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Abstract

Background: Gene expression in Escherichia coli is regulated by several mechanisms. We measured in single cells
the expression level of a single copy gene coding for green fluorescent protein (GFP), integrated into the genome
and driven by a tetracycline inducible promoter, for varying induction strengths. Also, we measured the
transcriptional activity of a tetracycline inducible promoter controlling the transcription of a RNA with 96 binding
sites for MS2-GFP.

Results: The distribution of GFP levels in single cells is found to change significantly as induction reaches high
levels, causing the Fano factor of the cells’ protein levels to increase with mean level, beyond what would be
expected from a Poisson-like process of RNA transcription. In agreement, the Fano factor of the cells’ number of
RNA molecules target for MS2-GFP follows a similar trend. The results provide evidence that the dynamics of the
promoter complex formation, namely, the variability in its duration from one transcription event to the next,
explains the change in the distribution of expression levels in the cell population with induction strength.

Conclusions: The results suggest that the open complex formation of the tetracycline inducible promoter, in the
regime of strong induction, affects significantly the dynamics of RNA production due to the variability of its
duration from one event to the next.

Background
Stochasticity is inherent in gene expression and affects
organisms’ phenotypes [1,2]. For example, it is a source
of cell-to-cell phenotypic diversity in monoclonal cell
populations, a key feature for bacterial adaptability to
fluctuating environmental conditions [3,4].
In prokaryotes, transcription starts with the binding of

an RNA polymerase (RNAp) to a promoter and the for-
mation of the closed and then the open complex [5,6].
Also, transcription and translation are dynamically
coupled, since the latter starts before the former is com-
pleted and, from one transcript, several proteins can be
produced. Due to this, the fluctuations in RNA levels,
which are to some extent sequence dependent, propa-
gate to protein levels [7,8]. Since noise in gene expres-
sion can be selectively advantageous [9], it is likely that
several of the regulatory mechanisms of mean gene

expression levels may also regulate the noise strength in
RNA and protein levels. If so, they also regulate, to
some extent, cell-to-cell phenotypic variability.
Gene expression is under tight regulation by multiple

mechanisms [9] that act at various stages, such as tran-
scription initiation and elongation, translation initiation
and elongation [5,10-12] and post-translation modifica-
tions, such as reversible phosphorylation [13,14].
Measurements suggest that the process of formation of
the open complex varies widely in duration, from a few
seconds to several minutes, between different promoters
and different conditions [11,15]. Comparison between
natural promoters and mutated ones showed that the
mean duration of this process is also sequence depen-
dent [11,16]. So far, only mean duration times for this
process have been assessed. Little is known about its
variability. Also, since these measurements were con-
ducted in vitro, no studies have yet determined if the
variability in duration from one event to the next affects
the degree of fluctuations in RNA and protein levels
in vivo.
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The studies of this process (see e.g. [5,6,11,12,15,16])
have already confirmed that the mean duration depends
on a variety of factors such as temperature, concentra-
tion of magnesium and induction strength. It is thus
possible that the variability may also be condition-
dependent.
A recent theoretical study characterized the effects of

the mean duration of this process on RNA temporal
levels. It was shown that, assuming a constant duration
from one event to the next, this step acts as a noise fil-
ter. However, if the distribution of durations is wide, it
can result in noise amplification [17]. Another study
showed that the mean duration of the promoter open
complex formation can have significant effects on the
dynamics of small model genetic circuits such as the 2-
gene toggle switch [18].
These results are yet to be confirmed experimentally.

One difficulty in doing so is the need to observe the
dynamics of gene expression at the single event level.
Further, these effects are likely to be observable only in
a regime of strong expression, more precisely, when the
expected time between transcription events is of similar
order of magnitude as that of the duration of the open
complex formation [17]. Since, so far, most studies of
gene expression at the single event level [7,19] were
made in conditions of weak expression (so as to facili-
tate the visualization of each molecule expressed), it is
not expected that this step in transcription played any
tangible effect on the dynamics of production of RNA
or proteins. In the regime of strong expression, it is
expected that the distribution of durations of these
events becomes one of the regulators of both mean and
variability in RNA temporal levels [17].
Since the mean and variability of the duration of the

promoter open complex are likely to affect the dynamics
of RNA production and thus the noise in RNA levels,
and since protein levels likely follow RNA levels in pro-
karyotes [9], then the dynamics of this process also
affects the degree of cell-to-cell diversity in RNA, and,
consequently, protein numbers. If so, indirect assess-
ment of the effects of promoter open complex formation

may be possible from measurements of cell-to-cell varia-
bility in RNA and/or protein numbers.
In this study, from measurements of fluorescence

intensity at the single cell level of GFP expressed from a
gene driven by the tetracycline inducible promoter
PLtetO-1 that we integrated into the genome, we first
characterize mean and cell-to-cell variability in protein
levels as a function of induction strength. We then com-
pare the results with those from a delayed stochastic
model of gene expression with parameter values
extracted from measurements. Finally, we measure
directly, in individual cells, the transcriptional activity of
a tetracycline inducible promoter, Ptet, controlling the
expression of an RNA target for MS2-GFP [19,20].
From this, we characterize the mean and variability in
the numbers of the RNA expressed by the promoter as
a function of the induction strength. From all of the
above, we infer the effects of the promoter open com-
plex formation on the dynamics of gene expression and
the observed cell-to-cell diversity in protein numbers in
our measurements.

Methods
Bacterial strains and plasmids for measurements of
protein levels
We engineered a new bacterial strain for this study
using the lRED recombination system [21]. An inter-
mediate lifetime green fluorescent protein, GFP(AAV)
[22] (generously donated by M. Elowitz, Caltech), was
placed under the control of the PLtetO-1 promoter
[12,23] and was inserted into the E. coli genome at the
galK locus using homologous recombination.
The following primers were used to create the PLtetO-

1-GFP insert (homologous sequence underlined):
Forward:
5’TTCATATTGTTCAGCGACAGCTTGCTGTAC

GGCAGGCACCAGCTCTTCCGCCAGATGGAGTTCT
GAGGTC3’
Reverse:
5’GTTTGCGCGCAGTCAGCGATATCCATTTTC

GCGAATCCGGAGTGTAAGAATGCCTCTAGCAC
GCGTACC
The proper insertion was confirmed by colony-PCR

using forward primer (5’GGCAGGCACCAGCTCTTC3’)
annealing to genomic DNA near galK and reverse pri-
mer (5’CACGTACTCGGATGGAAGC3’) annealing to
insert DNA in Kan gene.
To control and vary the expression level of the

inserted gene we transformed a plasmid vector contain-
ing constitutively expressed tetR gene from Tn10 [10]
(generously donated by M. Karp, TUT, Finland) into
GFP-expressing cells [24]. The gene tetR codes for a
repressor protein which binds at the PLtetO-1 promoter
and represses GFP expression.

Table 1 Summary of measurement results

aTc (ng/
ml)

No.
Cells

Mean
GFP

STD
GFP

Relative
GFP

Fano
Factor

0 245 1841.54 2414.88 0.01 3166.72

0.1 225 5526.12 3901.75 0.02 2754.85

0.5 88 16948.61 8781.03 0.07 4549.43

1 203 73338.24 33388.72 0.32 15200.89

2 299 231836.5 105391.2 1 47909.94

Summary of the experimental measurement results obtained using different
inducer concentrations. Relative GFP is normalized by the highest mean level
observed.
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As there are several copies of the plasmid versus the
single copy of promoter, TetR is available in excess in
the cells. The inserted plasmid was created by removing
the lux-genes and the tetA promoter from pTetLux1
[25] plasmid by PCR mediated deletion [26], followed by
ligation using the following primers containing EcoRI
restriction site (underlined):
Forward: 5’GGGGGAATTCGAGCTCGGTACCCG3’
Reverse: 5’GGGGGAATTC TGTCGGGTCATGTG

AGCAAA3’

Chemicals for measurements
Anhydrotetracycline, kanamycin, glycerol, and agarose
used for gel-electrophoresis and microscopy were pur-
chased from Sigma-Aldrich. Sybr-Safe from Invitrogen
was used as DNA gel dye. All live-cell measurements
and cultivations were performed in Luria’s broth (LB)
[27]. All plasmid- and PCR-purifications were done
using corresponding kits from Fermentas and following
the manufacturer’s instructions. All PCR reagents and
enzymes were purchased from Finnzymes. Phusion high-
fidelity polymerase from Finnzymes was used for PCR.

Construction of the RNA target for MS2-GFP
To detect the RNA molecules, a promoterless version of
BAC clone was created by restricting out the Plar promo-
ter using BamHI restriction site from the original clone
(Plar-mRFP1-96 binding site) [19] (kind gift from Ido Gold-
ing, University of Illinois, IL). To insert the tetracycline
inducible promoter, the promoter region was amplified
from the pTetLux1 [25] plasmid with following primers
containing BamHI restriction site (underlined):
Forward: 5’GGGATCCCTCACATGACCCGACAC 3’
Reverse: 5’GGGATCCACTGCAATCGCGATAGC 3’
The amplified product was digested with BamHI and

then ligated between the BamHI digested regions of BAC
clone. The ligated product was cloned into E. coli strain
DHa-PRO. A resulting positive clone was confirmed by
sequencing, followed by BLAST. The result is the
F-based single copy plasmid vector Ptet-mRFP1-MS2-96bs. To
see the target RNA, a reporter plasmid was introduced to
the same strain. The details of this report vector are:
PZS12MS2-GFP (SC101 origin, 6-8 copies per cell,
AmpR, PLlaO-1 promoter) [20] (kind gift from Philippe
Cluzel, University of Chicago, IL).

Microscopy and measurements of mRNA molecules
Cells were grown in Miller LB medium, supplemented
by antibiotics. For full induction of gene expression,
cells were grown overnight at 37 C with shaking (250
RPM), diluted into fresh medium to reach a final optical
density of OD600 ≈ 0.3-0.5. The cells were incubated
with the inducer IPTG (1 mM) for 60 min to attain full
induction of MS2-GFP, so as to produce detectable

amounts of protein tag for RNA. Various concentration
of aTc (0, 0.1, 0.5, 1, 2 ng/ml) were used to induce the
promoter expressing the target RNA. Finally, the cells
were incubated at 37 C with shaking (250 RPM) for
60 min. After induction, a few microliters of culture
were taken and placed between a cover-slip and a thin
slab of LB/1% agarose and imaged immediately. Multiple
images of cell populations were taken from each slide.
Microscopy was performed at room temperature using a
Nikon TE-2000U microscope equipped with a C1 confo-
cal imaging system and a 100× magnification (1.49 NA)
objective. Images were acquired with the EZ-C1 soft-
ware using medium pinhole, gain 130, and 1.68 μs pixel
dwell. GFP fluorescence was measured using a 488 nm
argon ion laser and a 515/30 nm detection filter.

Microscopy and measurements of protein levels
Cells were grown overnight in LB media plus antibiotics
at 37 C and with shaking (250 RPM), and then diluted
with LB media to OD600 0.2. To induce gene expression,
anhydrotetracycline was added to the diluted cell culture
which was then incubated for 60 min at 37 C with shak-
ing (250 RPM). A few microliters of induced cells were
plated on a thin LB/1% agarose slab on a microscope
slide, covered with #1 cover slip and immediately
imaged (Figure 1).
Single cell measurements of GFP were conducted

using the same microscopy setup that was used to mea-
sure mRNA molecules. Images were acquired using
large pinhole, gain 120 and 1.68 μs pixel dwell. GFP
fluorescence was measured using a 488 nm argon ion
laser and a 515/30 nm detection filter.

Image processing
Cells were segmented from each z-stack in a semi-
automatic fashion. Each slice in the z-stack was first
median filtered using a 2 by 2 window to remove noise
spikes, after which an image ISUM was created as the
sum projection of the filtered slices. A rough initial seg-
mentation was performed by thresholding ISUM with a
small value to obtain a mask S (Figure 1) to separate
background and cells. Morphological opening using a
disk-element (radius 2) was applied to S to remove
objects considered as noise.
In some images, cells formed clusters, which the initial

segmentation did not separate correctly. The MATLAB®

(2010b, The Mathworks, Natic, MA) function region-
props was used to compute the solidity and eccentricity
for each object in S, to detect these clusters. An object
was considered a cluster of cells if its solidity was smal-
ler than 0.9 (indicating a non-convex object) or if its
eccentricity was smaller than 0.7, characteristic of an
object that is not as elongated as a rod-shaped bacter-
ium. Individual cells were segmented from each detected
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cluster. Noting that cells’ centers were brighter than
their borders in ISUM, this was done by finding local
maxima from the part of ISUM containing the cluster,
using the extended-maxima transform [28]. Finally,
objects touching the image borders as well as objects
having very small or very large area were considered
noise and removed from S. Finally, poorly segmented
cells were manually excluded.
To compute the total fluorescence of a cell, the z-

stack slice with the highest total intensity for that cell
was selected. If the selected slice was either the first or
the last one in the z-series, it was discarded. The total
intensity of a cell was the computed by summing the
pixel intensities inside the area determined by S.
To further remove outliers from the data, cells with

extremely high intensity (the top 2.5% of cells ranked by
intensity) were not considered. Cells having an area
smaller than 0.5 times or larger than 1.5 times the med-
ian cell area were also removed as they are considered
to be either too small or too large to be normal cells.
After removing the outliers, we subtracted the back-

ground autofluorescence from the fluorescence levels of
the cells. The background intensity is estimated by mea-
suring the autofluorescence of lRED cells without the
GFP insertion and then determining the mean back-
ground dependence on cell size. Figure 2 shows a typical
measure of cellular autofluorescence and cell size from
multiple individual cells.
Image analysis of cells with spots of RNA bound with

MS2-GFP molecules requires additional steps. Segmen-
tation of the cells is semi-automatic. First, each image
was thresholded by the mean intensity. For the resulting
binary mask, morphological opening with a disk-shaped
structuring element was applied to remove noise pixels
and the effect of image noise on the cell boundaries.
Falsely segmented, e.g. clumped, cells, were manually
excluded from the results. A spot detection algorithm
based on kernel density estimates [29], was used to

enhance the spots, which were segmented by the Otsu’s
method [30]. The number of RNA molecules in each
spot is quantified by the spot intensity distribution sli-
cing approach [19].

Modelling gene expression with the delayed stochastic
modelling strategy
Several steps in gene expression, such as transcript
assembly, are time consuming [11]. Namely, the time
scale of these processes is of comparable order of
magnitude of an E. coli cell’s lifetime. Also, some of the
processes such as the assembly of the promoter open
complex or protein folding and activations are multi-
stepped complex processes that involve many reactions
and events that cannot be accurately modelled as uni-
or bimolecular reaction events.
However, from the point of view of the dynamics of

RNA and protein production, they can be modelled as
single-step delayed events [31]. For instance, between
the binding of the RNA polymerase to the transcription
start site and initiation of transcription elongation there
is the process of promoter open complex formation
[11]. Using the delayed stochastic simulation algorithm
(delayed SSA), it is possible to model these processes as
reaction events where the products are only completed
a time interval after the reaction has initiated, instead of
assuming them to be instantaneous bimolecular events
[31,32]. This “delay” in the release of the products into
the system can either be constant, i.e. the same for each
of these reaction events, or be randomly drawn from a
distribution each time the reaction occurs.
This delayed stochastic modelling strategy of gene

expression and gene regulatory networks (GRNs) [31]
accounts both for the stochasticity of the chemical inter-
actions, as well as for the time length of events such as
transcription and translation elongation, and it was
shown to match gene expression dynamics at the single
RNA and protein molecule level [7,33].

Figure 1 Confocal image and a corresponding mask. Example of a confocal image (A) used to calculate fluorescence values and a
corresponding mask (B) for detecting cells.
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The delayed stochastic modelling strategy of GRNs
can be implemented in the simulator SGNSim [34], and
its dynamics is driven by the delayed SSA. Unlike the
original SSA [35], this algorithm uses a waiting list to
store delayed output events, proceeding as follows:
1) Set t = 0, tstop = stop time, read initial number of

molecules and reactions, create empty waiting list L.
2) Do an SSA step for input events to get next react-

ing event R1 and corresponding occurrence time t1.
3) If t1 + t < tmin (the least time in L), set t = t + t1.

Update number of molecules by performing R1, adding
delayed products into L as necessary.
4) If t1 + t > tmin, set t = tmin. Update number of

molecules by releasing the first element in L.
5) If t < tstop, go to step 2.
Two assumptions are made by this modelling strategy.

Since it is based on the original SSA, one is that the sys-
tem of chemical reactions is well-stirred [35], and the

other is that, once transcription is initiated, it is not
aborted (this rate of abortions is likely below 1% in nor-
mal conditions) [31,36].
In our system, the promoter is tightly repressed by

TetR dimer [10,37]. Induction is achieved by adding
anhydrotetracycline (aTc) to the cell. When aTc binds
to TetR, it forms the complex aTc-TetR. If this complex
binds to the promoter, repression still occurs and the
binding affinity is identical to that of TetR alone. How-
ever, the dissociation rate of aTc-TetR is much higher
than the dissociation rate of TetR alone [38]. Conse-
quently, the addition of aTc indirectly induces gene
expression.
This system can be modelled in the delayed stochastic

modelling strategy by the following set of reactions.
Transcription and translation are modelled, respectively,
by reactions 1 and 2 [33]. Reaction 3 is responsible for
degradation of RNA molecules and reaction 4 is
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Figure 2 Cellular background versus cell size. Measured background fluorescence (cellular autofluorescence) versus cell size. This quantity can
be assumed to depend linearly on the cell size when subtracting background.
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responsible for degradation of proteins. These reactions
are assumed to be of the first order (the rate depends
on the concentration of only one reactant), which was
found to be a good approximation [33]. Note that, when
a product X has a delay τ, represented by X(τ), it implies
that when the reaction occurs, it takes τ seconds after
that for X to be produced and become present in the
cell:

Pro
k1−→ Pro(τ1) + RBS(τ1) (1)

RBS
k2−→ RBS(τ2) + P(τ3) (2)

RBS
k3−→ ∅ (3)

P
k4−→ ∅ (4)

In reactions 1-4, Pro is the promoter, RBS a ribosome
binding site region of the RNA and P is a GFP molecule
(thus directly correlated to the fluorescence observed).
The value of the rate constant k1 accounts for the num-

ber of available RNA polymerases in a cell, which is
assumed to not vary during the measurements and thus is
not explicitly represented. This rate is tuned empirically so

as to match the mean expression levels at each concentra-
tion of inducers for which cells’ expression levels were
measured. Specifically, k1 was set to (in s-1): 1.5 × 10-4,
4.3 × 10-4, 1.4 × 10-3, 6.5 × 10-3 and 2.8 × 10-2 correspond-
ing to the following concentrations of aTc (ng/ml): 0, 0.1,
0.5, 1 and 2, respectively.
Rate k2 is fixed at 0.19 s-1. This value accounts for the

number of available ribosomes in E. coli under normal
conditions and that in these bacteria, on average, the
ratio between RBS to protein numbers is 1:1000 [8].
Rates k3 and k4, are the rates of degradation of RNA
and proteins and are set to 0.004 s-1 and 0.0002 s-1,
respectively [22,23].
Two models were simulated. In the first model, all

time delays are set to constant values, while in the sec-
ond, the delay associated with the promoter open com-
plex formation, τ1, is set to be a random variable
following a Gamma distribution (with the mean value
equal to the value of τ1 in model 1). The gamma distri-
bution was used as it is the natural choice for modelling
waiting times, given that the open complex process con-
sists of a set of consecutive chemical reactions, each of
which with an expected time to occur that are assumed
to follow an exponential distribution [6]. The mean
value of τ1 that best matched our measurements was
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Figure 3 Measured distributions compared with model distributions. Binned distribution of the cells with given GFP expression levels for
aTc (ng/ml) = 0, 0.1, 0.5, 1, and 2 (black lines). The probability is the fraction of cells in each bin. Also shown in each case is the distribution of
expression levels as predicted by the model, imposing the same mean expression level as in the measurements (grey lines).
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found to be 19 s which is of the same order of magni-
tude of the value extracted from indirect measurements
of its mean duration for PLtetO-1 [6].
All other delays are identical in the two models and

were set to the following constant values: τ2 = 2 s and
τ3 = 420 s [33]. These values allowed matching measure-
ments of gene expression at the single protein level in E.
coli [7] and account for the length of this gene (~760
nucleotides). Also, the maturation time of this protein is
known to be less than 8 min and is accounted for in τ3
[39].

Results
We measured the GFP levels of single cells for various
concentrations of anhydrotetracycline (aTc). In Table 1
we inform on the mean and standard deviation of GFP
levels of each cell population. Also shown are the rela-
tive mean GFP levels (normalized by the highest mean
observed) and the Fano factor of GFP levels of indivi-
dual cells in each condition. The Fano factor, defined as
variance divided by the mean, is a common measure of
diversity [40]. In all the cases, more than 50 cells were
imaged.

The Fano factor, while remaining approximately con-
stant for weak induction strengths, increases for the two
highest levels of induction. Note that it would not vary
if transcription remained a Poissonian process for all
levels of induction [41].
Given this observation, we next observed the distribu-

tion of GFP expression levels in the cells for each con-
centration of aTc (Figure 3) to better understand the
source of diversity in gene expression levels. The
expected distributions from the stochastic model with a
constant time length for the promoter open complex
formation are also shown for comparison. These are
obtained by imposing the same mean expression levels
as in the measurements.
Figure 3 shows that when setting the promoter delay to a

constant value from one transcription event to the next,
the model matches well the distributions of protein expres-
sion levels for the three lower rates of transcription induc-
tion. However, this is not true for the two higher rates. For
these, the distributions of model and measurements do not
match, in that the latter have much smaller variance.
Several possible causes can be ruled out for this dis-

crepancy. First, increasing the amount of inducers does
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Figure 4 Duration of promoter open complex formation. Distribution of the values of the duration of the promoter open complex
formation (τ1) in model 2.
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not affect the rate of translation events (or its elongation
process). Due to this, the difference in the distributions
is due to some event in transcription, either during tran-
scription initiation or during transcription elongation,
not accounted for in model 1.
The values of the rate of transcription initiation that

allow the stochastic model to match the mean expres-
sion levels for all induction strengths in the measure-
ments range from 1.4 × 10-4 to 0.028 s-1. This implies
that, in the model, consecutive transcription events are,
for the strongest induction, separated, on average, by 35
seconds. This time interval is sufficiently long to assume
that two RNA polymerases only rarely will collide on
the DNA template [17,36]. The only tangible mechanism
by which they could collide often would be the presence
of a sequence-dependent pause (such as a his pause
sequence) that would cause long transcriptional pauses
to some, but not all, polymerases [42]. Such type of
pause has not been reported to exist in the sequence
coding for GFP used in our study. Thus, we rule out the
occurrence of traffic events and bursts in transcription
as a cause for the difference between the distributions of
model 1 and measurements.

The mean duration of the open complex formation of
PLtetO-1 was measured in vitro to be approximately 60 s
[6]. While measures in vitro and in vivo may differ to
some extent (likely, the process is more efficient in vivo
than in vitro), it is safe to assume that, in vivo, the mean
duration will be of the same order of magnitude as in
vitro. Given this, it is reasonable to assume that the
open complex is, for the higher rates of induction, a
limiting step of transcripts production.
For the same reasons, we hypothesize that the variabil-

ity of the duration of the promoter open complex for-
mation, from one event to the next, may be the cause
for the unexpected increase in Fano factor with induc-
tion strength. The range of variability of the duration of
the open complex is currently unknown since only
mean values have been measured, using in vitro experi-
ments [11,16]. If the duration of this process has high
variance for this particular promoter, then one would
expect that it will introduce noise in gene expression
[17], and thus contribute to cell-to-cell variability in
protein levels.
We therefore hypothesize that the open complex forma-

tion has high variance in duration and test if a stochastic
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Smolander et al. BMC Molecular Biology 2011, 12:21
http://www.biomedcentral.com/1471-2199/12/21

Page 8 of 12



model where such variability is accounted for can match
the measurements. Namely, to test if the variability in the
duration of the open complex formation explains the
observations, we simulated “model 2”, in which the pro-
moter delay is a random variable following a gamma dis-
tribution with mean of 19 s and a standard deviation of
400, giving the very fat-tailed distribution (found to best fit
the observations) (Figure 4). In Figure 5 we show how well
the model fits the measurements for different values of
standard deviation of the duration of the promoter open
complex formation. The fit D is calculated as the squared
difference between the Fano factors of the measurements,
Fano(E), and the model, Fano(M), summed over the five
inductions strengths:

D =
∑(

Fano(E) − Fano(M)
)2 (5)

Note, from Figure 4, that one expects many consecu-
tive transcription events to be separated by very short
time intervals, while few transcription events will be
separated by very long time intervals. Mean expression
levels do not differ between models 1 and 2, since they
have the same mean promoter open complex duration
and same rate of transcription initiation. In Figure 6 we

plot the Fano factor from the measurements, from the
model with constant promoter delay (model 1) and,
from the model with a varying delay (model 2).
As seen in Figure 6, by accounting for the variability

in the duration of the promoter open complex forma-
tion from one event to the next, model 2 accurately
matches the distributions of protein expression observed
in measurements for the entire range of values of induc-
tion strength. This allows concluding that the observed
phenomenon may be due to non negligible effect of the
promoter open complex formation in the dynamics of
production of transcripts.
If the variability of the promoter open complex step is

responsible for the increase in Fano factor of GFP inten-
sities in individual cells as induction strength is
increased, then its effects ought to be visible also in the
distribution of RNA numbers of the cell population. To
verify this, we measured the transcriptional activity of a
tetracycline inducible promoter, Ptet, at the single RNA
molecule level as described in the methods section. This
measurement was made for the same levels of induction
used to study the expression levels of GFP. The Fano
factor of RNA numbers in individual cells for these
levels of induction is shown in Figure 7. For induction
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strengths 0, 0.1, 0.5, 1 and 2 ng/ml the number of cells
analyzed was 128, 185, 83, 124 and 248, respectively.
Comparing Figures 6 and 7, a clear resemble is visible

between how the Fano factors of RNA and protein levels
change with induction strength, providing strong evi-
dence that the increase observed in the Fano factor of
protein levels is due to the variability in duration of an
event in transcription between consecutive transcription
events. Likely, from all of the above, this event is the
open complex formation, as the two processes are regu-
lated by the same repressor-inducer system.

Conclusions & Discussion
We observed an increase in cell-to-cell diversity in pro-
tein numbers as we increased transcription induction in
a gene integrated into E. coli genome driven by PLtetO-1,
a tetracycline inducible promoter. This increase is not
expected if the process of transcripts’ production is
Poissonian [7,17,40,43]. The observed distribution of
expression levels in individual cells indicates that the
production of RNAs is not a Poisson-like process in the
regime of strong induction. Relevantly, in this regime,
the interval between transcription initiation events and
the expected mean duration of the open complex forma-
tion of this promoter are of the same order of magni-
tude. Previous studies suggest that, in this scenario, the
open complex formation will either function as a ‘noise
filter’ or as a ‘noise amplifier’ of RNA and protein tem-
poral numbers, depending on the degree of variability of
its duration from one event to the next [17]. In the
measurements, cell-to-cell variability in protein levels
increased with induction, which suggests high variability
in the time length of this process.

Thereafter, we compared the dynamics of stochastic
models of gene expression with the measurements. The
comparisons suggest that the variability in the duration
of the promoter open complex formation is the most
likely source of noise in the dynamics of RNA produc-
tion in the regime of strong induction, and is responsi-
ble for enhancing the observed cell-to-cell diversity in
protein numbers in the regime of strong induction. In
this regard, it is stressed that, to the best of our knowl-
edge, there are no possible events or mechanisms occur-
ring during transcription or translation elongation,
except for externally induced arrests, that, under normal
conditions, would be responsible for the observed diver-
sity in time intervals between the production of conse-
cutive RNA and proteins [44,45].
To verify by independent means that the source of

diversity in protein numbers for strong induction is in
the dynamics of transcription initiation, at the level of
the promoter, we measured directly the transcriptional
activity of a tetracycline inducible promoter, Ptet. For
that, we placed this promoter to control the expression
of an RNA sequence target for 96 MS2-GFP proteins.
The Fano factor of these RNA numbers in individual
cells changed with induction strength in a very similar
manner to the Fano factor of GFP levels.
Our results suggest that the open complex formation

of tetracycline inducible promoters is a process whose
duration is highly variable from one event to the next
and, therefore, is a non-negligible source of cell-to-cell
variability in RNA and protein numbers in the regime of
strong induction. Further studies are needed to deter-
mine if the dynamics of this mechanism is the only
underlying cause for our observations. For example, we
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cannot completely rule out that our observations are
due to some currently unreported increase in frequency
of stochastic events in transcription elongation, such as
sequence dependent pauses followed by premature ter-
minations, due to the higher traffic of RNA polymerases
in the strain. Note, this is not likely to be the case as
the RNA coding for GFP and the RNA coding for MS2-
GFP binding sites differ significantly, and the sequences
prone for RNAp long-pausing are likely to be rare.
Further, such sequences are not known to exist in the
RNA coding for GFP used here.
We can also rule out other causes, such as overall cell-

to-cell phenotypic diversity as a cause, as this would
likely act at all induction strengths tested. Further, we
can rule out “measurement noise” as a cause, as this
would affect more strongly the regime of weak induction.
Most relevantly, so far most modelling strategies of

gene expression for both prokaryote and eukaryote cells,
assume gene expression to be an instantaneous process,
and do not account for the duration of the various steps
in transcription and translation [44], especially the pro-
moter open complex formation, whose duration is likely
a limiting factor of the number of transcription events
in a given time interval. Our results suggest that both
the noise and the cell-to-cell diversity in RNA and pro-
tein numbers are affected in a non negligible fashion by
the dynamics of the promoter open complex formation.
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