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Abstract
Background: Sequence periodicity with a period close to the DNA helical repeat is a very basic
genomic property. This genomic feature was demonstrated for many prokaryotic genomes. The
Escherichia coli sequences display the period close to 11 base pairs.

Results: Here we demonstrate that practically only ApA/TpT dinucleotides contribute to overall
dinucleotide periodicity in Escherichia coli. The noncoding sequences reveal this periodicity much
more prominently compared to protein-coding sequences. The sequence periodicity of ApC/GpT,
ApT and GpC dinucleotides along the Escherichia coli K-12 is found to be located as well mainly
within the intergenic regions.

Conclusions: The observed concentration of the dinucleotide sequence periodicity in the
intergenic regions of E. coli suggests that the periodicity is a typical property of prokaryotic
intergenic regions. We suppose that this preferential distribution of dinucleotide periodicity serves
many biological functions; first of all, the regulation of transcription.

Background
DNA sequence periodicity with the period about 10–11
base pairs (bp) has been long known in eukaryotic DNA
sequences. It was discovered recently in prokaryotic
sequences as well [1-6]. The periodicity in Eubacteria
sequences usually shows the period close to 11 bp [1].
This period is clearly different from the structural helical
period of 10.5–10.6 bp/turn [7,8]. The difference was
interpreted [1,2] as a possible reflection of the sequence
dependent writhe of prokaryotic DNA. In the work [9] it
was demonstrated that the periodicity in the bacterial
genomes, in E. coli as well, is distributed in a non-uniform
way, in scattered segments of the size 100–150 bases. It
was also known for a long time that quite a few DNA pro-

moter regions of E. coli possess the sequence periodicity of
AA and TT dinucleotides [10].

The sequence periodicity of AA/TT dinucleotides is fre-
quently associated with sequence-dependent DNA curva-
ture, which is known to play an important role in the
initiation of transcription of many genes (for reviews, see
[11-15]). Using different models and approaches for pre-
diction of intrinsic DNA curvature it was shown that many
E. coli promoters have upstream curved sequences
[16,17]. Pedersen et al. [18] showed that promoter area
frequently has an unusual sequence structure. This region
possesses higher DNA curvature, more rigid and less sta-
ble. Moreover, in our study of prokaryotic terminators of
transcription (Hosid and Bolshoy, submitted) we have
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found that in E. coli DNA curvature peaks are frequently
located downstream of the CDS.

Since the dinucleotide periodicity with the period close to
the helical repeat is associated with DNA intrinsic curva-
ture [19-23], the curvature distribution along DNA would
suggest similar distribution of DNA sequence periodicity.

In this work, the sequence dinucleotide periodicity in E.
coli and its distribution along the genome are systemati-
cally analyzed. A strong preference of intergenic regions to
express the sequence periodicity of AA, AC, GC, and TT
dinucleotides is discovered.

Results and Discussion
Positional autocorrelation analysis of the nucleotide
sequences is an appropriate tool to detect all major char-
acteristic distances in the sequences, the periodicities in
particular. The complete genome of E. coli, as well as its
coding and noncoding regions, was subjected to this pro-
cedure. Resulting autocorrelation profiles for all 16 dinu-
cleotides (data not shown) were further analyzed by
Fourier transform. In Fig. 1 the corresponding spectra are
shown. The analysis demonstrates presence of the
sequence periodicity of AA and TT dinucleotides with a
period close to 11 bp mostly in intergenic regions, and
weaker periodicity of AC and GC notably exclusively in
intergenic regions. All 16 dinucleotides show periodicity
of 3 bp, a well-known characteristics of the coding
sequences, e.g. [24,25]. Weak 2 bp periodicity of AT and
TA is also observed in intergenic regions. It indicates, per-
haps, presence of tandem ApT repeats. A weak 10 bp peri-
odicity of GC in intergenic regions, probably, corresponds
to terminator regions (work in progress). The amplitudes
of the 11 bp periodicity of AA and TT are the highest, even
comparable with 3 bp coding periodicity. We, thus,
focused on AA and TT distributions.

To screen the genome of E. coli and find out where the
periodical regions are located, we chose the period 11.2
bp [1,2,5] and this study (Fig. 1); and the window of 150
bp [9,26]. We used periodical AA and TT probes with the
above periodicity to correlate with the E. coli genome
sequence and to detect the periodical sites. This calcula-
tion shows that the periodicity is not evenly distributed
along the E. coli genome.

In Fig. 2, the typical maps for several large segments of the
E. coli genome are shown. The periodicity is distinctly
located in certain regions. Many of the peaks observed are
found to correspond to the intergenic regions (indicated
by the black bars at the top). For example, two such peaks
of periodicity in Fig. 2a correspond to the intergenic
regions. Three such maxima are observed in Fig. 2b, three
in Fig. 2c, and two in Fig. 2d. For the genome sections in

Fig. 2 about 2/3 of the intergenic regions are associated
with the local periodicity.

To verify the apparent strong correlation between the
intergenic regions and AA/TT periodicity, we split inter-
genic regions in several families by size and analyzed the
subsets separately by aligning (centering) the regions and
summing up the respective local periodicity distributions.
The combined maps for intergenic regions with a size
from 50 to 150 bp, from 150 to 250 bp, from 250 to 350
bp, from 350 to 450 bp, and from 450 to 550 bp are
shown in Fig. 3. This figure demonstrates, indeed, that
intergenic regions are typically periodic, irrespective of the
size. The average amplitudes of the observed periodicities
– 0.1–0.25 units – are comparable with the amplitudes in
Fig. 2, which indicates that, indeed a large proportion of
the intergenic regions are periodical.

To verify the choice of the period 11.2 bases, we calculated
the periodicity maps for highly populated group of the
regions of the size 200 ± 50 bp, by assuming different peri-
ods in the range 10.5–12.5 bases. The resonance 3D plot
in Fig. 4 indicates that the best-fit period is 11.3 ± 0.4 bp,
which confirms earlier estimates of the E. coli DNA
sequence periodicity.

The spectral analysis (Fig. 1) and examples of the periodic-
ity distribution maps (Fig. 2) show that apart from
described correlation among the intergenic regions and
AA/TT periodicity, there are numerous sites of periodicity
located within coding sequences. Work is in progress to
find out the functional relevance, if any, of these sites.

Conclusions
The observed concentration of the sequence periodicity in
the intergenic regions corroborates earlier results and sug-
gests that the periodicity is a typical property of the inter-
genic regions.

Methods
Genome data
The sequence of the whole genome of Escherichia coli K-12
MG1655, locus U00096, 4639221 base pairs, was taken
from the National Center of Biotechnology Information
ftp://ftp.ncbi.nih.gov/genbank/genomes. Intergenic
regions were identified in accordance with the annotation
to this genome of E. coli and gathered in a separate dataset.

Fourier transform of positional autocorrelation function
Autocorrelation profile X was calculated for each dinucle-
otide separately. For the calculation of ApA autocorrela-
tion, for example, we calculated the number of
occurrences of pairs ApA – ApA in a distance k, and desig-
nated it by Xk. Spectral analysis of autocorrelation profile
X was obtained using the following formulae:
Page 2 of 7
(page number not for citation purposes)

ftp://ftp.ncbi.nih.gov/genbank/genomes


BMC Molecular Biology 2004, 5:14 http://www.biomedcentral.com/1471-2199/5/14
Periodograms of the distance distributions of 16 dinucleotides in E. coli genomeFigure 1
Periodograms of the distance distributions of 16 dinucleotides in E. coli genome. The complete nucleotide sequence of E. coli, as 
well as subsets of its coding and noncoding regions, was subjected to the positional autocorrelation analysis for all 16 dinucle-
otides separately. Resulting autocorrelation profiles were after that analyzed by Fourier transform. The black lines correspond 
to the whole genome, the blue curves – to the coding sequences, and the red curves – to the noncoding sequences.
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where fp is normalized wave-function amplitude of period
p, X is an autocorrelation profile for one chosen dinucle-

otide, Xi is its value in position i,  is its average value,
and W is a maximal considered autocorrelation distance
(in our case 100 bp).

Sequence periodicity
As a probe of periodicity the sine waves with period T were
taken to describe idealized periodical distribution of AA
and TT dinucleotides within window W. The probes were
correlated with E. coli sequences by moving the probes
along the sequences and calculating the value C for every
position.

where i is an index of a dinucleotide position in the win-
dow W and

Four examples of periodicity maps for fragments of E. coli genomeFigure 2
Four examples of periodicity maps for fragments of E. coli genome. The maps were smoothed by running average with window 
51 bp. The black bars on the top of the plot correspond to positions of intergenic regions.
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The averaged maps of periodicity are synchronized at the centers of intergenic regions and smoothed by a running average of 51 bpFigure 3
The averaged maps of periodicity are synchronized at the centers of intergenic regions and smoothed by a running average of 
51 bp. Five families of the intergenic regions with different lengths are presented: a) 100 ± 50, bp 1073 sequences, b) 200 ± 50 
bp, 602 sequences, c) 300 ± 50 bp, 319 sequences, d) 400 ± 50 bp, 160 sequences, and e) 500 ± 50 bp, 78 sequences. The black 
bars at the bottom of the each figure correspond to the average intergenic region. The gray bands around black dashed lines 
correspond to standard deviations around randomized background.
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The value Cmax is introduced for the normalization pur-
poses. It is calculated as follows:

where i is a position in the window W and

Ideally periodical sequence segments would be, therefore,
described by C = 1, while segments with no periodicity
would correspond to C = 0. The results of these calcula-
tions are presented as maps of the sequence periodicity.
The four sample maps are shown in Fig. 2a,2b,2c,2d.

Synchronization of the maps
The maps around intergenic regions were combined
(summed) separately for the groups of similar sizes of the
intergenic regions. Five such groups were analyzed: 100 ±
50 bp, 200 ± 50 bp, 300 ± 50 bp, 400 ± 50 bp, and 500 ±
50 bp. For each group the maps were synchronized at the

respective intergenic centers and the sums of the maps
were calculated and smoothed by a running average
within 51 bp. The standard deviations for the combined
plots were estimated by generating random sequences of
the same size and dinucleotides composition for each
group separately and averaging the respective periodicity
maps.

The resonance plot
The resonance 3D plot for the intergenic regions of length
200 ± 50 bp was built from calculations with different
periods T in the interval 10–12.5 bp. One-third (202) of
the most periodic maps of this group was taken for the cal-
culation. The maps for different periods T were smoothed
five times by a running average over 51 bp. The baselines
were set to 0. The surface of 3D plot was smoothed 3 times
by a running average over 9 point square elements, on the
grid with separations 0.1 bp for T, and 20 bp for sequence
position.
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