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Abstract
Background: The mRNA translation initiation region (TIR) comprises the initiator codon, Shine-
Dalgarno (SD) sequence and translational enhancers. Probably the most abundant class of
enhancers contains A/U-rich sequences. We have tested the influence of SD sequence length and
the presence of enhancers on the efficiency of translation initiation.

Results: We found that during bacterial growth at 37°C, a six-nucleotide SD (AGGAGG) is more
efficient than shorter or longer sequences. The A/U-rich enhancer contributes strongly to the
efficiency of initiation, having the greatest stimulatory effect in the exponential growth phase of the
bacteria. The SD sequences and the A/U-rich enhancer stimulate translation co-operatively: strong
SDs are stimulated by the enhancer much more than weak SDs. The bacterial growth rate does
not have a major influence on the TIR selection pattern. On the other hand, temperature affects
the TIR preference pattern: shorter SD sequences are preferred at lower growth temperatures.
We also performed an in silico analysis of the TIRs in all E. coli mRNAs. The base pairing potential
of the SD sequences does not correlate with the codon adaptation index, which is used as an
estimate of gene expression level.

Conclusion: In E. coli the SD selection preferences are influenced by the growth temperature and
not influenced by the growth rate. The A/U rich enhancers stimulate translation considerably by
acting co-operatively with the SD sequences.

Background
The efficiency of initiation is the most important determi-
nant of translation efficiency [1]. In bacteria, the 30S
ribosomal subunit, assisted by initiation factors (IF) 1, 2
and 3 and fMet-tRNAfMet, recognizes the translation initi-
ation region (TIR) of the mRNA. This event is followed by
binding of the 50S ribosomal subunit and release of the
initiation factors [1]. The rate-limiting step in this process
is binding of the 30S subunit to the TIR [2]. There are two
alternative pathways for mRNA recognition by 30S subu-

nits. In the first, the 30S subunit complexed with IF1 and
IF3 binds to the mRNA, followed by IF2 and GTP-depend-
ent binding of fMet-tRNAfMet [2]. In the second, the
IF2:GTP:fMet-tRNAfMet complex binds to the 30S subunit
followed by mRNA recognition [3]. The relative frequen-
cies with which these pathways are used in bacterial cells
are currently not clear.

The following sequence elements of the TIR contribute to
its efficiency: (a) the initiation codon, which is most com-
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monly AUG but sometimes GUG and very rarely UUG,
AUU or CUG [4-7]; (b) the Shine-Dalgarno (SD)
sequence [8,9]; (c) regions upstream of the SD sequence
and downstream of the initiation codon, which are often
described as enhancers of translation [10-15]. In addition,
the spacing between these sequence elements is often crit-
ical. For example, the distance between the SD sequence
and the initiation triplet has a marked effect on the effi-
ciency of translation [16].

The SD sequence base-pairs directly with the anti-Shine-
Dalgarno (aSD) sequence on the 3' end of the 16S rRNA
[8]. The maximum known length of the SD:aSD duplex is
12 or 13 nucleotides [17]; in most E. coli genes the SD
sequence is shorter. Free energy calculations for all possi-
ble duplexes between the 16S rRNA 3' end and a region 21
nucleotides upstream from the start codon in 1159 E. coli
genes show that the average number of paired
mRNA:rRNA nucleotides is 6.3 [18]. A similar calculation
has been made for the ribosomal protein genes and indi-
cates that the average SD length is 4.4 nucleotides [19].
Studies have shown that mRNAs lacking an SD sequence
cannot bind the 30S subunit efficiently without the con-
tribution of translational enhancers, additional sequences
in the TIR able to increase the efficiency of translation
[20]. Also, SD sequences longer than six nucleotides are
not very efficient, probably because more time is needed
for clearance of the TIR [19,21]. On the other hand, other
studies have questioned the importance of the SD for the
initiation of translation: Lee et al. [22] report that transla-
tion efficiency correlates very poorly with the strength of
the SD:aSD interaction. Unfortunately, no systematic
study to date has established the correlation between the
SD:aSD interaction strength and the efficiency of transla-
tion.

Recently, it has been shown that before the SD:aSD inter-
action occurs, the 30S ribosomal subunit can bind to a
standby site in the vicinity of the SD [23,24]. Binding to
this standby site might increase the local concentration of
30S subunits at the TIR. The ribosome may remain
attached to the standby site until the SD sequence is in a
conformation appropriate for binding the aSD. Through
this mechanism, the standby site could stimulate transla-
tion of mRNAs in which the SD can be trapped by second-
ary structures. One possible way in which a standby site in
mRNA could be created is by binding to S1, the largest
protein component of the small ribosomal subunit. S1
consists of two major domains with a freely rotatable
region between them [25]. One domain is attached to the
30S; the second is exposed on the surface of the small sub-
unit, scanning the space around the ribosome and search-
ing for A/U-rich sequences [14,19,26] that are recognized
with the help of four RNA-binding motifs [27]. It has been
shown that S1 can destabilize RNA secondary structures

[28]. Cross-linking studies have shown that the nucleic
acid-binding domain of S1 is aligned with a region of the
mRNA upstream of the SD, suggesting that S1 may inter-
act with 5' parts of the TIR [29,30]. Consistent with this
observation, A/U-rich sequences in front of the SD or
downstream of the initiator codon enhance protein syn-
thesis [15,19]. To date, nine sequences have been shown
experimentally to act as translational enhancers. They are
all A/U-rich and contain very few Gs [19]. Disruption of
the E. coli gene coding for S1 has been reported to be
lethal [31]. A decreased level of S1 protein in the cell leads
to a rapid decrease in total protein synthesis [32]. Thus it
can be speculated that the SD sequence alone cannot
mediate efficient initiation of translation but has to be
complemented with an enhancer sequence. Unfortu-
nately, information about the effects of combining the
enhancers with different SD sequences is very limited
[19].

In the current study we have constructed a set of SD
sequences, ranging between 1 and 8 nucleotides, and
tested their efficiency with a reporter gene. This allowed
the most efficient SD sequences in E. coli to be defined. In
addition, we have combined all the SD sequences with
translational enhancers and determined the effects on
reporter gene expression. We have tested all the TIR vari-
ants at different bacterial growth phases, growth rates and
temperatures.

Results
Design of the model constructs
Three sets of TIRs were designed and cloned in front of the
GFP coding reporter gene (Figure 1, Additional file 1).
Each set contained 10 variants of the SD sequence. The SD
variants were constructed by mutating the sequence,
forming an 8 base pair duplex with the complementary
aSD, and reducing its length from 8 nucleotides to 1. Each
set contained a unique sequence upstream of the SD: one
containing no translational enhancer ("no enhancer"),
one containing a previously-described strong A/U rich
enhancer, and one with a weak enhancer [19,33]. Tran-
scription of the reporter genes was controlled by the IPTG
inducible tac promoter [34]. The mRNAs synthesized
from the tac promoter contained a lacO operator sequence
in front of the TIRs. We suspected that the lacO sequence
might influence the activity of the TIR. Therefore a fourth
set of SD sequences was cloned under a different pro-
moter, the arabinose-inducible araBAD promoter [35].

In our constructs, a 6-nucleotide spacer sequence sepa-
rated the SD from the initiation codon (Additional file 1).
The particular sequence used has been reported to direct
translation efficiently [36]. This spacing between the SD
and the AUG codon has been shown to be optimal for
efficient gene expression [16]. The spacer sequence (5'-
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AACAAU-3') provides no opportunities for forming
strong alternative SD:aSD interactions, although the
"AGG", "GG" and "G" SD sequences could possibly give
alternative interactions, which would create AGGA, GGA
and GA SD sequences closer to the initiation codon. How-
ever, this alternative interpretation of the results concerns
only the weakest SD sequences and therefore would not
influence the conclusions of the current work.

It is known that RNA secondary structure involving the
TIR can influence the efficiency of initiation [37-39].
Therefore we have used the Mfold RNA folding program
[40,41] to study the possible secondary structures in the 5'
untranslated leader regions of our mRNAs. This model-
ling suggests that in all our constructs the SD region is not
involved in strong secondary structure interactions.

Our aim was to determine the translational activities of
the different TIR sequences. It has been reported that
sequences in the 5' part of mRNA could influence mRNA
stability in the cell [42]. We therefore used quantitative
RT-PCR to detect any differences in the levels of mRNAs
expressed from our constructs. The results (Additional file
2) indicate that all our constructs expressed mRNA at very
similar levels, the differences among them being less than
13%.

Effects of the TIR variations on the level of protein 
synthesis
The plasmids coding for mRNAs with different TIRs were
transformed into E. coli MG1655 cells and the levels of
protein synthesis were measured by the fluorescence of

the GFP reporter gene. The bacterial cultures were inocu-
lated and aliquots were taken after every hour. GFP
expression was induced in these aliquots for one hour and
the fluorescence was measured. Bacterial growth was
monitored by optical density. In addition, mRNA levels
were monitored by real time PCR. To eliminate errors that
occurred during mRNA preparation, the levels of both
GFP and EF-Tu mRNAs were measured; the "normalized
mRNA level" is defined as the molar amount of GFP
mRNA divided by the molar amount of EF-Tu mRNA. The
"expression level" (Figure 2) is calculated by dividing the
fluorescence signal by the "normalized mRNA level".
Thus, the "expression level" indicates the amount of GFP
that is produced per mRNA. We also present the ratios of
the fluorescence values to the optical density values,
reflecting the amount of the protein synthesized per cell
(Additional file 3). As the particular GFP variant matures
in considerably less than 1 hour [43] and no degradation
of the protein occurs during this time [44], our data show
the total accumulation of the protein during the induction
period.

When the different sets of constructs with and without
enhancers were compared, the expected pattern [19] was
observed: the weak enhancer caused a small increase in
reporter gene expression while the strong enhancer caused
the greatest increase (Figure 2). The two sets of constructs
that lacked an enhancer, expressed from the tac (Figure 2)
or the araBAD promoter (Additional file 3), produced the
lowest amounts of GFP. The results with the tac and ara-
BAD promoters were nearly identical (Additional file 3),
showing that the operator sequences have no specific

Sequences used in the current studyFigure 1
Sequences used in the current study. The SD sequences and enhancers were inserted in front of the ORF coding for green flu-
orescent protein (GFP). Different SD variants were constructed by mutating the sequence into complementary nucleotides. 
The enhancers used were the "A/U-rich enhancer" (the boxA sequence of rrnB [19, 33]) and its mutant with decreased activity 
("weak enhancer") [19]. All SD variants in combination with the enhancers were inserted under control of the tac promoter 
regulated by IPTG.
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influence on the TIR activity. In addition, we have tested
the different SD sequences in front of lacZ gene (data not
shown). Also in this case the relative differences between
the efficiencies of TIRs are similar to the results obtained
in the context of the GFP gene. Thus, in our different sets
of constructs the sequences upstream (tac or araBAD oper-
ator) or downstream (lacZ or GFP coding gene) of the TIR
have been replaced causing no changes in the relative effi-
ciencies. These results suggest that our conclusions are
valid for TIRs in different sequence context although we
cannot exclude that certain contexts might have major
effects on the relative order of SD efficiencies.

Irrespective of the enhancer context, protein expression
was highest for the 6-nucleotide SD AGGAGG (Figure 2).
In the absence of enhancer, there are only small differ-
ences between weak and strong SD sequences (Figure 2A).
When a strong enhancer is introduced into the TIR (Figure
2C), the differences between the SD sequences are greatly
increased: the A/U-rich enhancer works cooperatively
with the SD sequence, enhancing the efficiency of selec-

tion of the strongest SD sequence and having only a
minor effect on the weakest one.

The growth phase of the bacterial culture has a considera-
ble effect on reporter gene expression (Figure 2). During
the lag phase (1 hour time point) the mRNA is rapidly
induced (Additional file 2) but the amount of protein per
mRNA is very small. The efficiency of mRNA translation
increases in both the exponential (3 hour time point) and
stationary (6 hour time point) phases. There is also an
enhancer-specific effect: the A/U rich enhancer has a
greater stimulatory effect in the exponential phase than in
the stationary phase (Additional file 3).

Effect of temperature on TIR selection
The differences in SD length lead to differences in the
strength of the SD:aSD interaction. We calculated the
change of free energy of these interactions for all SD vari-
ants tested (Table 1) using a previously-described method
[18]. At 37°C the optimal SD:aSD base pairing free energy
value is around -7.7 kcal/mol. Translation is less efficient

The effect of the TIR on GFP synthesisFigure 2
The effect of the TIR on GFP synthesis. GFP synthesis directed by mRNAs lacking enhancer (A). GFP synthesis directed by 
mRNAs containing weak enhancers (B). GFP synthesis directed by mRNAs containing A/U-rich enhancers (C). Growth curve 
of the cultures shown on panel C (D). The bacterial cultures were inoculated and aliquots were taken at the indicated time 
points. GFP expression was induced in these aliquots for one hour and the fluorescence was measured. In addition, mRNA lev-
els were monitored by real time PCR. The expression level was calculated according to the following formula: expression level 
= fluorescence/(molar amount of GFP mRNA/molar amount of EF-Tu mRNA).
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when the strength of the interaction is greater or less than
this (Table 1; Figure 2). TIRs containing the A/U-rich
enhancer are especially sensitive to the strength of the
SD:aSD interaction (Figure 2, Table 1).

The binding of SD to the aSD sequence in the 3' end of the
16S rRNA is mediated by base-pairing, which is tempera-
ture-dependent. Therefore, temperature change should
influence the strength of the SD:aSD interaction. This
change in interaction strength could lead to changes in the
SD preference pattern. We decided to repeat the measure-
ments of TIR efficiency at a lower growth temperature,
20°C. To visualize the results, all GFP fluorescence values
were divided by the fluorescence measured for GAGG SD
and plotted against time (Figure 3). A similar calculation
was made from the data collected at 37°C (Figure 3). The
differences in SD preference were smaller at 20°C than at
37°C (Additional files 3, 4): in constructs without
enhancer or with weak enhancer the differences were
hardly detectable. When the A/U-rich enhancer was incor-
porated into the TIR, the 5-nucleotide SD GGAGG gave
the highest level of protein synthesis at 20°C (Figure 3).
In contrast, the 6-nucleotide SD gave the highest level of
translation at 37°C.

We calculated the Gibbs energy values of the SD:aSD
interactions at 20°C and 37°C using hybrid-min software
[45] (Table 1). The ∆G value for the 5-nucleotide SD inter-
action with the aSD sequence is -9.4 kcal/mol at 20°C; at
37°C the ∆G of interaction between the optimal 6-nucle-
otide SD AGGAGG with aSD is -7.7 kcal/mol. This indi-
cates that the optimal free energy of the interaction is
between -7.5 and -9.5 kcal/mol.

TIR efficiency in different media
It has been shown that the concentrations of cellular com-
ponents responsible for protein synthesis (ribosomes,
tRNA) vary with growth rate [46,47]. Therefore, the

growth rate-dependent regulation might influence the TIR
preference pattern. Therefore we measured the efficiency
of different TIRs during growth in different media. Bacte-
ria were grown at 37°C in LB or MOPS medium [48] con-
taining either glucose or sodium acetate as a carbon
source. The doubling time of the bacteria grown in LB
medium is 26 minutes (Figure 4D), in MOPS medium
with glucose as energy source 30 minutes (Figure 4H), and
in MOPS medium with sodium acetate 340 minutes (Fig-
ure 4I). To visualize the results, the GFP fluorescence val-
ues were divided by the fluorescence measured for the
GAGG SD sequence (Figure 4). The results show that
although there are quantitative differences in the TIR
selection pattern among the different media, the ranking
order does not change.

Correlation between SD length and predicted expression 
level
We showed experimentally that the highest translation
level at 37°C is achieved by constructs with 6 paired
nucleotides in the SD:aSD region (Figure 2). Which SD
sequences are used most often in E. coli mRNAs? Are the
most efficient sequences used in highly expressed genes?
To answer these questions, we analyzed the SD sequences
of 4243 E. coli genes. We calculated the number of paired
nucleotides for the strongest possible base pairing
between the 13 3' terminal nucleotides of 16S RNA and
the 21-nucleotide sequence upstream of the mRNA initia-
tion codon. Our analysis gave results similar to the con-
clusions of a study by Schurr et al. [18] in which a smaller
dataset was used. The average number of paired nucle-
otides in genomic SD is 5.8 and the median number is 6
(Figure 5). This result is in good agreement with our
observation that a 6-nucleotide SD is optimal at 37°C. In
our experimental constructs the optimal 6-nucleotide
base pairing between SD and aSD has free energy of -7.7
kcal/mol at 37°C (Table 1). On the other hand, the
SD:aSD interaction in the genomic sequences is often
shifted to more A/U-rich regions and contains mis-
matches. (The antiSD sequence is GAUCACCUCCUUA.
Different regions of this sequence can be involved in the
base pairing interaction. For example, 5 base pair long
helix containing the AUCAC sequence is weaker than the
similarly 5 base pair long helix containing antiSD
sequence CCUCC.) Therefore the average ∆G of this inter-
action in the E. coli genomic sequences is lower (only -6
kcal/mol) than in the optimal experimental construct. The
reason for this difference is not clear. It might indicate that
genomic SD sequences are suboptimal, but it could also
be caused by biases in the free energy calculation algo-
rithm (see Discussion).

The codon adaptation index (CAI) [49] characterizes the
similarity of synonymous codon usage in a given gene to
that in the highly expressed genes. CAI values vary

Table 1: ∆G of SD:aSD interactions.

Shine-Dalgarno ∆G37°C ∆G20°C
(kcal/mol) (kcal/mol)

UAAGGAGG -9.4 -12.6
AAAGGAGG -9.3 -12.3
AUAGGAGG -7.7 -10.1
AUUGGAGG -6.9 -9.4
AUUCGAGG -3.9 -5.7
AUUGGAGC -4.7 -6.7
AUUCCAGG -1.0 -2.1
AUUCGAGC -1.7 -2.9
AUUCCUGG -0.1 -1.3
AUUCCUCG NA NA

∆G of SD:aSD interactions at 37°C and 20°C, including 8 nucleotides 
from mRNA and 8 nucleotides from 16S rRNA. Free energy was 
calculated using hybrid-min from the UNAFold package [45].
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between 0 and 1. A CAI value of 1 is achieved when all
amino acids in a given protein are coded by the best
codon in each synonymous codon family. The correlation
between CAI and gene expression level is well docu-
mented [50-52]. Therefore, we used CAI as a measure of
gene expression level and plotted it against the number of
paired nucleotides in the SD:aSD region. The results indi-
cate that the base pairing potential of the SD sequences
does not correlate with CAI: the average CAI is the same
for all gene groups with different numbers of base pairs in
SD:aSD interactions (Figure 5). Very similar results were

obtained when CAI was plotted against the ∆G of the
SD:aSD interactions [52], data not shown).

Discussion
In this study we have investigated the influence of SD
sequence length on the efficiency of translation. Variants
of the SD sequence were tested with the help of a reporter
gene coding for GFP. Shortening of the SD from the 8-
nucleotide UAAGGAGG to the single-nucleotide paired G
by mutating the sequence into complementary nucle-
otides reveals an optimal SD length: the 6-nucleotide SD

Effect of the growth temperature on TIR selectionFigure 3
Effect of the growth temperature on TIR selection. The cells were grown either at 20°C (A) or at 37°C (C). All the TIRs 
shown contain strong, A/U-rich enhancers. The bacterial cultures were inoculated and aliquots were taken at the indicated 
time points. GFP expression was induced in these aliquots for one hour and the fluorescence was measured. Relative fluores-
cence was calculated by dividing the fluorescence values measured for cells containing particular constructs by the fluorescence 
measured for the GAGG SD sequence. In addition, growth curves at 20°C (B) and 37°C (D) are shown.
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TIR selection in different mediaFigure 4
TIR selection in different media. The cells were grown in either LB (A, B, C, D), MOPS medium containing glucose, "MOPS 
Glc" (E, F, G, H), or MOPS containing sodium acetate, "MOPS NaAcetate" (I, J, K, L) at 37°C. mRNAs lacking enhancer (A, 
E, I), containing the weak enhancer (B, F, J) or containing the strong A/U-rich enhancer (C, G, K) were tested. The bacterial 
cultures were inoculated and aliquots were taken at the indicated time points. GFP expression was induced in these aliquots 
for one hour (LB, MOPS Glc) or 3 hours (MOPS NaAcetate) and the fluorescence was measured. Relative fluorescence was 
calculated by dividing the fluorescence values measured for cells containing particular constructs by the fluorescence measured 
for the GAGG SD sequence. In addition, growth curves in different media are shown (D, H, L).
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AGGAGG causes the highest level of protein synthesis
(Figure 2). Both shorter and longer SD sequences are less
efficient. Shorter SD sequences may be less efficient
because binding to the ribosome is weaker. For very long
SDs it has been proposed that the interaction of the 30S
ribosomal subunit with mRNA is stronger than optimal,
increasing the time required for the ribosome to leave the
translation initiation site and proceed with protein elon-
gation [19].

Several studies of the influence of SD length on gene
expression have been published. According to Rinquist et
al. [53] the 8-nucleotide SD UAAGGAGG is 4 times more
efficient than the 5-nucleotide AAGGA sequence. Komar-
ova et al. [19] compared the 10-nucleotide AAGGAG-
GUGA, the 8-nucleotide AAGGAGGU and the 6-
nucleotide AAGGAG SD sequences and found that AAG-
GAG confers the highest expression level of the reporter
gene. Chen et al. [16] reported that GAGGU is twice as
active as the UAAGG sequence. Although these earlier
results are fragmentary and do not allow the most active
SD sequence to be defined, the data are consistent with
our current finding that the 6-nucleotide SD is the most
efficient.

In order to increase the probability of 30S ribosomal sub-
unit attachment and the initiation of translation, bacterial
mRNAs contain standby sites that are used for the primary
binding of the small ribosomal subunits in the vicinity of
the SD and start codon [23,24]. One class of these standby
sites contains A/U-rich sequences that can bind the ribos-
omal protein S1 [26,29] and/or reduce mRNA local sec-
ondary structure in the TIR [10]. It has been suggested that
all highly expressed mRNAs possess the A/U-rich

sequences upstream of the SDs [19]. The fact that nearly
all protein synthesis in E. coli is dependent on S1 [32] sup-
ports this proposal.

In our study we have investigated the effect of adding
enhancers in front of the SDs. The sequences upstream of
the SD did not change the SD preference qualitatively:
AGGAGG still remained the most efficient SD sequence at
37°C (Figure 2). On the other hand, the A/U-rich
enhancer and SD influence the efficiency of protein syn-
thesis cooperatively: a marked increase in protein synthe-
sis was observed for 5- to 8-nucleotide SDs combined
with the enhancer; the yield of GFP from 1-, 2- and 3-
nucleotide SDs was only slightly increased after the
enhancer sequence was added. This result indicates that
for efficient initiation of translation both a strong SD and
the enhancer sequences are important. Our observations
also explain the previous reports that in some cases the
strength of the SD:aSD interaction does not determine the
efficiency of TIR [22]. Our data show that large differences
between the SD sequences are observed only in case the
SD is combined with enhancer sequences. What might be
the origin of co-operativity between the SD sequences and
enhancers? We suggest that the SD sequence determines
the maximal rate of initiation; enhancer might increase
the local concentration of initiation complexes allowing
the strong SD sequences to work most efficiently.

Another sequence element that has been shown to influ-
ence the efficiency of TIR is the spacer separating SD from
initiation codon. In the current study we have used a
spacer sequence that has been reported to direct efficient
initiation of translation [36]. It has the optimal length:
shorter and longer variants of the spacer are less efficient
[16,54]. It has been pointed out previously that the opti-
mal spacing of SD sequences correlates with gene expres-
sion level [55]. Therefore it would be interesting to
measure experimentally the interaction of suboptimal
spacers with SD sequences: does the spacer context influ-
ence the SD preference pattern? These experiments remain
to be performed in the future.

The concentrations of translation apparatus components
depend on the growth phase and growth rate of the bacte-
rial culture [46,47]. As the concentration of ribosomes
available for initiation of translation changes, the selec-
tion of the TIR may depend on the growth parameters. To
investigate this possibility we grew the bacteria in three
media that give different growth rates. To detect possible
growth phase-dependent variations we followed the
induction of the reporter gene throughout the growth
curve. The results (Figures 2 and 4) indicate that there are
no qualitative differences in the TIR selection pattern,
although some quantitative effects were observed. For
example, weak enhancer sequences are active only in

Distribution of the number of paired nucleotides in SD:aSD interactions and the CAI values for 4243 E. coli genesFigure 5
Distribution of the number of paired nucleotides in SD:aSD 
interactions and the CAI values for 4243 E. coli genes. The 
figure shows the number of genes (grey bars, left axis) and 
the average CAI with 95% confidence intervals (black dots, 
right axis).
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media where growth rate is low. Also, the enhancer
sequences are more active in the exponential growth
phase than in the lag and stationary phases.

The free energy of base pairing between two RNA strands
depends on the temperature. Therefore, the strength of the
SD:aSD interaction is temperature-dependent. If the opti-
mal free energy of this interaction determines the effi-
ciency of translation, then shorter SD:aSD duplexes
should be preferred at lower temperatures. To test this pre-
diction, we measured the TIR preference pattern at 20°C
and compared it to the data collected at 37°C (Figure 3).
At 37°C the most efficient SD sequence is AGGAGG and
at 20°C it is GGAGG; the optimum shifts to a shorter
sequence when the temperature is lowered. This result
indicates that a certain optimal strength of SD:aSD inter-
action is required for efficient translation. It also suggests
that the length of the SD sequence could be used for tem-
perature-dependent regulation of gene expression. Unfor-
tunately, we cannot analyze the length of SD sequences in
the known cold shock genes of E. coli as the dataset is too
small for a statistically meaningful conclusion.

We found that the most efficient SD at 37°C is AGGAGG,
with 6 paired nucleotides. Are the most efficient
sequences also commonly used in the E. coli genome? To
answer this question, we used bioinformatics tools to ana-
lyze the SD:aSD interactions in all E. coli mRNAs. We
found that the average SD length is 5.8 nucleotides, which
agrees with the observation that a 6-nucleotide SD is opti-
mal at 37°C. On the other hand, the SD:aSD interaction
is often shifted to more A/U-rich regions compared to the
AGGAGG sequence and contains one or more mis-
matches. Therefore the average ∆G of this interaction is
only -6 kcal/mol rather than -7.7 kcal/mol as achieved
with the best experimental SD.

Why do most E. coli mRNAs, including those coding for
highly expressed genes, have SDs that are not expected to
direct the highest level of translation at 37°C? We suggest
three possibilities. First, E. coli has to grow in the mamma-
lian gut but also to survive at lower temperatures outside
the host. The temperatures of both environments may
have contributed to the selection of SD sequences. Sec-
ond, the noise in gene expression levels may be involved.
A particular expression level could be achieved by differ-
ent contributions from transcription and translation. The-
oretical calculations have suggested, and experimental
data confirmed, that a high level of transcription com-
bined with a low level of translation creates considerably
smaller fluctuations in gene expression than a combina-
tion of a low level of transcription with highly efficient
translation resulting in the same overall expression level
[56-58]. Therefore, using weak TIRs might reduce noise in
gene expression. Third, the effect may be attributable to

differences in SD structure between the experimental con-
structs and genes in the E. coli genome. Our experimental
constructs contain continuous stretches of paired nucle-
otides without mismatches, whereas E. coli genes contain
longer paired areas with one or more mismatches. It is not
possible to estimate the energetic effect of the mismatches
accurately in the context of the ribosome where the
SD:aSD helix is stabilized by contacts with ribosomal
RNA and proteins [17,59]. Further experiments are
needed to evaluate the effect of mismatches in SD
sequences.

Conclusion
In E. coli the SD selection preferences are influenced by the
growth temperature and not influenced by the growth
rate. The A/U-rich enhancer contributes strongly to the
efficiency of initiation. The SD sequences and the A/U-
rich enhancer stimulate translation co-operatively: strong
SDs are stimulated by the enhancer much more than weak
SDs. Further experiments are needed to elucidate the bio-
chemical nature of this co-operativity.

Methods
Oligonucleotides
Sequences of the oligonucleotides used are provided in
the Appendix.

TIR cloning
The gene gfpmut2 [60] was PCR amplified from the plas-
mid pMS201 using Tac and Reverse primers. The PCR
product contained the tac promoter [34], a BamHI clon-
ing site for TIR insertions and the trp terminator (Addi-
tional files 1, 5). The gfpmut2 PCR product was ligated
into pGEM-T easy vector (Promega). From pGEM-T easy
vector, gfpmut2 was excised using the restriction enzymes
SphI and SacI (Fermentas) and cloned into pET41A vector
(Novagene) resulting a plasmid pETGFP (Additional file
5). TIRs generated by PCR with SD general (1, 2 or 3) and
TIR-specific primers were inserted into the BamHI restric-
tion site in the pETGFP vector.

To express GFP under the bad promoter, gfpmut2 was PCR-
amplified from pMS201 using Forward NheI and Reverse
primers. The PCR product contained a BamHI cloning site
for TIR insertions, trp terminator and NheI and SacI
restriction sites at the ends. The PCR product was ligated
into pGEM-T easy vector. gfpmut2 was excised from this
vector using NheI and SacI (Fermentas) and cloned into
pBAD33 vector (Additional file 5) [35] under the control
of the araBAD promoter. TIRs were generated by PCR as
described above and inserted into the BamHI restriction
site.
Page 9 of 13
(page number not for citation purposes)



BMC Molecular Biology 2007, 8:100 http://www.biomedcentral.com/1471-2199/8/100
Growth of bacteria and measurement of GFP expression
Plasmids coding for GFP mRNAs with different TIRs were
transformed into E. coli MG1655 [61]. Bacteria bearing
the plasmids were grown in the presence of 25 µg/ml kan-
amycin in 2.5 ml LB medium at 37°C or 20°C, MOPS
medium supplemented with 0.1% glucose (MOPS Glc),
or MOPS medium supplemented with 0.3% sodium ace-
tate (MOPS NaAcetate) [48] at 37°C. Overnight cell cul-
tures were diluted with fresh medium to an optical density
of 0.05 (A600 nm). Growth was monitored by the increase
in optical densities of the cultures. For bacterial cultures
grown at 37°C in LB or MOPS Glc media, samples were
taken every hour; in LB medium at 20°C every 2 hours; in
MOPS NaAcetate medium at 37°C every 6 hours. Aliquots
(50 µl) of each bacterial culture were transferred to black
96-well plates where GFP expression was induced by add-
ing IPTG (final concentration 1 mM) or arabinose (final
concentration 10 mM). The 96-well plates were incubated
for 1 hour at 37°C (LB, MOPS Glc), for 3 hours at 37°C
(MOPS NaAcetate) or for 1 hour at 20°C (LB, 20°C) and
GFP fluorescence was measured using a TECAN Fluoroim-
ager. Experiments were repeated at least 3 times and
standard deviations of the results were calculated.

Reverse transcription Real-Time PCR
Sequences coding for GFP (mut2) or E. coli EF-Tu were
inserted under the control of the T7 promoter (pGEM-T
easy, Promega), transcribed in vitro and purified. These in
vitro transcribed mRNAs were used as standards. Bacteria
bearing the plasmids coding for GFP mRNAs with differ-
ent TIRs were grown in 2.5 ml LB medium at 37°C. After
1, 3 or 6 hours of growth, GFP expression was induced by
adding IPTG (final concentration 1 mM), followed by
incubation for 1 hour. Cells were harvested from 1 ml of
the growing cultures and total RNA was isolated using a
Macherey-Nagel RNA extraction kit. Reverse transcription
was performed in 5 µl volumes containing 0.5 mM of each
NTP (Fermentas), 1500 nM GFP Reverse primer, 2 U ribo-
nuclease inhibitor (Fermentas), 10 U Revert-Aid reverse
transcriptase (Fermentas) and mRNA in the range 10 fg to
1 ng in Revert-Aid reverse transcription buffer (Fermen-
tas). RNA was reverse transcribed at 42°C for 1 hour and
the reverse transcriptase was inactivated by heating at
70°C for 10 minutes. After the reverse transcription reac-
tion, 20 µl PCR reaction components (300 nM GFP For-
ward primer, 0.0005 µl of SYBR Green I (10,000×
concentrate in DMSO; Molecular Probes), 5 mM MgCl2,
10 µl 2× PCR Master Mix (Fermentas)) were added, fol-
lowed by PCR steps: prePCR (95°C for 10 seconds) and
40 PCR cycles (95°C for 5 seconds, 60°C for 10 seconds
and 72°C for 10 seconds). Real-time PCR was performed
using a SmartCycler (Cepheid). The amount of GFP
mRNA was normalized with EF-Tu mRNA, which was
determined using the same reverse transcription-PCR pro-

tocol as described above, replacing the primers with EF-Tu
Reverse and EF-Tu Forward.

Calculation of minimal free energy of SD:aSD interaction
The mRNA coding sequences of Escherichia coli K-12 [61]
were retrieved from the National Center of Biotechnology
Information [62]. For each mRNA we used a region of 21
nucleotides upstream from the start codon, as described
by Schurr et al. [18]. For anti-SD sequence we used 13
nucleotides from the 3' end of 16S rRNA (GAUCACCUC-
CUUA). The minimal free energy values for rRNA-mRNA
duplexes were calculated by the hybrid-min program from
UNAFold package downloaded from the DINAMelt web
server [45,63].

Calculation of codon adaptation index
The codon adaptation index (CAI) was calculated using
the program CodonW [64]. This calculation is based on a
dataset of highly expressed genes including those encod-
ing ribosomal proteins, outer membrane proteins, elon-
gation factors, heat shock proteins and RNA polymerase
subunits [49].
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Appendix
Sequences of the oligonucleotides
Amplification of the GFP coding gene
Tac: tttggtaccttttgacaattaatcatcggctcgtataatgtgtggaattgt-
gagcggataacaatttgggatcc ataaggaggaacaatatgggatccaaaggt-
gaagaattattcactg; Reverse: caacgagctcaaaaaa
aagcccgctcattaggcggttatttgtacaattcatccatac; Forward NheI:
gctagcggatcctctaaa ggtgaattattcact.

Amplification of TIRs without enhancer
SD general 2: tgggggtaccttttgacaattaatcatcggctcgtataatgtgt-
ggaattgtgagcggataacaatttg ggatcca; UAAGGAGG 2: caatcg-
gatcctttcatattgttcctccttatggatcccaaattgttatcc; AAGGAGG 2:
caatcggatcctttcatattgttcctccttttggatcccaaattgttatcc;
AGGAGG 2: caat cggatcctttcatattgttcctcctattggatcccaaattgt-
tatcc; GGAGG 2: caatcggatcctttcatattgttcctc caattggatc-
ccaaattgttatcc; GAGG 2:
caatcggatcctttcatattgttcctcgaattggatcccaaattgttatcc;

GGAG 2: caatcggatcctttcatattgttgctccaattggatcccaaattgt-
tatcc; AGG 2: caatcggatcctttc atattgttcctggaattggatcccaaatt-
gttatcc; GAG 2: caatcggatcctttcatattgttgctcgaattggatcccaa
Page 10 of 13
(page number not for citation purposes)



BMC Molecular Biology 2007, 8:100 http://www.biomedcentral.com/1471-2199/8/100
attgttatcc; GG 2: caatcggatcctttcatattgttccaggaattggatc-
ccaaattgttatcc; G 2: caatcggatcc tttcatattgttcgaggaattggatc-
ccaaattgttatcc.

Amplification of TIRs with weak enhancer
SD general 1: tgggggtaccttttgacaattaatcatcggctcgtataatgtgt-
ggaattgtgagcggataacaatttg ggatccactggtctgtaacgagttatca-
gatcca; UAAGGAGG: caatcggatcctttcatattgttcctccttatg
gatctgataactcg; AAGGAGG: caatcggatcctttcatattgttcctcctttt-
ggatctgataactcg; AGGAGG: caatcggatcctttcatattgttcctcctatt-
ggatctgataactcg; GGAGG: caatcggatcctttc
atattgttcctccaattggatctgataactcg; GAGG: caatcggatcctttcat-
attgttcctcgaattggatctgataac tcg; GGAG: caatcggatcctttcatatt-
gttgctccaattggatctgataactcg; AGG: caatcggatcctttcata
ttgttcctggaattggatctgataactcg; GAG: caatcggatcctttcatattgtt-
gctcgaattggatctgataactcg;

GG: caatcggatcctttcatattgt tccaggaattggatctgataactcg; G:
caatcggatcctttcatattgttcgagga attggatctgataactcg.

Amplification of TIRs with A/U-rich enhancer
SD general 3: acaatttgggatccactgctctttaacaatttatcagatcca;
UAAGGAGG 3: tgaatcgga tcctttcatattgttcctccttatggatctga-
taaattgttaaag; AAGGAGG 3: tgaatcggatcctttcatattgttcc
tccttttggatctgataaattgttaaag; AGGAGG 3: tgaatcggatcctttcat-
attgttcctcctattggatctgataa attgttaaag; GGAGG 3:
tgaatcggatcctttcatattgttcctcctattggatctgataaattgttaaag;
GAGG 3: tgaatcggatcctttcatattgttcctcgaattggatctgataaattgt-
taaag; GGAG 3: tgaatcggatcctttca tattgttgctccaattggatctga-
taaattgttaaag; AGG 3:
tgaatcggatcctttcatattgttcctggaattggatctg ataaattgttaaag;
GAG 3: tgaatcggatcctttcatattgttgctcgaattggatctgataaattgt-
taaag; GG 3: tgaatcggatcctttcatattgttccaggaattggatctga-
taaattgttaaag; G 3: tgaatcggatcctttcatattgttcga
ggaattggatctgataaattgttaaag.

Reverse transcription real-time PCR
GFP Forward: gttccatggccaaccttagtcactactttc; GFP Reverse:
agcaaaac attgaagaccatacgcgaa; EF-Tu Forward: gagatgga-
gaatacgtcttcga; EF-Tu Reverse: accagagcgtgcgattg.

Additional material
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