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Abstract
Background: The sequences encoding the yeast RNA polymerase II (RPB) subunits are single
copy genes.

Results: While those characterized so far for the human (h) RPB are also unique, we show that
hRPB subunit 11 (hRPB11) is encoded by a multigene family, mapping on chromosome 7 at loci p12,
q11.23 and q22. We focused on two members of this family, hRPB11a and hRPB11b: the first
encodes subunit hRPB11a, which represents the major RPB11 component of the mammalian RPB
complex ; the second generates polypeptides hRPB11bα and hRPB11bβ through differential splicing
of its transcript and shares homologies with components of the hPMS2L multigene family related
to genes involved in mismatch-repair functions (MMR). Both hRPB11a and b genes are transcribed
in all human tissues tested. Using an inter-species complementation assay, we show that only
hRPB11bα is functional in yeast. In marked contrast, we found that the unique murine homolog of
RPB11 gene maps on chromosome 5 (band G), and encodes a single polypeptide which is identical
to subunit hRPB11a.

Conclusions: The type hRPB11b gene appears to result from recent genomic recombination
events in the evolution of primates, involving sequence elements related to the MMR apparatus.

Background
In eukaryotes, mRNAs are transcribed by RNA polymer-

ase II (RPB). To date, most studies have focused on the

yeast polymerases. Yeast RPB consists of 12 polypeptides

ranging from 220 to 6 kDa [1–3]. Much less is known

about the human (h) RPB, although the sequences en-

coding the subunits homologous to the yeast RPB have

been determined. Complementation experiments have

shown that many yeast subunits may be replaced in vivo

by their human counterparts indicating a remarkable
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functional conservation through evolution [4–8]. This

supports the view that the 3D structure of the yeast RPB

[9,10] can most likely be extended to other eukaryotic

nuclear RPB molecules.

We have undertaken the characterisation of the human

RPB subunits. All the subunit genes identified so far are

unique: hRPB1 (Ac N° X74870-74) [11], hRPB2 (Ac N°
AC068261), hRPB3 (Ac N° AC004382), hRPB4 (Ac N°
U89387) [7], hRPB5 (Ac N° AC004151), hRPB6 (Ac N°
AF006501) [12], hRPB7 (Ac N° U52427) [13], hRPB8 (Ac
N° AJ252079-80), hRPB9 (Ac N° Z23102) [14],

hRPB10α (Ac N° AJ252078), hRPB10β, (Ac N° Z47728-
29) [15]. The present report focuses on the hRPB11 gene

which remained to be characterised.

It has been shown in many systems that the RPB11 sub-

unit is able to heterodimerize with RPB3, evoking the al-

pha dimer in bacteria that directs the assembly of the two

largest subunits of the RPB complex [16–22,9,10]. We

show that human homologs of RPB11 are encoded by a

multi-gene family. We shall refer to the previously iden-

tified human gene and cDNA encoding a protein homol-

ogous to yeast RPB11, as hRPB11a[23–25]. We have

characterised additional members of this family and dis-

cuss their properties.

Results
Characterisation of human genomic sequences encoding 
RPB11-related proteins a and b
In addition to the previously characterised hRPB11 cD-

NA, referred to as hRPB11a in the present work, a series

of highly related human cDNAs were found in the data-

bases ([24,25], Table 1). We show that these cDNAs were

transcribed from a family of genomic sequences.

The screening of our genomic DNA library yielded sever-

al clones. Analysis of lambda clone 27 (Fig. 1A), revealed

four coding exons within a 5.5 kb DNA sequence that we

named hRPB11a gene, according to their identity with
the hRPB11a cDNA. Lambda clone 11 was distinct from

hRPB11a. Three exons were identified by their strong ho-

mology with exons 1, 2 and 3 from hRPB11a (Fig. 1A, Ta-

ble 1). The fourth exon was identified by comparing this

genomic sequence with two cDNAs from the database

(Table 1). This exon 4 sequence was specific to a subset of

genomic sequences that we referred to as type b.

hRPB11a and b genomic sequences diverged within in-

tron 3 (Fig. 1A).

Differential splicing of hRPB11b transcripts
We characterised two types of cDNAs from HeLa cells

corresponding to hRPB11b transcripts and differing by

the presence or absence of exon 3: they were named

hRPB11bα and hRPB11bβ, respectively (Fig. 1B, Table 1).
The absence of exon 3 switches the reading frame of exon

4, thereby extending the coding sequence (CDS) of

hRPB11bβ into an additional exon 5, identified in anoth-
er genomic sequence (Ac N° AC004951).

Most of the human cDNAs and ESTs in the databases

(Table 1) perfectly matched the cDNAs reconstituted

from the exons of both hRPB11a and b genes, indicating

that these sequences are transcribed in vivo. Exon 3 be-

ing present in all the genomic clones, we conclude that
the hRPB11bβ cDNA is produced by differential splicing

resulting in exon 3 skipping.

Three types of proteins are encoded by the hRPB11 genes
The hRPB11a gene yields one type of mRNA that encodes

the hRPB11a protein which was previously identified as a

subunit of the human RPB complexes in Western-blots

of immunoprecipitated RPB ([26] and our unpublished

data). We have presently identified two additional cD-

NAs, hRPB11bα and hRPB11bβ, as distinct members of

the same family.

Strikingly, as predicted from their sequences, the

hRPB11a, bα and bβ polypeptides have similar sizes: 117,

115 and 116 residues, with calculated M.W. of 13.3, 13,

12.7 kDa, respectively (Fig. 1C). The N-terminal part of

hRPB11a subunit differs only from the hRPB11b polypep-

tide by the presence of an additional Lys encoded at the

junction between exons 1 and 2. By contrast, the C-termi-

nal portions of these polypeptides differ drastically:

while exon 4 of hRPB11a encodes a hydrophilic 11-resi-

due peptide, it generates a rather hydrophobic 10-resi-

due peptide in the case of hRPB11bα (Fig. 1C);

concerning hRPB11bβ, due to exon 3 skipping, an unre-
lated peptide, rich in Pro (16%), Ala (14.5%), Gln (9%),
His (9%) and Cys (7%) residues, is produced.

Table 1: Accession numbers of RPB11 sequences

GENES CDNA

hRPB11a hRPB11a
AJ277932 (exon 1) X98433
AJ277928 (exon 2) X82385
AJ277929 (exon 3)
AJ277930 (exon 4)
hRPB11b hRPB11bα
AJ277931 (exons 1–4) H52765
AJ277736 (intron 4) AA077481
AJ277737 (intron 4) AJ277739
AJ277738 (intron 4) hRPB11bβ

AJ277740
mRPB11 mRPB11
AC087420 (exons 1–4) D85818

W91247
BG046264
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hRPB11 maps to three distinct loci on human chromosome 
7
We localised the hRPB11 genomic sequences on met-

aphasic chromosomes with a fluorescent genomic probe

encompassing the conserved exons 1 to 3 of hRPB11a
(see Fig. 1A), thus revealing both hRPB11a and b genom-

ic sequences. 50 metaphases were analysed: 90 %

showed specific signals on chromosome 7, at positions

q11.23 and q22, and about 80% at position p12.

A unique mRPB11 gene maps on mouse chromosome 5
The screening of our mouse genomic library yielded a

unique mRPB11 gene (Fig. 2A, Table 1) which is tran-

scribed into a unique type of transcript (Fig. 2B, Table 1)

that encodes a mRPB11 protein identical to the human
hRPB11a counterpart (Fig. 2C). In marked contrast to

the human system, a single locus is detected on the

murine chromosome 5, at cytogenetic band G (Fig. 2D).

Figure 1
Structure of hRPB11 genes, mRNAs and proteins.A) Comparison of the structures of hRPB11a and b genomic
sequences. Horizontal lines represent the human genomic sequences. The identified exons are indicated by boxes. The con-
served 5' sequences encompassing exons 1–3 are in black. The homologies between subtypes a and b are indicated. The diver-
gent 3' regions are hatched. A representative metaphase that has been hybridised with a hRPB11a genomic probe (bracket) is
shown on the right. The white arrowheads point to the position of the specifically bound loci. Chromosome 7 is represented
with brackets pointing to the identified localisations. B) Structure of hRPB11a, bα and bβ mRNAs. Exons are indicated by
boxes. Carets represent the spliced introns approximate sizes (bp). The 5' and 3' untranslated regions are shown as open
boxes. The size (bp) of the coding sequence (CDS) present in each exon is indicated below. C) Aminoacid sequences of
hRPB11a, bα and bβ polypeptides. The translated CDS of the mRNA identified for the two genes shown above are aligned
with their identity and size (aminoacids) indicated on the left and right, respectively. The limits of the exons encoding each part
of the sequence are indicated by brackets, with the corresponding exon numbers indicated above. The sequence of hRPB11a
being taken as a reference, only the divergent residues are shown underneath. Saccharomyces cerevisiae RPB11 (ScRPB11)
sequence is shown below.
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Figure 2
Structure of mRPB11 gene, mRNA and protein.A) Comparison of the structures of hRPB11a and mRPB11
genomic sequences. Horizontal lines represent the genomic sequences. The identified exons are indicated by boxes. The
conserved 5' sequences encompassing exons 1–3 are in black, as in fig. 1A. The homologies between the mouse and human
sequences which are restricted to the exons are indicated. B) Structure of mRPB11 mRNA. The exons are indicated by
boxes. The carets represent the spliced introns whith sizes (bp). The 5' and 3' untranslated regions are shown as open boxes.
The size (bp) of the coding sequence (CDS) present in each exon is indicated below. C) Amino acid sequences of
mRPB11 polypeptide. The translated CDS of the mRNA identified for the mRPB11 and hRPB11a genes shown above are
aligned with their identity and size (aminoacids) indicated on the left and right, respectively. The limits of the exons encoding
each part of the sequence are indicated by brackets, with the corresponding exon numbers indicated above. The sequence of
mRPB11 being taken as a reference, is aligned with hRPB11a, complete identity is indicated by the uninterrupted series of –
symbols. D) Genomic localisation of mRPB11. A representative metaphase that has been simultaneously hybridised with
the pBSK-mRPB11-gen1 and pBSK-mRPB11-gen2 derived fluorescent probes, respectively green and red, is shown. The white-
arrow heads point to the position of the specifically bound loci. The hybridised chromosome is identified in the bottom of the
figure, 1: both pBSK-mRPB11-gen1 and 2 probes are visualised, 2: only pBSK-mRPB11-gen1 probe is visualised, 3: only pBSK-
mRPB11 gen2 probe is visualised, 4: chromosome staining.
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The hRPB11a and hRPB11b genomic sequences are tran-
scribed in all human tissues tested
Expression of these cDNAs was tested in 16 independent

human tissues by Northern-blot analysis (Fig. 3). One

major band was detected with each probe in all tissues.

Strikingly, the relative levels of expression of hRPB11a

versus hRPB11b isoforms varied, depending on the tis-

sue. While hRPB11a was the major transcript in most tis-

sues with highest levels in heart and skeletal muscle,

hRPB11bα RNA was most abundant in the brain (note

the different exposure times in Fig. 3). hRPB11bβ tran-
scripts were weak in all tissues, although more readily

detected in the heart, skeletal muscle and ovary.

The proteins encoded by the three cDNAs exhibit specific 
interaction properties
The pairwise interaction abilities of all the hRPB subu-

nits have previously been analysed using a GST pull-

down assay [8]. Similarly, we compared the interaction

properties of hRPB11bα and bβ with those described for
hRPB11a [24] (Fig. 4). In this assay, hRPB11a and bα re-
vealed the ability to interact only with GST-hRPB3. By

contrast, hRPB11bβ not only interacted with GST-
hRPB3, but also with GST-hRPB1, 2, 4, 5, 6, 7 and 10β .

Complementation experiments in budding yeast
We asked whether the human RPB11 homologues were

able to compensate for the disruption of the Saccharo-

myces cerevisiae (Sc) essential RPB11 gene. In the com-
plementation assay used, overexpression of ScRPB11

Figure 3
Nothern-blot analysis of hRPB11 expression.A) The hRPB11a, bα and bβ transcripts are represented as in Fig 1B. The
probes designed to reveal selectively each mRNA are indicated below in red. In the case of hRPB11b probes a single oligonu-
cleotide was derived from the adjacent exons. B) PolyA+ mRNA from 16 human normal tissues, as indicated on the top, were
analysed. The hRPB11a, bα and bβ transcripts were revealed by hybridisation with specific oligonucleotidic probes and after
extensive washing, the filters were exposed for 1, 2 and 1 month, respectively. The size (kb) of each mRNA is indicated on the
left.
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rescued this lethal phenotype by restoring yeast prolifer-

ation with a doubling time of 2 h (Fig. 5, line 1), whereas

the empty vector did not (not shown). Under the condi-

tions where all the human proteins were expressed to

similar levels in the transformed yeast cells (data not
shown), hRPB11a or bβ, did not rescue the ScRPB11 null

allele (Fig. 5, lines 2 and 4). By contrast, hRPB11bα re-
stored cell proliferation, although with a slower growth

rate (Fig. 5, lines 3).

Figure 4
Interactions between hRPB11a, hRPB11bα and hRPB11bβ proteins with the twelve GST-hRPB subunits. Sf9
cells were coinfected with two recombinant baculoviruses, the first expressing one of the twelve GST-fused subunits or GST
alone, the second expressing the untagged hRPB11a, bα or bβ subunits. After metabolic labelling of proteins using 35S Met,
extracts were prepared and GST-pulldown assays were performed. Aliquots of the total extracts (Extracts) and of the GST-
bound fractions (GST-pulldown) were analysed by SDS-PAGE and revealed by autoradiography. Arrows point to the position
of the non-tagged hRPB11a, bα or bβ subunits.
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hRPB11b genomic sequences share a domain with hPMS2L 
genes
Databases were screened for sequence similarities with

the hRPB11b exons 4 and 5. The sequences of hRPB11bα
and bβ, could be aligned with hPMS2L4 (Ac N° D38438)

and hPMS2L13 (Ac N° AB017004): strikingly, the se-
quences of hRPB11b exon 4 and hPMS2L exon g were

nearly identical (Fig. 6). The hPMS2L cDNAs are encod-

ed by a multigene family, in which exon g can be translat-

ed in two frames, depending on the gene (Fig. 6). This is

due to the presence of additional nucleotides at the 5' end

of exon g, i.e. two A residues in hPMS2L13, when com-

pared to hPMS2L4. Hence, very similar peptides can be

produced from hPMS2L and hRPB11b cDNAs by com-

pletely distinct mechanisms involving small insertions

and alternative splicing, respectively.

Discussion
A multigene family encodes the hRPB11 but not the 
mRPB11 subunit
Our results demonstrate the existence in the human ge-

nome of a family of sequences related to the hRPB11a

gene. Three distinct loci were detected using these ge-

nomic sequences as a probe on human chromosome 7

(Fig. 1A). Four distinct genomic sequences, hRPB11a,

hRPB11b, and two type b-related sequences not de-

scribed here (Ac N°s AC004951 and AC004084), were
identified. Quantitative PCR measurements of the ge-

nomic copy number of hRPB11 exon 3 suggested the

presence of about twelve distinct hRPB11 sequences in

the human haploid genome (not shown).

In sharp contrast, such a gene family does not exist in
mouse. The mRPB11 gene is unique, maps to a unique lo-

cus at 5G which was previously identified as a region syn-

thenic to the human locus 7q11.23 [27,28] and encodes a

single murine mRPB11 protein identical to hRPB11a. The

amplification of these genomic sequences may therefore

represent a recent evolutionary event, that may be re-

stricted to the primates, including human and african

green monkey, as both RPB11 b-type mRNAs were

present in COS-7 and CV1 cells (not shown).

These genomic sequences yield stable mRNAs
hRPB11a and hRPB11b transcripts were detected as sta-

ble mRNAs from 16 human tissues with, in some cases, a

clear expression specificity, as shown by both Northern-

blot (Fig. 3) and RT-PCR experiments (not shown). This

is further confirmed by the fact that they have also been

isolated from cDNA libraries from various tissues (see

Table 1). The hRPB11bα and bβ CDS result from a differ-

ential splicing mechanism which we have not observed in

any hRPB11a transcript. It is tempting therefore to spec-

ulate that a selective pressure maintains both isoforms of

hRPB11b messenger RNAs.

Using specific antibodies, the hRPB11a protein was read-

ily detected in extracts from either human tissues or cell
lines [19]. By contrast, the hRPB11bα or β proteins have
not been detected so far, suggesting that their expression

may be regulated at the translational level. We conclude

that the hRPB11b proteins are either present at very low

levels in these cells, or restricted to specific cell lines

and/or situations that remain to be identified.

The hRPB11 proteins exhibit distinctive properties
Both hRPB11a and bα proteins were found to contact ex-
clusively hRPB3 in coexpression assays, consistent with

previous results (see Introduction). The yeast ScRPB3/

ScRPB11 heterodimer has been modelled as an alpha-

like dimer [29,22], in which both C-terminal domains

consist of two long alpha helices that cross each other

and point toward the outside of the RPB complex [9,10].

The hRPB11bα protein differs from hRPB11a at the very

C-terminal end of this structure: its incorporation into

the RPB complex instead of hRPB11a may therefore alter

the interactions with the surrounding molecules. Despite

this difference, both hRPB11a and bα can indeed inte-
grate the RPB complex in vivo. We show that hRPB11bα
is able to functionally replace ScRPB11 in the yeast RPB.

Strikingly, the hRPB11a protein, known as a bona fide

human RPB subunit, is not functional in yeast, whereas

RPB11 of the distantly related fission yeast Schizosac-
charomyces pombe can replace ScRPB11 in vivo [30].

Figure 5
Complementation of rpb11::His3 yeast strains. The
cDNAs assayed for complementation are listed on the left
(lines 1–4). 30 cells of the complemented yeast strains were
incubated at 28°C for 2 weeks on supplemented SD minimal
medium, in the presence of 5-FOA. Doubling times (h) were
measured at 28°C on liquid YPD medium.
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Why only hRPB11bα protein is functional in yeast may be

related to the fact that its C-terminal domain exhibits a

higher homology to the one of ScRPB11, both being rath-

er hydrophobic, than the hydrophilic C-terminal domain

of hRPB11a. The hRPB11bα protein may therefore be

able to make, although weakly, critical contacts that the

hRPB11a protein cannot make. These data point to a crit-

ical function of this C-terminal domain, that is encoded

by a separate specific exon in mammals, in vivo.

The observation that the hRPB11bβ protein exhibits a
completely distinct set of interactions with the other RPB

subunits is presently difficult to integrate into the avail-

able model of the yeast RPB [9]. It is possible that

hRPB11bβ establishes multiple but transient contacts

with various subunits during theRPB assembly and that

these interactions are revealed in our binary protein

binding assay.

How did evolution create the hRPB11b genomic sequenc-
es?
The b types of RPB11 genes may result from recombina-

tion events between a hRPB11a gene and at least two oth-

er genes, recruiting new exons 4 and 5, respectively.

While the origin of exon 5 remains to be identified, exon
4 of hRPB11b is present in human PMS2L genes [31,32]

that have no known murine homolog. Although the func-

tion of these hPMS2L genes is still elusive, they share five

coding exons with the PMS2 gene (b to f, Fig. 6) which

plays a critical role in the mismatch repair (MMR) ma-

chinery and is located on human chromosome 7p22

[32,33]. The hPMS2L and hRPB11 genes are located

close to each other at positions 7p12, 7q11.23 and 7q22,

supporting a recombinational origin [31,32]. The pri-

mate specific hRPB11b gene products may provide a new

link between the transcription and MMR machineries,

together with the hPMS2L gene products. Thus, it will be

of interest to explore the potential contribution of this

species-specific gene rearrangement to the phenotypical

differences between human and mice mutants which,

when affected in their MMR activity, exhibit different

types of tumors [34,35]. Because of the presence of these

primate-specific variants, drugs which are often tested in

rodents may be mis-evaluated regarding their effects on

human patients. The present findings indicate that more

surprises may arise from studies of fundamental cellular

processes, even in closely related species.

Conclusions
The human genome contains a family of genes that in-

cludes the gene (hRPB11a) encoding subunit 11 of the
hRPB complex. Strikingly, such a family does not exist in

Figure 6
Similar peptides are produced via independent mechanisms in hRPB11b, hPMS2L4 and hPMS2L13 transcripts.
The mRNAs are depicted by boxes that represent the exons. The black and grey areas represent the sequences that are spe-
cific to hRPB11b and hPMS2L, respectively. The strongly homologous sequences are represented by the open boxes. The
sequence of exon 4 from hRPB11bα and bβ are shown together with the conserved 5' part of exon g from hPMS2L4 and the
complete hPMS2L13 exon g with their translated peptides. Only the divergent residues are indicated in hPMS2L, hRPB11b being
taken as a reference.
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the murine genome which contains a unique gene

(mRPB11) encoding a protein which is identical to

hRPB11a. Our observations strongly suggest that the

hRPB11b genes have been engineered by evolution in the

primate genomes to produce proteins with novel proper-

ties, required only under specific circumstances, the na-

ture and role of which remain to be identified.

Materials and methods
Cloning of genomic sequences
MboI partially-digested placenta DNA was inserted into

the unique BamHI site of lambda GEM12, yielding, after

transformation of E. coli TAP90, a library of about 1.2106

independent phages, equivalent to five human genomes.

This library was screened using the 32P-labelled NheI-

SpeI fragment from pBSK-hRPB11a as a probe (Table 2).

One hundred positive phages were isolated and charac-

terised by Southern blot analysis indicating the existence

of several distinct restriction profiles (data not shown).

For further sequence analysis, the DNA inserts of two

phages, 27 and 11, were partially digested by Sau3AI and

subcloned in the unique BamHI site of pBSK yielding

pBSK-hRPB11a-gen and pBSK-hRPB11b-gen, respec-

tively (Table 2). Alternatively, DNA fragments were di-

rectly sequenced after PCR amplification from several

phages.

A mouse SV129 D3 genomic library was similarly gener-

ated from mouse ES cells in lambda GEM12, yielding a li-

brary of about 2.5 106 independent phages, equivalent to

10 murine genomes. About 1.2 106 clones were screened

as described above for the human genomic library. 26

positive clones were obtained. A Southern-blot analysis

was performed on 12 independent clones (not shown)

that revealed an identical restriction pattern indicating

that they corresponded to a unique gene sequence. For

further sequence analysis, the DNA inserts of two inde-

pendent phages were excised using the flanking NotI re-

striction sites and subcloned in the unique NotI site of

pBSK yielding pBSK-mRPB11-gen1 and pBSK-mRPB11-

gen2, respectively (Table 2). Both of these genomic se-

quences were identical to the sequence that is present in

the database (Ac N° AC087420).

Table 2: Strains and plasmids

Strains Genotype

Yeast WY-11 # MATa/MATα ura3-52 his3-∆200 leu2-3, leu2-112 lys2-∆201 ade2-101 RPB11/rpb11-∆1::HIS[39]
Yeast YGVS-074 # MATa/MATα ura3-52 his3-∆200 leu2-3, leu2-112 lys2-∆201 ade2-101 RPB11/rpb11-∆1::HIS 3trp1-∆63
Yeast YGVS-072 # MATa ura3-52 his3-∆200 leu2-3, leu2-112 lys2-∆201 ade2-101 trp1-∆63 rpb11-∆1::HIS3 [pRP11/8-RPB11] (Offspring of 

YGVS-074 used for complementation assays)

Plasmids Description

pRP11/8-RPB11 # URA3 CEN ARS ScRPB11 EcoRI/SacI into pRS416 [39]
pBSK-hRPB11a-gen # Partial Sau3AI genomic fragment in pBSK (Stratagene), containing exon 1 and 2 from hRPB11a gene
pBSK-hRPB11b-gen # Partial Sau3AI genomic fragment (19.6 kb) in pBSK (Stratagene), containing exons 1 to 4 from hRPB11b gene
pBSK-mRPB11-gen1 # Partial Sau3AI genomic fragment (16.5 kb) in pBSK (Stratagene), containing exons 1 to 4 from mRPB11 gene
pBSK-mRPB11-gen2 # Partial Sau3AI genomic fragment (17.7 kb) in pBSK (Stratagene), containing exons 1 to 4 from mRPB11 gene
pBSK-hRPB11a # RT-PCR cloning of hRPB11a CDS in pBSK. The CDS can be excised using the unique NheI and SpeI sites
pCRII-hRPB11bα # RT-PCR cloning of hRPB11bα CDS in pCRII (Invitrogen). The CDS can be excised using NheI and Spel
pCRII-hRPB11bβ # RT-PCR cloning of hRPB11bβ CDS in pCRII. The CDS can be excised using the flanking EcoRI sites
pCRII-ScRPB11 # PCR cloning of ScRPB11 CDS from pRP11/8-RPB11 in pCRII. The CDS can be excised using NheI and Spel
pGEN # 2µORI, TRP1, PGK promoter [4]
pGEN-ScRPB11 # Cloning of the EcoRI fragment of pCRII-ScRPB11 into the EcoRI site of pGEN
pGEN-hRPB11a # Cloning of the NheI-XbaI fragment of pBSK-hRPB11a into the NheI site of pGEN
pGEN-hRPB11bα # Cloning of the NheI-SpeI fragment of pCRII-hRPB11bα into the NheI site of pGEN
pGEN-hRPB11bβ # Cloning of the EcoRI fragment of pCRII-hRPB11bβ into the EcoRI site of pGEN
pVL1393-hRPB11a # Cloning of the NheI-XbaI fragment of pBSK-hRPB11a into the XbaI site of pVL1393 (PharMingen)
pVL1393-hRPB11bα # Cloning of the NheI-SpeI fragment of pCRII-hRPB11bα into the XbaI site of pVL1393 (PharMingen)
pVL1393-hRPB11bβ # Cloning of the NheI-SpeI fragment of pCRII-hRPB11bβ into the XbaI site of pVL1393 (PharMingen)
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cDNA cloning
The cDNA fragments were amplified by RT-PCR from to-

tal HeLa cell RNA using the appropriate primers and in-

serted in either pBSK or PCRII vectors. In each case,
unique restriction sites were introduced in front of the

ATG and after the stop codons. Several independent

clones of each cDNA were sequenced. Restriction frag-

ments spanning the complete coding sequences (CDS)

were then transferred to various expression vectors (Ta-

ble 2).

Localisation on human chromosomes by FISH
Human metaphase spreads were hybridised using as a

probe the biotinylated 4.5 kb fragment encompassing

hRPB11a exons 1 to 3 that was amplified using the TaKa-

Ra system (BIO Whittaker Europe SPRL) [36,37].

Mouse metaphase spreads were analysed as described

using as probes the pBSK-mRPB11-gen1 and 2 plasmid

DNAs, that were labelled using green and red fluorescent

nucleotide derivatives respectively, and mixed for hy-

bridization [38].

Recombinant baculoviruses and GST-pulldown
pVL1393-hRPB11bα and -hRPB11bβ transfer vectors
(Table 2) were recombined with linearized baculovirus

DNA (BaculoGold DNA, PharMingen) in Sf9 cells. The

recombinant viruses were plaque-purified and expres-

sion of the proteins was verified by Western-blot analysis
using specific mouse monoclonal antibodies. The other

recombinant baculoviruses and the conditions for GST-

pulldown assays have been described previously [8]. The

glutathione-sepharose beads were washed with PBS

buffer containing 0.65 M NaCI and 1% Nonidet P-40.

Northern-blot analysis
Three 32P-end-labelled oligonucleotides specific to

hRPB11a, bα and bβ mRNAs, respectively, were used to

probe MTN human blots I and II (Clonetech) of poly A+

mRNA from 16 normal human tissues (2 µg of each). The
probe for hRPB11a was derived from the corresponding

exon 4. The probe for hRPB11bα was derived from the

junction between the corresponding exons 3 and 4. The

probe for hRPB11bβ was derived from the junction be-

tween exons 2 and 4 of the hRPB11b gene.

Complementation in Saccharomyces cerevisiae
Yeast was grown on YPD or SD standard media. The abil-

ity of pGEN derivatives, expressing various proteins, to

rescue the lethal phenotype conferred by the

rpb11::HIS3 allele was assayed by plasmid shuffling. The

YGVS-072 strain (Table 2) was transformed with the

pGEN derivatives using a DMSO treatment protocol and

plated on SD medium supplemented with adenine (20
mg/l), leucine (30 mg/l) and lysine (30 mg/l). Trp+

transformants were transferred twice to 5-fluoro-orotic

acid plates and monitored for their ability to grow at

28°C. The viable clones were then grown on YPD liquid

medium and the doubling time during exponential
growth was determined from absorbance at 600 nm.
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