
Schneider 2 (S2) Drosophila cells. The relative abun-
dances of the variant and canonically-spliced mRNAs (the
1.8, 2.0 and 2.2 kb subforms) were compared among the
three samples after normalization against oTub84B
expression. The 1.0 kb mRNA was significantly more
abundant in ovaries than in whole adult females and its
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accumulation was at least nine-fold greater; the canoni-
cally-spliced mRNA was also slightly enriched in this
organ. In proliferating S2 cells, the alternatively-spliced
species was markedly more abundant, whereas the level of
the canonically-spliced mRNAs was slightly reduced (Fig.
3).

Structural properties and expression of the MFLc novel
protein subform

The rare alternatively-spliced mfl mRNA is predicted to
encode a variant protein of 254 amino acids, with a
molecular mass of 28.9 kDa, which we named MFLa.. The
amino acid sequence of this variant protein is shown in
Fig. 4A, aligned below that of MFL, identically encoded by
the 1.8, 2.0 and 2.2 mRNAs, and that of human dyskerin.
MFLa. fully overlaps the MFL sequence at its amino-termi-
nal region, where both proteins exhibit an identical tract
of 211 aa that includes the N-terminal nuclear location
signal (NLS), and the two highly-conserved TruBI and
TruBIl motifs that share homology with bacterial and
yeast tRNA pseudouridine synthases and are directly
involved in the pseudouridylation process. However,
MFLa exhibits a unique C-terminal tract of 43 residues
that shows no significant homology with any known
functional motif. Instead, this region replaces a large car-
boxy-terminal portion of the MFL protein that includes at
least three domains for which a functional role has been
proposed. The first missing motif corresponds to the PUA

mRNA expression

-

Fold change
O =2 N WHARODO N ®O©OOo

m Exon 3/9
O Exon 3/4

Females Ovary S2 Cells

Figure 3

Relative abundance of alternatively- and canonically-
spliced mfl mRNA subforms. The abundances of the
alternatively- and canonically- spliced mfl nRNAs were meas-
ured by quantitative real-time RT-PCR in poly(A)+ RNA
from adult Drosophila females, manually-dissected ovaries
and cultured S2 cells. Three different RNA extractions were
examined for each sample, and each reaction was performed
in triplicate. Data were normalized to aTub84B expression
and are presented relative to the female sample; they repre-
sent three independent experiments.
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domain, an RNA binding motif observed in several fami-
lies of archaeal, bacterial and eukaryotic RNA-modifying
proteins including pseudouridine synthases and rRNA
methylases. This domain has also been found in bacterial
and yeast glutamate kinases, as well as in families of
eukaryotic proteins that are thought to act as translation
factors [28]. Intriguingly, it has recently been shown to
play a crucial role in archaeal snoRNP assembly, and to be
necessary for aCbf5p binding to guide RNAs [29]. The sec-
ond missing domain is represented by a block of more
than twenty residues with a central tyrosine (tyr) that is
identical in MFL and human dyskerin and is highly related
to the uracil-binding pocket in uracil-DNA glycosylases
[7]. Finally, MFLo also lacks a highly-charged lysine-rich
carboxy-terminal region that contains an overlapping
bipartite NLS, raising the possibility that this variant pro-
tein may have a different subcellular distribution, or that
it is less tightly retained in the nuclei.

Collectively, these distinctive features suggest that MFLo.
may have a distinct role in at least some of the essential
cellular activities of mfl. As a preliminary step to investi-
gating this possibility, we attempted to assess the effective
in vivo accumulation of this rare subform. On the basis of
the observations indicating a higher abundance of the 1.0
kb mRNA in S2 cells, we selected this source for checking
the presence of MFLa protein by Western blotting. Rabbit
polyclonal antibodies were raised against two peptides,
both included in the common N-terminal region of MFL/
MFLa (see Methods), and protein extracts from S2 cells
were subjected to Western analysis with these antibodies.
In addition to the canonical MFL protein, a less abundant
band of the molecular weight expected for MFLo. was
detected (Fig. 4B), indicating that the alternatively-spliced
mRNA may encode a variant protein.

A cluster of small ncRNA genes is intron-encoded at the
mfl variable 3' UTRs

To check mfl transcription further, we performed North-
ern blotting of total RNA preparations using genomic
probes spanning the variable mfl 3' ends. The results
showed that a set of small RNA molecules, about 100 nt
long and highly abundant in females, also derive from
this region. To map these molecules in greater detail,
shorter probes having either exonic or intronic localisa-
tion were used to analyse RNA preparations from adult
flies of both sexes (Fig. 5A). Probes derived from introns
6, 7, 8 and 9 all detected the 4.4 kb species (marked by a
triangle). They also detected a radioactive signal of about
85 nt, as estimated by carefully assessing the RNA length
on 6% denaturing polyacrylamide gels and by mapping
the 5' end by primer extension analysis (data not shown;
see Methods). Inspection of the mfl 3' genomic sequence
[GenBank: AF097634] indicated that introns 6, 7, 8 and 9
each host a copy of DmSnR60 (Fig. 5B-C), a snoRNA gene
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D.nelanogaster (MFL) PEAABEENERVEKEK . . .[TTTTTIMORDRDEAQ)
H.sapiens  (dyskerin) KAGLESCIYHE6DGDS DTTI{LCLAAKAAKEVELVS
Figure 4

Amino acid sequence and expression of the novel MFLo protein subform. (A) Alignment of MFL (top), dyskerin
(middle) and MFLa (bottom) amino acid sequences. White letters highlight identical amino acids on a black background, and
different but conserved amino acids on a grey background; block letters on a white background indicate different and non-con-
served residues. Lines above or below the sequences indicate putative functional domains. NLS: nuclear localisation signal;
TruB |, Trub II: regions having homology with members of the bacterial tRNA pseudouridine synthase family; tyr: tyrosine
domain containing a putative uracil binding pocket; PUA: a conserved RNA binding domain observed in archaeal, bacterial and
eukaryotic RNA modifying proteins. (B) Western blot analysis of extracts from S2 cells. Affinity-purified rabbit polyclonal anti-
bodies recognizing both MFL and MFLo were utilised (see Methods). A major band corresponding to the MFL subform (56
kDa) and a minor band corresponding to the MFLo subform (29 kDa) were detected. Positions of the protein ladder (Precision
Plus Prestained Protein Standard Dual Colour; Biorad Laboratories) are shown on the left.

of the C/D family previously identified in the course of a
genome-wide computational search [30]. The strong
cross-hybridization with TRNA shown by these intronic
probes (Fig. 5A, asterisk on the left) is essentially
explained by their perfect complementarity to the 28S
rRNA molecule, which is recognized by long D and D'
antisense elements (see below). As shown in the figure,
probes spanning introns 10 and 11 detected RNA mole-
cules estimated at 100 nt, again on the basis of 6% dena-
turing polyacrylamide gel electrophoresis and primer
extension analysis of the 5' end, in addition to the 4.4 and
2.2 kb mRNAs. Nucleotide analysis of introns 10 and 11
revealed that each hosts a copy of a small ncRNA gene, the
sequence of which substantially overlaps that of the
DmOrC/D_9 a-b molecules [GenBank: AY805216] previ-
ously described by Huang et al. [31]. These molecules
exhibit canonical D and D' boxes (Fig. 5A-C) but have a
degenerate C motif with a sequence varying between the
two tandemly-repeated isoforms. The biological func-
tions, if any, of these molecules remained to be firmly
established, so they were classified as orphan C/D snoR-
NAs [31]. Indeed, we noticed that they lack a nucleolar- or
Cajal body- specific location (see below), so in accordance
with widely-accepted nomenclature [32], we refer to them

as small non-messenger RNAs derived from polytene
region 60 (snm60). The two copies of snm60 (a, b) [Gen-
Bank: DQ142641 and DQ142642] share 85% overall
sequence conservation and exhibit a 59 bp internal seg-
ment of perfect identity (Fig. 5C). As judged by Southern
blotting (data not shown) and a computational search on
the genome sequence, no other snm60 copy is present
elsewhere in Drosophila.

Organization of the ncRNA gene cluster mapped at the mfl
3'-UTRs conformed to the one-gene-per-intron rule
widely observed in animal genomes. Moreover, we
noticed that the tandemly-clustered DmSnR60 genes are
all located about 70 nt upstream the 3' splice site of their
host introns. In vertebrates, a position about 70 nt
upstream the 3' splice site is reportedly optimal for expres-
sion of intronic C/D box snoRNAs, since this distance may
furnish optimal synergy with splicing, favouring C/D box
snoRNP assembly [33]. The conserved position of
DmSnRG60 isoforms indicates that the rule observed by
Hirose and coworkers [33] may also be operative in inver-
tebrates. DmSnRG60 genes, first described by our group
[30], were reported in a subsequent genome-wide analysis
to be generated, along with DmOrC/D_9 a-b molecules,
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DmSnR60a titgcgTTAT CTIGATGAGCAATAACTTTCGCCCCTAGBIBRAAAATGATACTTCTCATGTTGAATGCGAGATTGGTCTTABIMBRIAAA TAACGCAAaataga
DmSnR60b  tctaatAGT T BTGATGAGCATTAACTTTCGCCCCTATIBIBRAATTGAAACTTCTCTTGTTGAATGCGAGATTGGTCTTABIBRIAAAACTAAAAAaCata
DmSnR60c ATGATGAGCAT TAACTTTCGCCCCTATIBIBBEAATTGAAACTTCTCATGTTGAATGCGAGATTGGTCTTABBAAAGAAT T T Cgattta
DmSnR60d  atgtit TTAAGIGATGAGCT T TAACTTTCGCCCCTA TIMBBAATTGAAACTTCTCCTGTTGAATGCGAGATTGGTCTT ABMBAAT GACTCACaattaa
1
Snm60a GAAAATTACETCATETAAAAAAAAAABIIBBAT TATGTGGCATGATTTCACATTAACCGCAACAAATCCTACTCCAATAGGTCC TABIBIC TATTCTCACAAAA
1
Snm60b CTAGTGAAARTGTTGAAATAAAAATABIIBET T TATGTGGCATGATTTCACATTAACCGCAACAAATCCTACTCCAATAGGTCCTABMBEATATATTCACAAGAA
Figure 5

An intronic cluster of ncRNA genes maps at the variable mfl 3' UTRs. (A) Northern blot analysis of total RNA from
male and female adult flies with genomic probes derived from the mfl 3' region (see B for genomic position). Probes 2 and 3
both detect a large transcript of about 4.4 kb (marked by the triangle) and small RNAs of about 100 nt. Note that probe 2,
derived from intron 9, strongly cross-hybridizes with rRNA (asterisk on the left) because of bipartite DmSnR60 complementa-
rity to 28S sequences. Since Drosophila 285 rRNA is processed into two fragments that migrate in a similar manner to the 18S
rRNA (2.0 kb), cross-reaction labels a band with a mobility similar to that of the mfl 2.2 kb mRNA (indicated by the arrow),
which is specifically recognized by probe 3. (B) Genomic organization of the cluster of small ncRNA genes intron-encoded at
the mfl 3'UTRs; the four copies of the DmSnR60 C/D box snoRNA gene (g, b, ¢, d) and the two copies of the snmé0 (g, b)
exhibit a one gene-per intron organization. (C) Nucleotide sequences of DmSnR60 and snmé0 isoforms. Within DmSnR60
sequences (capital letters; flanking sequences are indicated as lower case letters), dark-shaded regions indicate the D and D'
boxes, while the 5'-terminal C box is grey-shaded. The D and D' antisenses able to target the Drosophila 28S rRNA are under-
lined. Positions of nucleotide polymorphisms among the DmSnR60 isoforms are indicated in italics. At the bottom, nucleotide
sequences of the snmé0 a and b isoforms [GenBank: DQ142641; DQ142642]. The vertical arrows mark the position of the 5'
end of the products mapped by primer-extension (see Methods). The putative D and D' boxes are dark-shaded, the 5'-terminal

C box is grey-shaded and the internal segment of perfect identity shared by the two snmé0 subforms is in italics.

by introns of a long, polyadenylated non-coding host
transcript named dUhg 6 [31]. However, identification of
the additional mfl poly(A)+ site in the present study pro-
vides clear evidence that DmSnR60 and DmOrC/D_9/
snm60 copies are all intron-encoded by this protein-cod-
ing gene.

An intriguing functional consequence of the mfl coding/
non-coding arrangement is that pre-mRNAs ending at dif-
ferent alternative poly (A) sites can release distinct sets of

nested ncRNAs. In fact, a pre-mRNA molecule ending at
the first poly(A) site can exclusively produce the H/ACA
snoRNA H1, while one ending at the middle site may also
release three DmSnR60 isoforms (a, b, c). A pre-mRNA ter-
minating at the most downstream site may instead pro-
duce three different types of small ncRNAs, including
snoH1 and all the DmSnR60 (a-d) and snm60 (a-b)iso-
forms. Strikingly, the ability to release snm60 molecules is
restricted to mfl transcripts ending at the last poly (A) site,
so that production of these ncRNAs is predicted to be cou-
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Functional roles of DmSnR60 molecules. (A) Base-pairing interactions between DmSnR60 and Drosophila 28S rRNA
sequences. The upper strand represents the rRNA sequence; the G1083 and the A1092 residues selected for methylation by
D' and D antisense elements are marked by the asterisk. (B) Reverse transcription at low dNTP concentration of the 28S Dro-
sophila rRNA region, including the G1083 and the A1092 methylation sites; on the left, lanes T, C, G and A are dideoxy
sequence reactions performed using the primer utilised for reverse transcription and a plasmid carrying the Drosophila 28S
rRNA gene. One additional 2'-O-methylation, at position Gm 1108 of 28S rRNA, is detected in this experiment. This methyla-
tion has not yet been described in other organisms and may be specific to Drosophila rRNA.

pled with that of the 2.2 and 1.0 kb mRNAs. In conclu-
sion, alternative 3'-ends allow mfl to produce not only two
distinct protein subforms, but also different ncRNAs that
may potentially contribute to its biological functions.

Expression and function of mfl intron-encoded ncRNAs

All the DmSnR60 isoforms (named a, b, ¢, d) possess
canonical C (5'-UGAUGA-3'), D and D' (5'-CUGA-3')
boxes, suggesting that they encode bifunctional snoRNAs
of the C/D family (Fig. 5C). Long tracts of perfect comple-
mentarity to Drosophila 28S rRNA were found upstream
of both the D and D' boxes [30,31]. Since C/D snoRNAs
invariably select the nucleotide positioned 5 base pairs
upstream of the D/D' box for methylation [1,2], these
antisense elements were predicted to modify, respectively,
the G1083 and Am1092 residues (see Fig. 6B), two meth-
ylation sites conserved between yeast and vertebrates. In
fact, methylation at the G1083-equivalent residue is
known to be guided by yeast snR60 and mammalian U80
snoRNAs, while Am1092 modification is directed by yeast
snR84 and by a still-unidentified mammalian snoRNA
[34]. Methylated residues have not yet been experimen-
tally mapped on Drosophila rRNA, so we attempted to
detect effective modification at the predicted sites by
reverse transcription of the specific rRNA sequence at low
dNTP concentration, as described by Maden [35]. When
this method is used, a specific reverse transcription stop
occurs on (and/or one nucleotide before) a 2'-O-methyl-
ated nucleotide at low, but not at elevated, dNTP concen-
trations. As shown in Fig 6B, this experiment confirmed

the presence of methylated nucleotides at both predicted
positions. Strikingly, one additional 2'-O-methylation
was detected, at position Gm1108 of 28S rRNA (Fig. 6B).
Modification at this site has not yet been described in
other organisms and may be specific to Drosophila rRNA.
Since no other Drosophila snoRNA that may be able to
methylate the G1083 and the Am1092 residues specifi-
cally has so far been described, modification of these sites
strongly supports the functional role of the DmSnR60
molecules as TRNA methylation guides. In contrast, the
function of the snm60 molecules is hard to guess, and fur-
ther experiments are required.

To characterize further the small ncRNAs originating from
the mfl 3' region, a panel of total RNA samples extracted
from various stages of Drosophila development or from
the S2 cell line was subjected to Northern blot analysis
with probes specific for snoH1, DmSnR60 or snm60. These
intron-encoded ncRNA genes were all actively expressed
in S2 cells, and throughout the Drosophila life cycle they
exhibited a very similar expression pattern (Fig. 7). As
shown in Fig. 7, the ncRNAs accumulate constitutively
throughout development, but their expression is quantita-
tively modulated, reaching the highest levels in young lar-
vae and in adult females. It should be noted that the
marked sex-bias in snoH1 and DmSnRG60 expression is
quite unusual for snoRNAs. Considering that these snoR-
NAs are devoted to modifying, respectively, the 18S and
28S rRNAs, it is plausible that the higher levels in females
may essentially be due to the higher level of protein syn-
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Developmental expression of mfl intron-encoded
ncRNAs. Total RNA extracted at various developmental
stages of the Drosophila life cycle was hybridized to probes
specific to DmSnR60, snm60 and snoH . On the right, North-
ern blot analysis of total RNA extracted from the Drosophila
S2 cell line. The amount of RNA loaded on each lane was
checked by hybridization with a probe derived from Dro-
sophila aTub84B.

thesis in the ovaries, which in adult females may consti-
tute more than half the body weight.

To address the function of DmSnR60 and snm60 further,
we next investigated their intracellular distribution by in
situ hybridization. Given that these RNAs accumulated at
higher levels in larvae and in adult females, we selected
the intestine as a larval organ and the ovary as an adult
organ for these analyses. When specific digoxigenin-
labelled antisense probes were used to analyse whole-
mount intestine preparations, the DmSnR60 molecules
were shown to be expressed in all cells (Fig. 8). Within
ovarioles, these molecules were also expressed ubiqui-
tously, being detected at all stages of oogenesis in both the
nurse and the follicle cells (Fig. 8, top-left panel). Moreo-
ver, DmSnR60 molecules accumulate specifically in the
nucleoli, as substantiated by observation of the large
nuclei of the polyploid nurse cells. These cells develop
unusual nucleoli comprising a shell of interconnected
fibres around the nuclear periphery [36]. As is evident
from the figure, the DmSnR60 hybridization signal in the

http://www.biomedcentral.com/1471-2199/8/15

nurse cells is specifically concentrated in these nuclear
peripheral structures, as expected for bona fide snoRNAs
(Fig. 8, top-left panel). In contrast, snm60 expression in
the ovarioles appeared to be restricted to late oogenesis,
starting from stage 7 (Fig. 8, right-top panel); moreover,
these RNAs accumulated specifically in the nurse cells, not
the follicle cells. Within the nurse cells, the snm60 mole-
cules appear to be concentrated in the nucleoplasm but
are not located within the nucleoli. These ncRNAs also
show an intriguing expression pattern in the larval intes-
tine, where in most microscopic fields they are detected
only in subsets of cells that appear to be actively dividing
(Fig. 8, bottom-right panel). Most cells expressing snm60
RNAs are in fact yet-unseparated daughter cells just exiting
from mitosis, or paired cells that plausibly derive from the
same mitotic event, raising the possibility that expression
of these molecules might be regulated during the cell
cycle. An obvious conclusion from these in situ experi-
ments is that spatial and temporal expression of DmSnR60
and smn60 genes are differentially regulated. It is possible
that smn60 molecules may be independently transcribed
from a specific alternative promoter, or that their biogen-
esis and/or stability may depend on the presence of spe-
cific factors. Whatever the case, such fine regulation was
unexpected and makes it unlikely that these small RNAs
merely represent transcriptional noise.

To investigate this aspect further, we checked the phyloge-
netic conservation of smn60 genes by searching for their
expression in Drosophila-related species such as D.
yakuba, D. virilis and D. ananassae. By Northern blot exper-
iments, we were able to detect these ncRNAs only in the
most closely-related species D. yakuba (data not shown),
which belongs to the melanogaster subgroup. In contrast,
the DmSnR60 molecules were positively detected in all
three species. A comprehensive picture of sequence con-
servation of the mfl 3' genomic region is presented in Fig.
9, which shows a diagram of multiple genome alignments
obtained by the UCSC Genome Browser [37]. Peaks in the
conservation plot can be observed for each of the 3'UTR
introns, but strong conservation among all the annotated
genomes of the Drosophila species occurs only for
DmSnR60 isoforms. The weaker phylogenetic conserva-
tion displayed by snm60 suggests that these genes may
have evolved more recently. However, evolutionary con-
servation may not be a reliable signature for functional
ncRNAs, since many regulatory ncRNA evolve quickly and
may co-evolve with their functional targets [38].

Discussion

Production of multiple transcripts with different coding/
non-coding properties is known to contribute largely to
the complexity of eukaryotic transcriptomes, and analysis
of the full range of different transcripts that a gene can
encode may provide important insight into its biological
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Cellular location of DmSnR60 and snmé0 molecules. Top-left panel: whole mount in situ hybridization of DmSnRé60 spe-
cific probes to adult ovaries. DmSnR60 molecules are detected at all stages of oogenesis, in the nurse and the follicle cells (see
enlargement on bottom-right). Analysis of the large polyploid nurse-cell nuclei reveals that the DmSnR60 molecules are located
in the peripheral nucleolar structures. Hybridization of the sense probe was performed as control (top-right). Bottom-left
panel: in situ hybridization of DmSnRé60 probes to larval intestines. Top-right panel: whole mount in situ hybridization of snm60
specific probes to adult ovaries. snm60 molecules accumulate specifically in the nurse cell nuclei from stage 7 of oogenesis, and
are not detected in the follicle cells (see also the enlargement at bottom-right). Hybridization of the sense probe was per-
formed as control (top-right). Bottom-right panel: in situ hybridazion of snmé0 probes to larval intestines.

functions. Although alternative mRNA subforms have
never been described for any member of the Cbf5/mfl/
DKC1 family, transcripts that have very low abundance, or
are expressed in selected cell types or in response to spe-
cific stimuli, may have escaped analysis. Indeed, rare
products have important roles in many physiological
processes and can often trigger crucial responses to devel-
opmental or growth stimuli. The detailed analyses of the
mfl gene reported here show that its molecular organiza-
tion is much more complex than previously suspected and
its coding potential is correspondingly expanded. Indeed,
mfl is the only pseudouridine synthase gene for which
extensive evidence of multiple transcripts has been
reported so far. Our results showed that the canonical
MFL protein can be encoded by three mRNAs distin-

guished solely by 3' end heterogeneity, two of them dis-
playing a maternal pattern. These overlapping 3'-UTRs
may plausibly play a role in imposing different expression
profiles on the mfl mRNAs. In this regard, an intriguing
recent suggestion is that translation of 5'-TOP mRNAs
may become less stringent with increasing 3'-UTR length
[39]. Consistent with this notion, it could be surmised
that the diverse lengths of 3'-UTRs in the 1.8, 2.0 and 2.2
kb mRNAs may per se influence the efficiency of their
translation under different growth conditions; moreover,
the 1.0 kb mRNA is the species for which the most strin-
gent translational regulation should be expected.

The data reported in this paper also reveal that mfl

encodes a novel alternatively-spliced protein subform,
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Screen shot of the UCSC Genome Browser (http://genome.ucsc.edu) conservation tracks of the mfl 3' genomic
region. The region examined, spanning exons 6—12 (black boxes), is shown at the top. The conservation track has two parts:
a plot of conservation scores, and beneath it, a display showing where each of the other genomes aligns to the reference
sequence (darker shading indicates higher BLASTZ scores; white indicates no alignment). Peaks of cross-species conservation
are observed at each 3 'UTR intron, but only sequences of the DmSnR60 isoforms are highly conserved among all the anno-

tated genomes of the Drosophila species.

which represents the first example of a variant protein
encoded by any member of the Cbf5 gene family. The
main distinctive trait of this protein, named MFLq, is its
unique C-terminus, where a short tract of 43 amino acids
replaces the large carboxy-terminal moiety of the major
canonical protein, which includes the overlapping PUA
and tyr domains and the bipartite NLS. Given that the
PUA domain of archaeal aCbf5p has recently been shown
to be essential for binding the guide RNAs [29,40], its lack
is predicted to affect this functionally relevant feature,
raising the possibility that MFLo. may participate in the
formation of less efficient, or even inactive, H/ACA
snoRNPs. If this were the case, expression of this subform
might have an autoregulatory role in mfl expression. How-
ever, we cannot presently exclude the possibility that its

specific C-terminus may allow MFLa to interact with dif-
ferent efficiency or different specificity with distinct pro-
tein partners, eventually participating in the assembly of
specific snoRNP subtypes. On the other hand, neither can
we exclude the possibility that this subform has so far
unknown functions, even unrelated to those of the major
canonical protein. Indeed, a further relevant distinctive
trait of MFLa is the absence of the C-terminal NLS. This
might plausibly allow a subtly modified modulation of
the rate of nuclear transport, or of nuclear retention, or of
the subnuclear distribution of the MFLo subform in
response to a various cellular stimuli. In this context, it is
intriguing to note that deletion of the C-terminal lysine-
rich cluster did not affect the nucleolar location of human
dyskerin, but influenced the rate of transport into the
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nucleus [41], while truncation of the C-terminal basic
domain of yeast Cbf5p led to delay at the G2/M phase of
the cell cycle [19].

Finally, we noticed that the MFL C-terminal moiety
deleted in MFLa is particularly rich in putative phosphor-
ylation sites. Since many cellular processes are controlled
in a phosphorylation-and cell cycle-dependent manner,
including protein synthesis and cell division, it is conceiv-
able that MFL and MFLo may respond in different ways to
various growth conditions and cellular signals.

An unexpected and distinctive peculiarity of MFLo. con-
cerns its greater accumulation in adult females. Although
this sex-biased expression suggests that the subform is
required during oogenesis and in the early stages of Dro-
sophila development, it would be premature to exclude
the possibility that its expression may be identical in both
sexes at different developmental stages, or that a sharply
restricted or a transient expression profile may have hin-
dered its detection in adult males. Indeed, the data
reported in this paper show that higher levels of expres-
sion in females are a general feature of mfl transcripts,
either coding or non-coding, the only exception being the
1.8 kb constitutive mRNA, which has the same abundance
in both sexes [7]. This observation adds further strength to
a recent report that included mfl/Nop60b among the list of
Drosophila genes that are significantly more strongly
expressed in purified female germline stem cells [42]. It is
also worth noting that the levels of all mfl transcripts peak
at the major sites of cell growth and division during the
Drosophila life cycle - late embryos, larvae and adult ova-
ries — making it plausible that gene expression might be
linked to the rate of cell growth and proliferation. This
hypothesis is compatible with the essential role in ribos-
ome biogenesis [7] and with recent microarray analyses
that indicated mfl/Nop60b to be a major target of d-myc
induction [43]. In this light, the different levels of MFLa
expression between male and female adult flies may only
be coincidental, simply reflecting the different rates of
protein synthesis in adult flies of different sexes. Although
further experiments are required to elucidate the molecu-
lar mechanisms that regulate mfl expression, the intrigu-
ing pattern displayed by snm60 molecules (the production
of which appears to be coupled to that of the 2.2 and 1.0
kb mRNAs) in proliferating intestine cells is also in good
agreement with this view.

The complex molecular organization described here for
mfl may be of general relevance, possibly unravelling
aspects common to other orthologues. Although no vari-
ant DKC1 transcript has been characterized thus far in
mammals, it is intriguing that deletion and splice site
mutations in the last exon of the gene have been found in
DC patients [44,45], and that a small deletion covering
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only the last DKC1 exon proved to be lethal in mouse
knock-out experiments [12]. Together, these observations
indicate that the 3' portion of the gene is also highly bio-
logically relevant in mammals. Moreover, DKC1 -deleted
alleles triggered early lethality only when they occurred on
the maternal allele, revealing the existence of a maternal
effect in the transmission of DC disease [12]. It is tempt-
ing to speculate that, similarly to mfl, mammalian DKC1
genes may encode still-undetected transcripts, the expres-
sion of which may account for this sex-specific effect.

Our data also show that mfl introns harbour a variegated
cluster of small ncRNA genes comprising an H/ACA
snoRNA gene, four copies of the C/D snoRNA DmSnR60
and two copies of the small ncRNA of unknown function.
The structure of this dense cluster conforms to the one
ncRNA gene per intron rule widely observed in animal
genomes, and strongly implies that several duplication
events have occurred during its evolution. This coding/
non-coding genetic arrangement has obvious regulatory
potential: to coordinate the expression of nested ncRNAs
with the protein products of the gene. Common func-
tional roles are often shared by host genes and intron-
encoded ncRNAs. In the case of mf], the snoRNA H1 and
DmSnRG60 isoforms share obvious ribosome-related func-
tions with their protein-coding host gene; they modify
highly conserved residues on the 18S and 28S rRNAs,
respectively. However, it is presently unclear whether the
snm60 molecules represent functional entities, so their
functional correlation with mfl, if any, remains to be
proved. Nevertheless, the fine regulation of snm60 argues
against the idea that they merely represent transcriptional
noise. Even though these ncRNAs may be involved in the
same pathway as mf], the possibility that they may have
totally unrelated functions cannot presently be excluded.
In this case, it is conceivable that mfl may have been cho-
sen as host merely to meet the need for a transcription rate
high enough to produce a sufficient level of these mole-
cules. Systematic mutagenic approaches are currently
underway to address the biological role of these ncRNAs,
and to determine the degree, if any, to which they contrib-
ute to the mfl phenotype. In any case, it is interesting to
note that mammalian DKC1 genes have also been shown
to host two intron-encoded H/ACA snoRNAs [34], indi-
cating that the coding/non-coding genetic architecture
may represent an additional conserved feature shared by
these highly related orthologues.

Conclusion

We report here that the Drosophila gene encoding pseu-
douridine synthase has a complex coding/non-coding
structure. We have provided evidence that the use of dif-
ferent 3' end sites enables this gene not only to produce
different mRNAs but also to release distinct sets of small
intron-encoded ncRNAs, suggesting a potential novel role
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for overlapping 3'UTRs. Our data also reveal that a minor
variant mRNA able to encode a distinct protein subform
can be produced by this gene, suggesting that alternative
splicing may have a role in regulating the expression of
eukaryotic pseudouridine synthases.

Methods

DNA analysis and cloning techniques

Basic cloning techniques, PCR amplification, DNA and
RNA extraction, manipulation and labeling, screening
and sequencing techniques were carried out according to
Sambrook and Russell [46]. All PCR-amplified fragments
and 5' and 3' RACE products were cloned by using the
pMOSBlue blunt ended cloning kit (Amersham Bio-
sciences) and automatically sequenced (Primm).

RNA analysis

After disruption and homogenization, total RNA was
extracted from flies at various developmental stages, man-
ually dissected ovaries or cultured S2 cells, using TRIzol
Reagent according to the manufacturer's protocol (Invit-
rogen, Carlsbad, CA). Concentration, purity, and quality
of the RNA were determined using the Hitachi U-1500
spectrophotometer at 260 nm and 280 nm and by gel
electrophoresis. Polyadenylated RNA was selected by
using oligo-dT polystyrene beads (GenElute™ mRNA Min-
iprep Kit, Sigma-Aldrich). For Northern blot analysis, 5 ug
of poly(A)+ RNA or 10 pug of total RNA were electro-
phoresed and transferred to Hybond-NX filters (Amer-
sham Biosciences) for hybridization. DNA probes were
32P-labeled using the Nick Translation Kit (Roche). Probes
1, 2 and 3 utilised in Northern blot analyses corre-
sponded, respectively, to a 0.1 kb PCR-amplified genomic
fragment generated with the oligonucleotides 5'-CACAA-
GAAACTTAAGGTGTG-3' and 5'- GATGTCTTGGGCAGT-
GTTGTACC-3' (probe 1), a 0.2 kb PCR-amplified genomic
fragment generated with the oligonucleotides 5'-GAGG-
TAAATATTTAATAACTAAAAG- 3' and 5'-GATTCCTGT-
GGCATTCAATG-3' (probe 2), and a 0.6 kb PCR-amplified
genomic fragment generated with the oligonucleotides 5'-
CAAGCCTCAATCTTITCGATTGCCTITC-3' and 5'-GAT-
GTCITGGGCAGTGTITGTACC-3' (probe 3). The amount
of RNA loaded in each lane was checked by hybridization
with a probe derived from the gene coding for the
oTub84B gene.

For 3'-RACE experiments, a first reverse transcription step
was performed using an oligo dT with adapter sequence at
its 5'-end (5'-GACTCGAGTCGACATCGA(T),,-3"). Ampli-
fication was then performed using a set of sense primers
derived from the sequences of exon 5 (5'-GACCATGGT-
GTGGTGG-3'), exon 6 (5'-CTCTATCGCTAGITTCITAG-
GTCTTAGC-3"), exon 8 (5'-
CITCGAATAAACATAGGAATTAAGGTAAG-3') and exon
9 (5'-GGTCATGCAATATATGGACTATAAC-3'), all in asso-

http://www.biomedcentral.com/1471-2199/8/15

ciation with the adapter primer (5'-GACTCGAGTCGA-
CATCG -3') used in first reverse-transcription step. In 5' -
RACE experiments, 300 ng of female poly(A)+ RNA were
reverse transcribed using a splicing-specific primer span-
ning exon 3-9 junction (5'-CCTAATCAACAAATCCAT-
ATTITCGGG-3') to amplify the 5' region of the
alternatively spliced transcript. An A-tailing step was car-
ried out to attach an oligo-dA tail to the 3' end of the
c¢DNA with terminal transferase (Roche Molecular Bio-
chemicals) and specific cDNAs were then amplified by
two rounds of PCR. The first round was performed with a
gene-specific primer from exon 3 (5-GGGCACCACG-
CAGCITCTC-3") and the same oligodT-adaptor primer
used in 3' RACE experiments, while in the second reaction
we used a nested primer from exon 3 (5'-GGGACITCAC-
CAGACGGG-3") and the same adaptor primer previously
described for 3' RACE. The amplification products
obtained (500 bp) were cloned into the pMOSblue vector
and sequenced. To clone MFLo. cDNA, the partially over-
lapping PCR products of the 3' and 5' RACE experiments
described above were digested at the common BamH]1 site
present at exon 2 and fused in a ligase reaction (T4 DNA-
ligase USB) to compose a virtual full length cDNA
sequence. The reconstituted cDNA sequence was cloned
into the pMOSblue vector and sequenced to check
absence of internal stop codons.

For RT-PCR, we utilised poly(A)+ RNA preparations from
male and female adult flies and various combinations of
upstream primers derived from exon 2 (primer P1: 5'-
CTTCCAAATCAAGCCCTCCTCCAAG-3'), exon 5 (5'-
GCCAGCAGCTCAAGAAGTCTCCCC-3') and exon 6 (5'-
GTGTAGAAGTGCATACAAATTAC-3') with downstream
primers derived from exon 10 (5'-GATTCCTGTGGCAT-
TCAATG-3'), exon 11 (5'-GCAATAAAGTGTCATGCG-3')
and exon 12 (primer P2: 5'- GATGTCITGGGCAGTGTTG-
TACC-3").

To confirm presence of the alternatively spliced mRNA, in
order to avoid amplification from genomic DNA contam-
ination we utilised a common 5' primer from exon 2
(primer P1) in combination with two 3' primers spanning
splicing specific exon-exon junction (primer P3, spanning
exon 3-9 junction: 5'-CCTAATCAACAAATCCATATT-
TCGGG-3'; primer P4, spanning exon 5-6 junction: 5'-
GGTGCITAACTTGCGTITGCTGGG-3'"). As control of the
RNA quantity we also reverse-amplified in each sample
the oTub84B gene transcript, using a forward primer
derived  from exon 1 (5'-GTGAAACACITC-
CAATAAAAACTCAATATG-3') in combination with a
reverse primer derived from exon 2 (5'-CCAGCAG-
GCGTTTCCAAT-3"). The amplified DNA products were
analysed on 1.5% agarose gel, eluted and purified before
cloning and sequencing.
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The 5' end of DmSnR60 isoforms a and ¢ was determined
by primer extension experiments, using 50 ug of total
RNA and a primer complementary to nucleotides 181-
209 (5-TTGCGTTATTITCAGTAAGACCAATCTCG-3') of
intron 6, or to nucleotides 93-117 (5'-GAAATTCITT-
TCAGTAAGACCAATC-3") of intron 8. The 5' end of snm60
isoforms a-b were similarly determined, using a primer
complementary to  nucleotides  193-224  (5'-
GGCATCGTTGITATTGTATTGGCCTAAATGC-3") of
intron 10 or to nucleotides 150-180 (5'-CACTTAGAAC-
CACATCTGGTTAAAACACAC-3') of intron 11.

GenBank accession numbers

The nucleotide sequence of the 2.2 kb and the 1.0 kb
mRNAs have been submitted to the GenBank database
under accession numbers DQ857345 and DQ 857346,
respectively. GenBank accession numbers of the nucle-
otide sequences of snm60 a and b isoforms are DQ142641
and DQ142642; sequences of DmSnRG60 isoforms (a-d)
are found in the GenBank database under the accession
number AY805216. SnoH1 sequence is found in GenBank
at the AF089836 number, while mfl genomic sequence is
found in GenBank at AF097634. MFL amino acid
sequence is available at the GenBank accession number
AAD19897.

Quantitative Real Time RT-PCR (qPCR)

Poly(A)+ RNA (800 ng) was reverse transcribed using 250
ng random hexamers, 100 U SSII reverse transcriptase, 10
mM DTT, and 1X First-Strand Buffer (Invitrogen,
Carlsbad, CA) at 42°C for one hour in a volume of 20 pL
(Mycycler, BioRad, 8 Hercules, CA). Quantitative analysis
was performed by using the iQ™ 5 Multicolor Real-Time
PCR Detection System (Bio-Rad). The PCR reactions were
performed in a final volume of 15 microliters using 1
microliter of cDNA, 5 pmol of each primer and 7.5 micro-
liter of iQ™ SYBR Green Supermix 2X (Bio-Rad). PCR
cycling profile consisted of a cycle at 95°C for 3 min and
40 two-step cycles at 95°C for 10 s and at 60° C for 30 s.
Quantitative real time PCR analysis was carried out using
the 2(-Delta Delta C(T)) method (2-44Ct) [47]. Primers
were chosen using Primer Express 2.0 software (Applied
Biosystems, Foster City, CA) for optimum use in qPCR. A
BLASTN search was performed against GenBank to ensure
that all primers were unique to the gene of interest. To
avoid amplification from genomic DNA contamination,
all primer sets derived from different gene exons or
spanned a specific exon-exon junction (see below). In all
qPCR experiments the data were normalized to the
expression of the Drosophila oTub84B housekeeping
gene. Negative controls included omission of template
dissociation curves, gel analysis and sequencing of certain
PCR products confirmed gene specific product amplifica-
tion. PCR oligo-primers were: mfl Ex 3 forward primer: 5'-
GITGCGCGTTCGTACTGTCTAC-3'; mfl Ex 4 reverse

http://www.biomedcentral.com/1471-2199/8/15

primer 5'-CCTCGCAACTAACCCAAAAAAC-3'; mfl Ex 3/9
junction  reverse  primer 5-TTGCATAACCTAAT-
CAACAAATCCA-3'; o-Tub84B Ex 1/2 forward primer 5'-
GTGAAACACTTCCAATAAAAACTCAATATG-3'; o-Tub84B
Ex 2 reverse primer 5'-CCAGCAGGCGTTTCCAAT -3'.
Three different RNA preparations were tested for each
sample, and each reaction was run in triplicate. Data are
representative of three independent experiments.

Detection of ribose-methylated nucleotides

rRNA 2'-O-ribose methylation was determined by reverse
transcription at low dNTP concentration essentially as
described by Maden et al. [35].

Antibodies and immunochemistry

Two peptides, peptide 1 (N2H-CADVEVRKEKKKKKI K-
CONH2) and peptide 2 (N2H-CHG SSPLNRDIKEYH K-
CONH2), were synthesized. These peptides were selected
from tracts of the N-terminal region common to MFL and
MFLa proteins that are not highly conserved between spe-
cies. Both peptides contained an extra cysteine on N-ter-
minus to aid in affinity purification and were conjugated
(to keyhole limpet hemacyanin, mixed together). Polyclo-
nal antibodies against these two peptides were produced
by injection of rabbits (Eurogentec, EGT group) and used
in Western blot analyses after 1:500 dilution in TBS
tween. Chemiluminescent detection was performed using
HRP conjugated anti-mouse antibodies (Sigma-Aldrich)
diluted 1:5000 and subsequently detected by a film expo-
sure. The ECL-Advance™ Western Blotting Detection Rea-
gents (Amersham Biosciences) were used. The protein
ladder used in our experiments was the Precision Plus
Prestained Protein Standard Dual Colour (Biorad Labora-
tories).

In situ hybridization

Whole mount in situ hybridization was performed using
single-stranded DIG-labeled probes obtained by PCR, as
described previously [7]. Preparations were observed
through a microscope model Eclipse E1000, Nikon, with
plan fluor Phl20x/0.50 objective lenses. The microscope
was equipped with a digital camera (Nikon model DXM
1200 F) and with Nikon ACT1 acquisition software.

Authors' contributions

SR designed and performed most of the experiments; she
carried out the Northern and bioinformatic analyses, 5'
and 3' RACE, RT-PCR, 2'-O-methylation mapping and in
situ hybridization experiments, took care of handling the
Drosophila, and helped to organize the data and draft the
manuscript. GT prepared the cell extracts and performed
the western analyses. EG helped to map the 2'-O-methyl-
ations on rRNA, participated in the bioinformatic analy-
ses and gave useful suggestions. MT carried out the S2 cell
culture and RT quantitative PCR experiments and contrib-

Page 15 of 17

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ857345
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ 857346
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ142641
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ142642
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY805216
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF089836
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF097634
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAD19897

BMC Molecular Biology 2007, 8:15

uted to the western analysis. MF conceived and coordi-
nated the study, planned the experiments, analysed the
data and wrote the manuscript. All authors read and
approved the final version of the manuscript.

Acknowledgements

We are grateful to Alberto Angrisani for generous and helpful support in
the RT quantitative PCR experiments. This work was supported by Tele-
thon Grant n. GG P030120 and contributions from the Assessorato alla

Ricerca Scientifica, Regione Campania, to M.F.

References

2.

3.

Bachellerie P, Cavaillé ], Hiittenhofer A: The expanding snoRNA
world. Biochimie 2002, 84:775-790.

Kiss T: Small nucleolar RNAs: an abundant group of noncod-
ing RNAs with diverse cellular functions. Cell 2002, 19:145-8.
Baker DL, Youssef OA, Chastkofsky Ml, Dy DA, Terns RM, Terns MP:
RNA-guided RNA modification: functional organization of
the archaeal H/ACA RNP. Genes Dev 2005, 19:1238-48.
Cadwell C, Yoon HJ, Zebarjadian Y, Carbon J: The yeast nucleolar
protein Cbf5p is involved in rRNA biosynthesis and interacts
with the RNA polymerase | transcription factor RRN3. Mol
Cell Biol 1997, 17:6175-6183.

Barth S, Hury A, Liang XH, Michaeli S: Elucidating the role of H/
ACA-like RNAs in trans-splicing and rRNA processing via
RNA interference silencing of the Trypanosoma brucei
CBF5 pseudouridine synthase. J Biol Chem 2005,
280(41):34558-68.

Phillips B, Billin AN, Cadwell C, Buchholz R, Erickson C, Merriam R,
Carbon J, Poole S): The Nop60B gene of Drosophila encodes an
essential nucleolar protein that functions in yeast. Mol Gen
Genet 1998, 260:20-9.

Giordano E, Peluso |, Senger S, Furia M: minifly, a Drosophila gene
required for ribosome biogenesis. | Cell Biol 1999,
144:1123-1113.

Meier UT, Blobel G: NAP57, a mammalian nucleolar protein
with a putative homolog in yeast and bacteria. | Cell Biol 1994,
127:1505-14.

Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason P),
Poustka A, Dokal I: X-linked dyskeratosis congenita is caused
by mutations in a highly conserved gene with putative nucle-
olar functions. Nat Genet 1998, 19:32-8.

Mason PJ: Stem cells, telomerase and dyskeratosis congenita.
Bioessays 2003, 25:126-33.

Meier UT: The many facets of H/ACA ribonucleoproteins.
Chromosoma 2005, 114:1-14.

He J, Navarrete S, Jasinski M, Vulliamy T, Bessler M, Mason PJ: Tar-
geted disruption of DKCI, the gene mutated in X-linked dys-
keratosis congenita, causes embryonic lethality in mice.
Oncogene 2002, 21:7740-4.

Lin X, Momany M: The Aspergillus nidulans swoCl mutant
shows defects in growth and development. Genetics 2003,
165:543-54.

Knight SW, Heiss NS, Vulliamy TJ, Aalfs CM, McMahon C, Richmond
P, Jones A, Hennekam RCM, Poustka A, Mason PJ, Dokal I: Unex-
plained aplastic anaemia, immunodeficiency, and cerebellar
hypoplasia (Hoyeraal-Hreidarsson syndrome) due to muta-
tions in the dyskeratosis congenita gene, DKCI. Brit | Haemat
1999, 107:335-339.

Hamma T, Reichow SL, Varani G, Ferre-D'Amare AR: The Cbf5-
Nop 10 complex is a molecular bracket that organizes box H/
ACA RNPs. Nat Struct Mol Biol 2005, 12:1101-7.

Ofengand J, Bakin A: Mapping to nucleotide resolution of pseu-
douridine residues in large subunit ribosomal RNAs from
representative eukaryotes, prokaryotes, archaebacteria,
mitochondria and chloroplasts. | Mol Biol 1997, 266:246-68.
Yoon A, Peng G, Brandenburg Y, Zollo O, Xu W, Rego E, Ruggero D:
Impaired control of IRES-mediated translation in X-linked
dyskeratosis congenita. Science 2006, 312(5775):902-6.
Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ: Mouse dyskerin
mutations affect accumulation of telomerase RNA and small
nucleolar RNA, telomerase activity, and ribosomal RNA
processing. Proc Natl Acad Sci USA 2004, 101:10756-61.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

http://www.biomedcentral.com/1471-2199/8/15

Jiang W, Middleton K, Yoon H-J, Fouquet C, Carbon J: An essential
yeast protein, Cbf5p, binds in vitro to centromeres and
microtubules. Mol Cell Biol 1993, 13:4884-4893.

Kendall A, Hull MW, Bertrand E, Good PD, Singer RH, Engelke DR:
CBF5 mutation that disrupts nucleolar localisation of early
tRNA biosynthesis in yeast also suppresses tRNA gene-medi-
ated transcriptional silencing. Proc Natl Acad Sci USA 2000,
97:13108-13.

Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, Cordon-
Cardo C, Pandolfi PP: Dyskeratosis congenita and cancer in
mice deficient in ribosomal RNA modification. Science 2003,
299:259-62.

Yang PK, Hoareau C, Froment C, Monsarrat B, Henry Y, Chanfreau
G: Cotranscriptional recruitment of the pseudouridyl syn-
thetase Cbf5p and of the RNA binding protein Naflp during
H/ACA snoRNP assembly. Mol Cell Biol 2005, 25:3295-304.
Darzacq X, Kittur N, Ray S, Shav-Tal Y, Singer RH, Meier UT: Step-
wise RNP assembly at the site of H/ACA RNA transcription
in human cells. J Cell Biol 2006, 173:207-218.

Richard P, Kiss AM, Darzacq X, Kiss T: Cotranscriptional recog-
nition of human intronic box H/ACA snoRNAs occurs in a
splicing.independent manner. Mol Cell Biol 2006, 26:2540-2549.
Tycowski KT, Steitz JA: Non-coding snoRNA host genes in Dro-
sophila: expression strategies for modification guide snoR-
NAs. EurJ Cell Biol 2001, 80:119-25.

Meyuhas O, Avni D, Shama S: Translational control of ribosomal
protein mRNAs in eukaryotes. In Translational Control Edited by:
Hershey JWB, Mathews MB, Sonenberg N. Cold Spring Harbor Lab-
oratory Press, Cold Spring Harbor, NY; 1996:363-388.

Mignone F, Grillo G, Licciulli F, lacono M, Liuni S, Kersey PJ, Duarte |,
Saccone C, Pesole G: UTRdb and UTRsite: a collection of
sequences and regulatory motifs of the untranslated regions
of eukaryotic mRNAs. Nucleic Acids Res 2005, 33(Database
issue):D141-6.

Aravind L, Koonin EV: Novel predicted RNA-binding domains
associated with the translation machinery. | Mol Evol 1999,
48:291-302.

Manival X, Charron C, Fourmann JB, Godard F, Charpentier B, Bran-
lant C: Crystal structure determination and site-directed
mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 com-
plex reveal crucial roles of the C-terminal domains of both
proteins in H/ACA sRNP activity. Nucleic Acids Res 2006,
34(3):826-39.

Accardo MC, Giordano E, Riccardo S, Digilio FA, lazzetti G, Calogero
RA, Furia M: A computational search for box C/D snoRNA
genes in the Drosophila melanogaster genome. Bioinformatics
2004, 20:3293-301.

Huang ZP, Zhou H, He HL, Chen CL, Liang D, Qu LH: Genome-
wide analyses of two families of snoRNA genes from Dro-
sophila melanogaster, demonstrating the extensive utilisa-
tion of introns for coding of snoRNAs. RNA 2005,
11(8):1303-16.

Huttenhofer A, Brosius ], Bachellerie JP: RNomics: identification
and function of small, non-messenger RNAs. Curr Opin Chem
Biol 2002, 6:835-43.

Hirose T, Steitz JA: Position within the host intron is critical for
efficient processing of box C/D snoRNAs in mammalian
cells. Proc NatlAcad Set USA 2001, 98:12914-9.
snoRNA-LBME-db [http://www-snorna.biotoul.fr]

Maden BE: Mapping 2'-O-methyl groups in ribosomal RNA.
Methods 2001, 25:374-382.

Spradling A: Developmental genetics of oogenesis. In Drosophila
development Edited by: Bate M, Martinez Arias A. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY; 1993:1-70.

UCSC Genome Browser [http://genome.ucsc.edu]

Pang KC, Frith MC, Mattick JS: Rapid evolution of noncoding
RNAs: lack of conservation does not mean lack of function.
Trends Genet 2006, 22:1-5.

Ledda M, Di Croce M, Bedini B, Wannenes F, Corvaro M, Boyl PP,
Caldarola S, Loreni F, Amaldi F: Effect of 3'UTR length on the
translational regulation of 5'-terminal oligopyrimidine
mRNAs. Gene 2005, 344:213-20.

Rashid R, Liang B, Baker DL, Youssef OA, He Y, Phipps K, Terns RM,
Terns MP, Li H: Crystal structure of a Cbf5-Nop10-Garl com-
plex and implications in RNA-guided pseudouridylation and
dyskeratosis congenita. Mol Cell 2006, 21(2):249-60.

Page 16 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12457565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12457565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15870259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9315678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9829824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9829824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7798307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7798307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9590285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9590285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9590285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12539238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15770508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10583221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10583221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10583221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9047361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16690864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8336724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11069303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11069303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11069303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12522253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12522253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15798213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15798213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15798213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16618814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16537900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11302516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11302516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11302516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10093218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10093218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16456033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16456033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16456033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15247100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12470739
http://www-snorna.biotoul.fr
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11860292
http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16290135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16290135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15656987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15656987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15656987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16427014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16427014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16427014

BMC Molecular Biology 2007, 8:15

41.

42.
43.

44,

45.

46.

47.

Heiss NS, Girod A, Salowsky R, Wiemann S, Pepperkok R, Poustka A:
Dyskerin localizes to the nucleolus and its mislocalisation is
unlikely to play a role in the pathogenesis of dyskeratosis
congenita. Hum Mol Genet 1999, 8:2515-24.

Kai T, Williams D, Spradling AC: The expression profile of puri-
fied Drosophila germline cells. Dev Biol 2005, 283:486-502.
Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA: Myc-dependent
regulation of ribosomal RNA synthesis during Drosophila
development. Nat Cell Biol 2005, 7:295-302.

Vulliamy TJ, Knight SW, Heiss NS, Smith OP, Poustka A, Dokal |,
Mason PJ: Dyskeratosis congenita caused by a 3' deletion:
germline and somatic mosaicism in a female carrier. Blood
1999, 94:1254-60.

Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I:
Mutations in dyskeratosis congenita: their impact on tel-
omere length and the diversity of clinical presentation. Blood
2005, 107:2680-5.

Sambrook |, Russell DW: Molecular Clonning: A Laboratory
Manual. Cold Spring Harbor Laboratory Press Cold Spring Harbor,
NY; 2001.

Livak K], Schmittgen TD: Analysis of relative gene expression
data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) method. Methods 2001, 25:402-408.

http://www.biomedcentral.com/1471-2199/8/15

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 17 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15927177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15927177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10438713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16332973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846609
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Identification of two novel mfl coding transcripts
	Structural properties and expression of the MFLa novel protein subform
	A cluster of small ncRNA genes is intron-encoded at the mfl variable 3' UTRs
	Expression and function of mfl intron-encoded ncRNAs

	Discussion
	Conclusion
	Methods
	DNA analysis and cloning techniques
	RNA analysis
	GenBank accession numbers
	Quantitative Real Time RT-PCR (qPCR)
	Detection of ribose-methylated nucleotides
	Antibodies and immunochemistry
	In situ hybridization

	Authors' contributions
	Acknowledgements
	References

