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Abstract

Background: Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the
gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of
GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated
appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen
samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative
receptor tyrosine kinase genes FLT3, CSFI-R, PDGFRB, AXL and MET by gPCR. wt-GIST were compared to samples
with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these
alternative RTK might contribute to the pathogenesis of wt-GIST.

Results: Gene expression variability of the pooled cDNA samples is much lower than the single reverse
transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes
POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT
compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA
exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3,
CSFIR and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly
reduced expression of CSFIR, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations
in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation.

Conclusions: As the variability of expression levels for the reference genes is very high comparing fresh frozen and
formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor
tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It remains to be
clarified whether an autocrine or paracrine mechanism by overexpression of receptor tyrosine kinase ligands is
responsible for the tumorigenesis of wt-GIST.
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Background

Gastrointestinal stromal tumors (GIST) are the most
common mesenchymal tumors of the gastrointestinal
tract and are characterized by the expression of the KIT
receptor (stem cell factor receptor, CD117) and to a les-
ser extent of PDGFRA (platelet derived growth factor
receptor alpha), representing two closely related recep-
tor tyrosine kinases (RTK) [1,2]. The majority of GIST
shows oncogenic mutations either in KIT or PDGFRA
[3,4]. Mainly, mutations in exon 9 or 11 of the KIT gene
or in exon 18 of PDGFRA lead to ligand independent,
constitutive activation of the kinase function [5]. About
60% of all GIST carry an exon 11 mutation of KIT
which encodes the juxtamembrane domain of the recep-
tor possessing an autoinhibitory function [6,7]. Less
common mutations in PDGFRA (~ 10%) are detected in
GIST that often display gastric location and epithelioid
morphology [2].

In a minority of cases (10-15%) no mutations in the
known KIT or PDGFRA hot spots are detected although
these tumors express the KIT protein. This subgroup is
called wild type GIST (wt-GIST) and comprises tumors in
pediatric patients, in patients affected by the Carney triad,
neurofibromatosis type 1 (NF1) associated GIST and a
subset of sporadic adult GIST [8-11]. The pathogenetic
mechanisms underlying wt-GIST are poorly understood
and there is limited benefit of imatinib therapy in these
patients [12]. Therefore the identification of additional
genetic factors contributing to the pathogenesis of GIST
may help to find new concepts of individualized therapy.

Recently, the BRAF mutation p.V600E was found in
4-13% of wt-GIST [13-15]. For another subgroup of wt-
GIST including pediatric tumors, a strong IGF1R
expression combined partly with gene amplification was
described [16-18]. Two other alternative RTK probably
involved in the pathogenesis of GIST are AXL and
MET. Both kinases have been shown to be upregulated
in GIST resistant to treatment [19]. AXL is a member
of the Ufo/AXL subfamily and activates the same signal-
ing pathway as KIT. The tyrosine kinase domain of
MET is mutated in sporadic papillary renal carcinomas.
Some mutations in the MET gene are located in codons
homologous to those in KIT and it is suggested that
these missense mutations lead to constitutive activation
of the MET protein [20]. To develop additional therapy
approaches it would be of interest to know whether this
RTK also plays a role in wt-GIST.

Besides KIT and PDGFRA, CSFIR (colony stimulating
factor 1 receptor), FLT3 (fms like tyrosine kinase 3) and
PDGEFRB (platelet derived growth factor receptor B)
belong to the same family of type III RTK. These five
tyrosine kinases show a homologous structure and a
comparable function in activation, proliferation and sup-
pressing apoptosis [21-23].
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Aberrant expression and mutations in either CSFIR,
FLT3 and PDGFRB or their ligands have been described
in several malignant diseases. Overexpression of CSFIR
is found in epithelial tumors such as breast and ovarian
cancer [24]. The translocation t(1;2) of its ligand CSF1
leads to the development of the tenosynovial giant cell
tumor [25].

Aberrantly expressed FLT3 is observed at high levels
in a spectrum of hematologic malignancies [26]. Addi-
tionally, in AML an internal tandem duplication in the
transmembrane domain of FLT3 was identified which
leads to constitutive activation of its kinase domain. It
seems that this mutation is not present or very rare in
GIST [27].

PDGEFRB is overexpressed in malignant peripheral
nerve sheath tumors (MPNST) and chordomas [28,29].

To analyse expression profiles of certain tumors for
research and diagnostic purposes, qPCR (quantitative
PCR) is frequently applied because of its reproducibility
and high sensitivity [30,31]. This method is based on
the normalization of the target gene expression on sta-
bly expressed internal reference genes. A major chal-
lenge is the application of suitable reference genes
which have to be tested and verified under defined
experimental conditions [32,33]. Ideal reference genes
have to be non-regulated, stable and not affected by bio-
logical or experimental conditions. The target gene is
amplified together with the reference gene in order to
minimize experimental variability concerning reverse
transcription enzymatic efficiencies, PCR efficiency,
amount of starting material and differences between
human tissues. The reference gene and the target gene
should have very robust and stable expression profiles
to ensure accurate normalization and interpretation of
results. The most stable expressed gene from a set of
genes can be identified by geNorm [34], a software pro-
gram which additionally provides the number of genes
required to calculate a robust normalization factor
based on the geometric mean of these genes.

Typical reference genes regulate basic and ubiquitous
cellular functions and are responsible for the cellular
maintenance, e.g. GAPDH or {3-actin. However, these
commonly used reference genes vary considerably in dif-
ferent tissue types or under different experimental con-
ditions [35,36]. There is no standard reference gene for
all kinds of tissue types. To our best knowledge only
few studies investigated the alteration of stability of
reference genes in different mesenchymal tumour
entities.

In the present study we attempted to identify suitable
reference genes in gastrointestinal stromal tumors by
using a set of sixteen reference genes which are cur-
rently applied in qPCR procedures. Furthermore we
evaluated the gene expression of KIT as well as the
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alternative RTK FLT3, CSFI1-R, PDGFRB, AXL and MET
in mutated and non-mutated gastrointestinal stromal
tumors by qPCR using the identified reference genes.
The study was focussed on wt-GIST compared to sam-
ples with mutations in KIT exon 9 and 11 and PDGFRA
exon 18 in order to evaluate whether overexpression of
these alternative RTK might contribute to the pathogen-
esis of wt-GIST.

Methods

Samples

A total of 107 samples were included into this study. All
specimens were obtained in the years 2005 and 2006
under approved ethical protocols and with informed
consent from each patient. All samples were fixed in
neutral-buffered formalin prior to paraffin embedding.
20 samples from normal tissue (i.e., muscularis propria
of stomach and gut) as control group and 87 GIST
representing different mutational subgroups were evalu-
tated. 20 samples of wt-GIST, 7 samples of wt-GIST
associated with neurofibromatosis type 1, 20 samples
with exon 9 mutation in KI7T, 20 samples with exon 11
mutation in KIT and 20 samples with exon 18 mutation
in PDGFRA). Sequence analysis of KIT (exons 8, 9, 11,
13, 14, 15 and 17) and PDGFRA (exons 12, 14 and 18)
was carried out as described earlier [1,37,38]. Addition-
ally, in all samples the wild type status of the BRAF
gene was ascertained. All GIST samples were stained
immunohistochemically for CD117. Four normal tissues
from the gastrointestinal region were available as fresh
frozen and formalin-fixed, paraffin-embedded samples.

RNA extraction and cDNA synthesis

Prior to RNA extraction, paraffin-embedded tissues were
cut into 10 pm sections and mounted on glass-slides.
Six slides of each specimen were used for RNA extrac-
tion. The sections were deparaffinized by extracting
twice in xylene for 10 min at room temperature. Rehy-
dration was done in 100% ethanol, 90% ethanol, 80%
ethanol and 70% ethanol made with DEPC-water for
10 min each. Tumor areas previously marked on a H&E
slide were scraped from the sections with a sterile scal-
pel. Sections were transferred into a sterile 1.5 ml tube.
Extraction and purification of RNA was done using the
RNeasy FFPE KIT (Qiagen, Hilden, Germany) according
to the manufacturer’s recommendations. After tumor
localization by H&E staining fresh frozen material was
rasped into 10 pm thick pieces and RNA purification
was carried out using the RNeasy Kit (Qiagen, Hilden,
Germany). Both RNeasy Kits contain a step of DNase
treatment. Finally RNA from fresh and from fixed tissue
was eluted in water. The quantification was done spec-
trophotometrically (NanoDrop, PeqLab Technology,
Erlangen, Germany). 500 ng of RNA from each sample
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was reverse-transcribed using a random-hexamer primer
and Avian Myoblastosis Virus reverse transcriptase
(AMV-RT) according to the manufacturer’s protocol
(Qiagen). cDNA from those four fresh frozen and corre-
sponding formalin-fixed, paraffin-embedded (FFPE) con-
trol samples was generated in only one reverse
transcription and loaded on the reference low density
arrays (see below). Further cDNA samples were gener-
ated from the four FFPE control tissues, pooled within
one patient and loaded onto a second independent
reference low density array.

Identification of reference genes

The reference genes used here were preselected because
of their constitutive, non-regulated stable expression
over a wide spectrum of tissues. But nevertheless the
preselected reference genes are not suitable for every
kind of tissue and therefore need to be analyzed prior to
use in a certain study. The detection of suitable refer-
ence genes was carried out using TagMan Low Density
Arrays (TLDAs, Microfluidic Cards, Applied Biosystems,
Darmstadt, Germany). These arrays are prefabricated
384-well cards where gene-specific primer and probe
sets are spotted in small reaction chambers during man-
ufacturing. The cards have 8 separate loading ports lead-
ing into 48 wells each. In this study, arrays with
triplicates of 16 putative reference genes were used, so
8 different samples could be analyzed. The list of assays
is given in table 1. For each sample, 500 ng cDNA was
mixed with 2x TagMan Universal PCR Master Mix
(Applied Biosystems). 100 ul of this mixture was loaded
into each port and distributed into the reaction cham-
bers by centrifugation. The card was sealed and the
quantitative PCR (qPCR) was performed on an ABI
PRISM HT 7900 (Applied Biosystems) sequence detec-
tion system. After pre-incubation for 2 min at 50°C and
10 min at 95°C, the PCR reaction was performed (15 s
at 94°C followed by 60 s at 60°C, 40 cycles). The fluores-
cent signal was measured in each cycle.

Analyses of gene expression by qPCR

qPCR analysis was performed using the assays-on-
demand products (Applied Biosystems) listed in table 2.
These gene-specific qPCR assays consist of a pair of
unlabeled PCR primers and a FAM labeled specific
probe. According to the manufacturer of these assays,
probe and primer sets that would amplify pseudogenes
are excluded in the process of development. Reactions
were carried out in a reaction volume containing 5 ul
PCR Master Mix (Applied Biosystems), 0.5 ul forward
and reverse primer mix, 500 ng ¢cDNA ad 10 pl A.dest.
Triplicate reactions were carried out for each transcript.
Control reactions were performed using a minus RT
preparation and a sample with A.dest instead of RNA.
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Table 1 Selected candidate reference genes for gene expression analysis

Abbreviation Gene name Cellular function

185 rRNA 18S ribosomal RNA ribosome subunit X03205.1
ACTB R-actin cytoskeleton NM_001101.3
B2M 3-2-microglobulin major histocompatibility complex NM_004048.2
GAPDH glyceraldehyde-3-phosphate dehydrogenase glycolysis enzyme NM_002046.3
GUSB B-glucuronidase glycosaminoglycan degradation NM_000181.2
HMBS hydroxymethylbilane synthase heme production NM_000190.3
HPRT1 hypoxanthine ribosyltransferase metabolic salvage of purines NM_000194.2
IPO8 importin 8 intracellular protein transport NM_006390.2
PGK1 phosphoglycerate kinase 1 glycolysis enzyme NM_000291
POLR2A DNA-dependent RNA polymerase |I transcription NM_000937.3
PPIA peptidyl-prolyl isomerase A protein folding NM_021130
RPLPO ribosomal phosphoprotein, large, PO ribosome NM_001002
TBP TATA-box-binding protein transcription factor NM_003194
TFRC transferrin receptor cellular iron uptake NM_021009.4
UBC ubiquitin C posttranslational modification NM_003406.3
YWHAZ tyrosine 3-/tryptophan 5-Monooxygenase-activation protein, zeta isoform signal transduction NM_003404

PCR conditions were the same as for the TagMan Low
Density Arrays.

Statistical analyses

The geNorm applet for Microsoft Excel was used to deter-
mine the most stable genes among the sixteen candidate
reference genes. Raw Cq values were converted into rela-
tive quantities for analysis with geNorm, where the highest
relative quantity for each gene is set to 1. The program
selects from a panel of candidate reference genes the two
most stable genes or a combination of multiple stable
genes for normalization. The gene expression stability (M)
value is based on the combined estimate of intra- and
intergroup expression variations of the genes studied and
takes the PCR efficiency into account. The limited M-
value is 1.5. The most stable genes are stepwise selected
from the investigated gene panel to estimate how many
reference genes should be used. The normalization factors
define the optimal number of reference genes required for
a precised normalization design. The analysis of the
expression data of tumor samples compared to control
samples was performed with the REST software (Relative
Expression Software Tool) [39]. The software normalizes
the measured Cq-values of the target genes with those of

Table 2 Gene-specific qPCR assays

the reference genes and compares the expression data of
tumor and control samples by considering the PCR effi-
ciency and the mean crossing point deviation.

Results

RNA quality

RNA quality of the samples was inspected on a 1% agar-
ose gel. The concentration and purity of the RNA was
characterized by the mean Ajgg/250 ratio and was on
average 1.99 for fresh frozen as well as for formalin
fixed, paraffin-embedded samples and reflected pure and
protein-free RNA.

Expression variability of cDNA synthesis

Four normal control FFPE tissue samples from the gastric
and bowel wall were used to determine suitable reference
genes. One TLDA was done with ¢cDNA from only one
reverse transcription for each sample. As it is assumed that
c¢DNA synthesis from FFPE tissue varies strongly in effi-
ciency, pooled cDNA synthesis samples from the same
FFPE tissue were used for a second TLDA. The pooled
c¢DNA preparation showed an essentially lower variance in
contrast to the cDNA samples from only one reverse tran-
scription (Figure 1). The median of the M-values ranges

Gene symbol Name

Chr  Function Assay-on-demand

CSFIR colony stimulating factor 1 receptor 5 tyrosine protein kinase receptor Hs00234617_m1
FLT3 fms-related tyrosine kinase 3 13 tyrosine protein kinase receptor Hs00174690_m1
KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 4 tyrosine protein kinase receptor Hs00174029_m1
PDGFRR platelet-derived growth factor receptor, beta 5 tyrosine protein kinase receptor Hs00387362_m1
MET met proto-oncogene 7 hepatocyte growth factor receptor  Hs00179845_m1

AXL AXL receptor tyrosine kinase

19 tyrosine protein kinase receptor Hs00242357_m1
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Figure 1 Variability of technical replicates. Expression variability of cDNA from a single reverse transcription synthesis (blue), cONA from
pooled reverse transcription synthesis (green) and fresh tissue cDNA (red) from a single reverse transcription synthesis. The whiskers are
representing the range of the data, the median is shown as a black line within a bar. Circles are representing the outliers.

pooled cDNA

from 0.1 to 0.2, thus the variability of the technical repli-
cates is low. Within a single specimen the range is also
very small. The median of the cDNA samples from a single
reverse transcription ranges from 0.1 to 0.4. However, each
c¢DNA sample from one reverse non-pooled transcription
showed a high variance of the values (median of M-values
0.1 to 0.8, Figure 1). Therefore the variance of the samples
can be lowered by cDNA pooling. The median of the
c¢DNA samples from one reverse transcription from fresh
frozen tissue ranged from 0.1 to 0.2 and can be compared
to the median of the pooled cDNA from the FFPE tissue.
Within a single specimen the range is higher than in the
pooled cDNA samples, but smaller than in the cDNA from
only one reverse transcription from the FFPE samples.

Identification of suitable reference genes for
normalization

All 16 putative reference genes had a high expression sta-
bility and the ‘M’-value (0.02-0.06) was clearly below the
‘M’-cutoff-value of 1.5. By stepwise exclusion of genes, the
expression stability value ‘M’ is calculated (data not

shown) and the expression stability rises with the exclu-
sion of further genes. Samples generated from only one
reverse transcription, showed POLR2A, TFRC, RPLPO and
GAPDH as the most stable genes (Figure 2a). The average
stability value was between 0.05 and 0.07. The range of the
values was 0.01-0.15. The most stable genes for pooled
c¢DNA samples were PGK1, PPIA, RPLPO and IPO8 with a
median of 0.04-0.05 (Figure 2b). The range of the values
was lower and varied between 0.01 and 0.09. All in all the
gene expression variability of the pooled cDNA samples is
much lower compared to the single reverse transcription
c¢DNA synthesis. The gene UBC is the most stable one in
fresh frozen tissue with the smallest value range (0.01-0.8),
but RPLPO and PPIA belong also to the most stable genes
in fresh frozen tissue with a median of 0.03-0.045 and the
range of the values was 0.1-0.12 (Figure 2c). TBP was not
expressed in the tissue. By combining the lowest variability
values of fixed and fresh tissue, the genes POLR2A, PPIA,
RPLPO and TFRC were detected (Figure 3). Hence these
four genes were used for further analysis with the GIST
samples.
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Figure 2 Expression variability of reference genes. Analysis of reference gene expression on TagMan Low Density Arrays. a) cDNA from a
single RT-transcription. b) pooled cDNA samples from normal tissue. The genes POLR2A, TFRC, PPIA and RPLPO had the lowest expression
variability. ¢) cDNA from fresh frozen tissue. RPLPO, PPIA and UBC had the lowest expression variability, TBP was not expressed in the tissue. On
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Expression profiles of KIT, FLT3, CSF1-R, PDGFRB, AXL
and MET

Six patient groups (NT = normal tissue -control, WT =
wild type, Ex9 = KIT Exon 9 mutated, Ex11 = KIT Exon
11 mutated, NF1 = wild type and neurofibromatosis
type 1, Ex18 = PDGFRA Exon 18 mutated) were used to
analyze the gene expression of KIT, FLT3, CSFI-R,
PDGFRB, AXL and MET. Here, the REST analysis with
POLR2A is shown exemplarily. The REST analysis of the
target genes KIT, CSFIR, FLT3, PDGFRB, AXL and
MET with the reference genes RPLPO, PPIA and TRFC
showed the same significant results for the differential
expression or at least the same trend in mutated and
non-mutated GIST (data not shown). As suspected, we
found a significant overexpression of KIT in exon 9 and
exon 11 mutated GIST in comparison with normal

tissue. Also a significantly lowered expression of
PDGFRB in both groups compared to normal tissue was
shown. The same effect was observed in PDGFRA exon
18 mutated GIST compared to normal tissue (table 3).

On closer inspection of normal tissue and wt-GIST a
clear overexpression of KIT in the tissue of wild type
tumors was shown. The same effect, but even stronger,
could be detected by comparing NF1-associated wt-
GIST with normal tissue. Concerning KIT expression,
the tumors without mutation behave like KIT mutated
GIST (table 3). This was in accordance with immuno-
histochemical staining (Figure 4).

The other target genes, FLT3, CSFIR, PDGFRB, AXL
and MET showed lower expression levels in the tumor
tissue compared to normal tissue except AXL in NF1
associated GIST. MET was even significantly reduced in
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Table 3 Expression analysis of target genes

Gene Factor p- Gene Factor p-
value value
NT-WT KT 59+ 0095 NTe—NF1 KT 17+ 0.003
CSFIR  3.99- 0217 CSFIR  299- 02%
FLT3 243- 0498 FLT3 3.985- 0.179
PDGFRB 5.79-  0.087 PDGFRB 2.827- 0.196
AXL 2.1- 0.66 AXL 25+ 053
MET 8.7- 0.034 MET 6.5- 0.13
NT—Ex11 NT—Ex18
KIT 11.7+ 0.011 KIT 166+ 0373
CSFIR  465- 0155 CSFIR  4.7- 0.051
FLT3 2.383- 041 FLT3 2.113- 0263
PDGFRB 6.3- 0.046 PDGFRB 4.925- 0.007
AXL 3- 0.27 AXL 135- 058
MET 17.81-  0.001 MET 7.7- 0.001
NT—Ex9 Ex11-WT
KIT 5261+ 0.05 KIT 1981- 0232
CSFIR  13.98- 0.003 CSFIR 1164+ 0861
FLT3 538 0.022 FLT3 1.023- 0971
PDGFRB 12.78- 0.001 PDGFRB 1.087+ 0.920
AXL 34- 0.08 AXL 14+ 06
MET 9.766- 0.001 MET 2+ 033

Expression analysis of KIT, CSF1R, FLT3, PDGFRB, AXL and MET was carried of

ut

in six GIST cohorts (NT = normal tissue, WT = wild type, Exon 9, Exon 11, NF1

= neurofibromatosis type 1, Exon 18). Significant variances are in bold. The
expression data were calculated using the REST software with POLR2A as
reference gene. NT: normal tissue; p < 0.05; +/- indicates up- or
downregulation

wt-GIST, KIT exon 9, 11 and PDGFRA exon 18 mutated
GIST. No changes in expression levels were detected
comparing normal tissue and wt-GIST with KIT exon
11 mutated GIST, indicating that both groups possess
similar expression levels for the analyzed receptors.
None of the groups showed significant expression altera-
tions for CSFIR and FLT3. An exception is the group of
KIT exon 9 mutated GIST. A lower expression of
CSFIR, FLT3, PDGFRB and MET compared to normal
tissue was identified in contrast to KI7, which showed a
significant overexpression. In summary, overexpression
of KIT was detected in each GIST subgroup compared
to the corresponding normal tissue by using the preas-
signed reference gene POLR2A (table 3). GIST with a
mutation in exon 18 of PDGFRA did not show a signifi-
cant upregulation of KIT compared to normal tissue.
GIST with a mutation in KIT exon 9, 11 and in the
PDGFRA exon 18 showed significant PDGFRB
downregulation.

Discussion

Most gastrointestinal stromal tumors exhibit mutations
in exon 11 of the KIT gene. This exon encodes for the
juxtamembrane domain of the receptor which possesses
an autoinhibitory function. In wt-GIST, activating muta-
tions are found neither in the KIT nor in the PDGFRA
gene. Clinical treatment with the tyrosine kinase inhibi-
tor imatinib targets the ATP binding site in the kinase
domain of the KIT receptor. In wt-GIST, response to
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treatment is often poor [12] although most of them
overexpress the KIT protein. A screen for activating
mutations in the juxtamembrane domain of the alterna-
tive receptor tyrosine kinases CSF1R, FLT3, PDGERB in
30 wt-GIST samples yielded only wild type sequences
(data not shown) in agreement with previously pub-
lished results [40]. Therefore we investigated in this
study whether the expression of alternative receptor tyr-
osine kinases may contribute to the pathogenesis of wt-
GIST and thus may help to identify wt-GIST subgroups
with different response to imatinib and elucidate novel
therapeutic targets.

The pathogenesis of several malignant tumors is asso-
ciated with overexpression of CSFIR and PDGFRB
[24,28]. Imatinib inhibits cell invasion in malignant per-
ipheral nerve sheath tumors by blocking PDGFRB [41]
and it has been found to have antitumor activity in
patients with chordoma [42]. In our study, the gene-
expression level of CSFIR, FLT3 and PDGFRB was
determined in a cohort of 87 GIST samples. Further-
more, we assessed the expression of AXL and MET, two
receptor tyrosine kinases which were found to be alter-
natively activated in therapy resistant GIST [19].

Gene expression analysis by qPCR requires suitable
reference genes. The expression of reference genes like
GAPDH or BETA-ACTIN is regulated differentially
depending on the tissue type. Therefore they are not
suited as univocal reference genes [35,43]. The determi-
nation of reference genes with stable expression in the
experimental system used is essential to ensure accurate
normalization and interpretation of results.

Whereas fresh tissue is frequently not available for
genetic analysis, FFPE material is the standard. After
formalin-fixation and paraffin-embedding of tissue, the

isolated RNA is often heavily fragmented. In our study
we used fresh as well as fixed material from the gastro-
intestinal tract to determine suitable reference genes
and to analyze whether their expression levels are com-
parable. We then validated the reference genes by gPCR
in our GIST cohort.

As reported also by others [44,45] the variability of
expression levels for the reference genes was very
diverse comparing fresh frozen and formalin-fixed tis-
sue. Therefore, we decided to validate separate reference
genes for each tissue type.

The genes TRFC, POLR2A, PPIA and RPLPO were
validated as appropriate reference genes for FFPE tissue.
For fresh frozen tissue, PPIA and RPLPO were also
found to be suitable. Additionally, UBC is suited as a
reference gene in fresh frozen tissue. The variability of
the reference genes for fresh frozen tissue was lower
than for fixed tissue. To overcome the problem of high
variability in FFPE tissue, we pooled two independent
c¢DNA syntheses from one sample as recommended in
the MIQE guidelines [30,46]. The MIQE guidelines give
considerations for a consistent application of the qPCR
technology including experimental details, data analysis
and reporting principles. Unequal efficiency of cDNA
synthesis might be a reason for deviation. Additionally,
we tried to select consistent patient material for our
cohort by choosing paraffin blocks having the same age.
It was shown by Bibikova [45], that Cq-values in qPCR
experiments depend on the age and condition of the tis-
sue blocks. Because the expression value depends also
on amplicon length [30,44], only primer sets generating
amplicons of about 100 bp were chosen for qPCR. This
corresponds to the fragment length of degraded RNA
between 100 and 200 bp. The application of the MIQE
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guidelines results in a minimum variability for reference
genes. In summary, considering the MIQE guidelines
FFPE material can be used reliably for expression analy-
sis in GIST, but the use of separate reference genes for
FFPE tissue is indispensable.

Our qPCR analysis included GIST with wild type
sequences in the hot-spot regions of KIT and PDGFRA
(wt-GIST), KIT exon 9 and exon 11 mutated samples,
PDGFRA exon 18 mutated samples, NF-1-associated wt-
GIST and normal tissue controls. The wt-GIST and the
samples with the two different KI7T mutations showed a
significantly increased expression of KIT in contrast to
the normal tissue. The results correspond to the immu-
nohistochemical stainings of our samples and were in
agreement with published data [47]. It was shown
immunohistochemically that PDGFRA mutated GIST
have only a slightly increased protein expression of KIT
[13]. Our data revealed the same trend on RNA level
compared to the normal tissue. Additionally, we could
show in all groups of mutated GIST a significantly
reduced expression of PDGFRB compared to the normal
tissue. This could be due to the concomitant increase of
KIT expression. When comparing NF-1-associated GIST
without KIT mutation with wt-GIST without NF-1 asso-
ciation the latter showed a lower expression of KIT.
Thus, the results of the two wt-GIST groups give a het-
erogenous profile, which suggests that different genomic
events may be responsible for the development of these
tumors.

Comparing our sample groups with each other, no sig-
nificant difference in the gene expression levels of FLT3,
CSFIR and AXL were determined. An exception was
seen in the sample group with KIT exon 9 mutation.
Here, a significantly reduced expression of CSFIR, FLT3
and PDGFRB compared to the normal tissue was
detected. The results lead us to the assumption that KIT
exon 9 mutated GIST play a special role compared to
GIST carrying other mutations. Interestingly, KIT exon
9 mutated GIST need a double daily dose of the tyrosine
kinase inhibitor imatinib to be effectively treated [48].
Furthermore, they develop preferentially in the small
intestine but only rarely in the stomach where the
majority of GIST are detected [49].

All qPCR data were calculated four times with TRFC,
POLR2A, PPIA and RPLPO as reference genes using the
REST software. Concordant results with the four refer-
ence genes are based on the extensive and complex pre-
selection of our cohort and the preparation of cDNA
synthesis according to the MIQE guidelines.

Conclusions

In summary, we conclude that none of the alternative
receptor tyrosine kinases analyzed here are associated
with the pathogenesis of wild type or mutated GIST.
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It remains to be clarified whether an increased expres-
sion of receptor tyrosine kinase ligands is responsible
for tumorigenesis of wt-GIST as it is described for der-
matofibrosarcoma protuberans (DFSP) and tenosynovial
giant cell tumor (TGCT) [25,50]. Further studies are
needed to elucidate the role of ligand-driven pathogen-
esis in wt-GIST.
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