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Abstract

Background: The fine tuning of two features of the bacterial regulatory machinery have been known to
contribute to the diversity of gene expression within the same regulon: the sequence of Transcription Factor (TF)
binding sites, and their location with respect to promoters. While variations of binding sequences modulate the
strength of the interaction between the TF and its binding sites, the distance between binding sites and promoters
alter the interaction between the TF and the RNA polymerase (RNAP).

Results: In this paper we estimated the dissociation constants (K;) of several E. coli TFs in their interaction with
variants of their binding sequences from the scores resulting from aligning them to Positional Weight Matrices. A
correlation coefficient of 0.78 was obtained when pooling together sites for different TFs. The theoretically
estimated K, values were then used, together with the dissociation constants of the RNAP-promoter interaction
to analyze activated and repressed promoters. The strength of repressor sites -- i.e., the strength of the
interaction between TFs and their binding sites -- is slightly higher than that of activated sites. We explored how
different factors such as the variation of binding sequences, the occurrence of more than one binding site, or
different RNAP concentrations may influence the promoters' response to the variations of TF concentrations.
We found that the occurrence of several regulatory sites bound by the same TF close to a promoter -- if they
are bound by the TF in an independent manner -- changes the effect of TF concentrations on promoter occupancy,
with respect to individual sites. We also found that the occupancy of a promoter will never be more than half if
the RNAP concentration-to-K, ratio is | and the promoter is subject to repression; or less than half if the
promoter is subject to activation. If the ratio falls to 0.l, the upper limit of occupancy probability for repressed
drops below 10%; a descent of the limits occurs also for activated promoters.

Conclusion: The number of regulatory sites may thus act as a versatility-producing device, in addition to serving
as a source of robustness of the transcription machinery. Furthermore, our results show that the effects of TF
concentration fluctuations on promoter occupancy are constrained by RNAP concentrations.
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Background

Bacteria regulate gene expression in response to changing
environmental conditions mainly through the modula-
tion of transcription initiation. Regulatory proteins -- i.e.,
transcription factors, TFs -- change the probability with
which the RNAP binds to promoter sequences, thus affect-
ing the formation of a productive open complex and the
success of messenger RNA synthesis [1-5]. In principle,
two features of this regulatory machinery that encom-
passes the RNAP, transcription factors, and cis-acting
sequences are subject to fine tuning: the sequence of TF
binding sites and their location with respect to promoters
[6-9]. The former influences the probability of transcrip-
tion initiation by affecting the strength of the interaction
established between the TFs and their binding sites [6,10],
whereas changes in the latter alter the interaction between
TFs and the RNAP and, consequently, the stability of the
initial binary complex [1,4,8,9]. In a previous report,
Buchler et al. [6] have compared the way this logic oper-
ates with a programmable computer.

Collections of experimentally verified TF binding
sequences in model bacteria such as E. coli [11] have been
used in the past two decades to assess the variability of
regulatory sequences bound by the same TF [12-15].
These studies have taken a first step in the aim of explain-
ing how this variability may serve the purpose of influenc-
ing different genes under the control of the same TF in the
proportions required by the metabolic machinery for the
cell to be able to adapt to a given environmental change.
For instance, under a given stimulus, the transcription of
some genes may be activated, while others are repressed
by the same TF depending basically on where its binding
sites are located with respect to the promoter [8,9]. The
variability of "strength" of TF binding sequences -- esti-
mated using various approaches -- has also been found in
the transcription regulatory machinery of other bacteria
[13,14,16], giving support to the hypothesis that it confers
a clear evolvability advantage with respect to the alterna-
tive logic of placing the variability in binding strength
solely in the TFs [6].

In this paper we explore how the variability of the
"strength" of TF binding sites and promoter sequences
influences the probability of RNAP-promoter interaction.
(Throughout this paper, the words strength and strong are
used in relation to binding sites or promoters to denote
the intensity of the interaction between them and their
respective TF or the RNAP.) The study was circumscribed
to promoters affected by a single TF. First, we designed a
way to assess the dissociation constants K; and K, - i.e,,
those that govern the interaction between a TF and a bind-
ing site, and the RNAP and a promoter sequence, respec-
tively. Our methodology consisted of interpolating the
score of a regulatory or promoter sequence given by a
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Positional Weight Matrix (PWM) within a line that fits
experimentally determined K, values to PWM scores cal-
culated for the same sequences. Then, we used the ther-
modynamic approach and equations developed by
Buchler et al. [6] from the original methodology by Shea
and Ackers [17] to compute the probability of RNAP bind-
ing to the promoter as a function of TF and RNAP concen-
tration. Unlike several recent works that have proposed
meticulous kinetic models to explain detailed experimen-
tal observations of several phases of transcription initia-
tion and elongation [18,19], we used the aforementioned
equations to explore the variability of promoter occu-
pancy of TUs within the same regulon.

We were able to find that arrays of closely located regula-
tory sites that are bound independently by the same TF --
i.e., those at which the mechanism of action of the TF may
be fulfilled upon binding to an individual site -- change
the probability of transcription initiation at promoters
under their control with respect to a single-site scenario.
In other words, the number of binding sites of a TF that
are located within the regulatory region of a transcription
unit (TU) have an impact on the level of occupancy of its
promoter. The variability of regulatory sequences
[6,10,20] and promoter-site distances have traditionally
been recognized as mechanisms that produce this type of
versatility on the effects of TFs. Nevertheless, this is to our
best knowledge the first time that the occurrence of several
regulatory sites near a single promoter has been recog-
nized -- using theoretical modeling -- as a mechanism that
contributes to the complexity and versatility of gene regu-
lation. (See discussion in Ref. [7].) Finally, we also found
that RNAP concentration constrains the impacts of TF
concentration changes on promoter occupancy.

Results

Correlating K, and PWM scores

We obtained experimentally determined K values for the
interactions of several E. coli TFs with variations of their
binding sequences from the ProNIT database [21]. At the
same time, we extracted all TF binding sites from Regu-
lonDB [11]. The set of binding sequence from ProNIT was
filtered to minimize variability within the set (see Meth-
ods). The PWMs of the respective TFs -- obtained from
RegulonDB [11] -- were employed to score the binding
sequences in the filtered set. Sequences with identical
PWM scores were grouped and their K, values were aver-
aged, in order to produce single points for assessing the
correlation between PWM scores and minus the logarithm
of K, values. Table 1 summarizes the changes of set size
through the steps outlined above, and a detailed descrip-
tion of the process may be found in the Methods section.

We used the Pearson's coefficient to measure the correla-
tion between PWM scores and minus the logarithm of the
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Table I: Number of DNA sequences through the filtering
process.

TF ProNIT Filtered Averaged
CRP 8l 60 24
IHF I | I
Lacl 17 3 |

MetR 8 0 0
PurR 18 8 I

TrpR 68 25 2
Total 193 97 29

ProNIT: Number of sequences originally extracted from ProNIT;
Filtered: Number of sequences remaining after filtering by pH and
Temperature; Averaged: Number of sequences after grouping by
equal PWM score.

K, of DNA binding sequences. In Figure 1, each point rep-
resents a DNA sequence, whose abscissa is the -log(K;),
and whose ordinate is the score resulting from aligning it
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to the PWM of the TF that specifically recognizes it. The
Pearson's correlation coefficient of the two variables is
0.78, and its p-value estimated from 1000 randomizations
of the data set, as described in the Methods section is 3.6E-
05, indicating a fairly good agreement between the distri-
bution of experimentally determined K, values and the
scores calculated for the same DNA sequences.

This outcome highlights the usefulness of PWM scores as
predictors of the K (or 4G) of the interaction between a
given DNA sequence and the protein whose binding motif
is represented by the PWM [10,20,22,23]. Furthermore,
we estimated the K of the interaction of a TF and a given
DNA sequence by interpolating the score resulting from
aligning the DNA sequence to the PWM within the fitting
line. A previous work, circumscribed to K, values obtained
by EMSA experiments that used FIS artificial binding
sequences showed a similar trend and used the regression

y=1.7402x%- 5.2184
r=0.78, p-value = 3.6E-05

22 r . .

PYWh score

-2 L L )
4 b 8 10

Figure |

12 14 16 18

-l0g(Ky)

Correlation between -log(K,;) and PWM scores of DNA sequences downloaded from ProNIT. The equation of the
fitting line, the Pearson's correlation coefficient, and its associated p-value, resulting from 1000 randomizations of the original

set are shown at the upper corner of the graph.
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obtained between K; and sequence Information Content
in an analogous manner [23]. Our results extend this view
to a group of DNA sequences recognized by different TFs,
suggesting that experimental data on protein-DNA inter-
action thermodynamics may be pooled together in order
to obtain accurate theoretical estimates of the interaction
parameters of new DNA sequences.

The kinetic of transcription initiation

The K, values of TF binding sequences extracted from Reg-
ulonDB [11], with PWMs included in this database, were
calculated interpolating the PWM scores within the fitting
line (see Figure 1). We then interpolated the promoters'
scores obtained as described in the Methods section into
the fitting line in order to approximate the corresponding
K, values - i.e., dissociation constants of the interactions
between promoter sequences and the RNAP. Both data-
sets (TF binding sites and promoters) were then crossed in
order to form promoter-site pairs. These units were
formed in a combinatorial manner in the cases of TUs
with more than one TF binding site. We retained within
the study only TUs for which both the promoter and the
site had known scores and hence for which dissociation
constants could be calculated for both.

The distribution of -log(K,) and -log(K,) values of the set
of binding sequences and their corresponding promoter
sequences appears in Table 2 (grouped by regulons) and
is depicted graphically in Figure 2 (organized into activa-
tors and repressors). No clear trend may be discerned
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within the whole set when analyzing the relationship
between the -log(K;) (and hence the strength) of a given
regulatory site and the -log(K) of its associated promoter.
Nevertheless, while the -log(K;) values of activator sites
are preferentially (65%) below the mean of the distribu-
tion, 57% of the repressor sites possess -log(K;) values
higher than the mean of the distribution. With regard to
the distribution of -log(K,) values, 77% of the promoters
subject to activation have -log(K,) values above the mean;
that fraction is reduced to 51% of the promoters associ-
ated with repressor sites. The mean -log(K,)of repressed
promoters is hence lower than that of activated promot-
ers: 6.77 vs. 7.12.

In general, the RNAP may bind to repressed promoters in
the absence of the repressor TF [4], while its binding to
activated promoters normally requires the establishment
of protein-protein interactions with the activator TF. (This
different behavior guarantees that, while genes controlled
by activated promoters are expressed only in the presence
of the activator TF, those regulated by repressed promoters
may be expressed only if the repressor TF is absent.) There-
fore, one should expect that the interaction between the
RNAP and repressed promoters be as a rule stronger than
its interaction with activated promoters. This reasoning is
contradicted by the above described findings. However, it
is important to bear in mind that we are working with an
incomplete set of promoters which may not represent well
the universe of simple promoters. Furthermore the Kp
characterizes only the strength of the interaction between

Table 2: Distribution of -log(K;) values of TFs binding sequences and -log(K,) values of their corresponding promoter sequences.

TF Units -log(K,) -log(K})
Mean SD Max Min M-SD M+SD Mean SD Max M-SD M+SD Min
Ada | 12.33 0 12.33 12.33 12.33 12.33 6.03 0 6.03 6.03 6.03 6.03
ArgR 2 7.36 1.47 8.39 6.33 5.90 8.83 7.06 0 7.06 7.06 7.06 7.06
CpxR [ 6.43 0 6.43 6.43 6.43 6.43 5.42 0 5.42 5.42 5.42 5.42
CRP 7 6.46 0.22 7.84 5.17 6.24 6.68 6.00 0.22 6.30 5.78 6.22 5.676
Csgbh | 8.23 0 823 823 823 8.23 6.68 0 6.68 6.68 6.68 6.68
CysB 2 11.62 0.16 11.73 I11.51 11.46 11.78 7.19 0.14 7.29 7.05 7.33 7.0935
FIS 42 6.26 .16 8.64 5.50 5.09 7.42 7.20 0.38 7.82 6.83 7.58 5.50
FNR | 7.88 0 7.88 7.88 7.88 7.88 7.98 0 7.98 7.98 7.98 7.98
FruR 2 9.57 0.19 9.70 943 9.37 9.76 720 0.31 742 6.90 7.51 6.99
Fur 9 9.18 1.62 10.70 6.46 7.56 10.80 6.54 0.70 8.07 5.85 7.24 5.96
LexA 8 8.84 1.48 10.15 5.80 7.36 10.32 6.96 0.54 7.45 6.42 7.49 6.11
Lrp | 5.07 0 5.07 5.07 5.07 5.07 7.35 0 7.35 7.35 7.35 7.35
MarA | 8.08 0 8.08 8.08 8.08 8.08 6.80 0 6.80 6.80 6.80 6.80
NagC 4 891 0.11 9.00 8.82 8.80 9.02 7.01 0 7.01 7.01 7.01 7.01
PhoB | 9.22 0 9.22 9.22 9.22 9.22 6.41 0 6.41 6.41 6.41 6.41
PhoP 2 4.58 0 4.58 4.58 4.58 4.58 7.03 0 7.03 7.03 7.03 7.03
PurR 3 9.22 1.18 10.58 8.54 8.04 10.40 6.71 0.03 6.73 6.69 6.74 6.68
TrpR 6 11.08 0.68 11.62 9.93 10.41 11.76 6.54 0.49 7.07 6.06 7.03 6.10
TyrR I 7.96 .17 9.76 5.78 6.80 9.13 6.84 0.57 7.67 6.27 741 6.34
M-SD: mean minus one standard deviation; M+SD: mean plus one standard deviation.
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Figure 2

Distribution of regulatory sites according to their K, values and the K, values of their corresponding promoter
sequences. The vertical and horizontal lines correspond to the mean -log(Ky), 7.63 and mean -log(K,), 6.9 respectively.

the RNAP and the promoter, whereas the efficiency of
transcription initiation may be submitted to influences
that affect different stages of the process. Promoters that
bind RNAP weakly may be strong if the rest of the steps of
transcription initiation are optimized [4].

In order to simulate the kinetics of transcription initiation
--i.e., the probability of RNAP-promoter binding -- we fol-
lowed the formalism developed by Buchler et al. [6] from
an original approach by Shea and Ackers [17]. This model
computes the probability of RNAP-promoter interaction -
- as an indicator of TU transcription initiation probability
-- as the fraction of time that the RNAP is bound to the
promoter;

ZOTl

“Zon+Zoff (M

where Z,, and Z,represent the partition sum of the Boltz-
mann weights W over all states of TF binding for the pro-
moter bound and not bound respectively. Since we
worked only with simple promoters -- i.e., those for which
the binding of the RNAP is affected by a single TF --, these
quantities may be calculated by:

U X B
_14 [T
Zys =1+ K, (111)

where [Pol] and [ TF] are, respectively, the concentration of
the RNAP and the TF; K; and K|, are, respectively, the dis-
sociation constants of the binding of the TF to its site and
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that of the RNAP to the promoter; and o is a qualitative
factor that represents the type of interaction established
between the TF and the RNAP. In the case of repressors, @
equals 0, which represent the mutual exclusion of the TF
and the RNAP from their respective binding loci. In the
case of activators, the cooperative binding of the TF and
the RNAP is represented by a o value of 20. See Methods
for details.

The graph depicted in Figure 3 shows the probability of
interaction between the TF and its binding site (red curve),
[TF]

Ky +[1F] and the probability of

calculated as Prp_g, =

RNAP-promoter binding at four different RNAP concen-
trations, from 1E-09 to 5E-08 (remaining curves). In order
to facilitate comparisons, TF concentration values in all
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graphs range from 0 to approximately 4.5 times K; there-
fore, the red curves of all graphs are identical. As may be
readily inferred from the previous equation, for activator
sites (panels A and B in Figure 3) the greater the TF con-
centration at constant RNAP concentration, the more
likely for the RNAP to bind to the promoter. The increase
of RNAP concentration, on the other hand, decreases the
amount of TF necessary to attain the saturation of the pro-
moter. Nonetheless, while at [TF] = K, the promoter of
graph A is occupied by the RNAP roughly little above 50%
of the time at the highest RNAP concentration, at the same
TF and RNAP concentrations, the promoter of graph B
remains occupied more than 80% of the time. This dis-
similarity of behavior can only be explained by the differ-
ence in Kp values between the two promoters. As a rule, for

TF:NagC TU:glmUS Paosition-46 Effect-activator
1 T T T

T T T T T T
_ TF-site interaction

‘olymerase-promoter interaction (1E-9 mol
Pol ter inferact 1E-9 molil
Polymerase-promoter interaction (5E-9 moliL
Polymerasaspromaterinieracion | 1£-6 moliL)

Paiyinierase-promoter interaction EEE-S moliL)

1e-09  15e-09 2e09 2509 3e09 3.5e09 4e09 4509 BZe09
[IE] (mol/L}

B
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1 T T T

T T T T T T
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Probability of TF-site interaction and transcription initiation (RNAP-promoter interaction) as a function of TF
concentration at four simple promoters. Panels A and B correspond to activator sites; C and D represent repressor

sites.
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activator sites, the stronger the promoter, the lower the
RNAP amount required to saturate it at the same TF con-
centration. The graphs of the kinetic behavior of all simple
promoters can be found in Additional file 1. The results
for repressor sites (Figures 3C and 3D) are the exact oppo-
site. As TF concentration increases, the less likely the
RNAP will be bound to the promoter. This decrease in
promoter activity is less dramatic the higher the RNAP
concentration or the lower the K, value.

The simultaneous effects of the two dissociation constants
affecting the same promoter may be further appreciated in
Figure 4, which illustrates the kinetics of several promot-
ers repressed by LexA within the same range of TF concen-
trations and at the same RNAP concentration. In the case
of the promoter of the lexA_dinF TU, for instance, the
binding of LexA to three different sites hinders the bind-

TF: LexA

http://www.biomedcentral.com/1471-2199/10/92

ing of the RNAP to the promoter. This allows the compar-
ison of the kinetic behavior of three binding sites affecting
the same promoter (and hence, with identical K;). The
strongest site (located at -9 bps with kinetic curve in yel-
low) encounters LexA concentration values that range very
close to its K; (2.3E-10); on the other hand, the K, values
of the other two LexA sites are lower by roughly one and
two orders of magnitude (dark blue, 8.7E-09) than the site
located at +13 bps and (brown 1.2E-08) than the one at -
50.5 bps, respectively. Therefore, at the range of LexA con-
centrations employed in the simulations, the -9 bps site
causes a drop of over 30% of promoter occupancy, while
the effect of the other two sites is almost unchanged along
the range.

The comparison of the behavior of the recA and the uvrD
promoters enables a similar analysis for sites with compa-
rable K, values (2E-10 and 1.91E-10, respectively).
Although the TF concentrations evaluated are of the same

effect: repressor
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Figure 4

Probability of RNAP-promoter binding vs TF concentration for several promoters repressed by LexA. RNAP
concentration: 5E-08 mol/L. Graphs' legend: Transcription Unit name (gene names concatenated by underscores): position of

the regulatory site, -log(Kd), -log(Kp).
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order of the K, of both regulatory sites, while the variation
in promoter occupancy experienced by recA is below 10%
along all the range of TF concentrations, uvrD experiences
a drop from almost 60% to less than 20%. K, values that
differ by almost one order of magnitude are the key to this
variation. Whereas the RNAP concentration employed in
the calculation (5E-08) is very similar to the K, of the uvrD
promoter (3.55E-08), it is significantly lower than that of
recA (7.76E-07), thus causing the noticeably lower occu-
pancy of the latter promoter within the range of TF con-
centrations evaluated.

Finally, we obtained a global representation of the reac-
tions of all simple promoters within the study to wide var-
iations of TF (and alternatively RNAP) concentrations. In
order to carry out this analysis, we separated the promot-
ers associated with repressor sites from those associated
with activator sites. To assess the response to varying TF
concentrations, the RNAP concentrations in the simula-
tions were kept equal to the K,of promoters; therefore, we
compared the influence of regulatory sites' strength on
equivalent conditions for all promoters. In the alternative
analysis, we maintained TF concentrations equal to the K
of regulatory sites, hence assessing how promoters'
strength affects their occupancy when their associated reg-
ulatory sites are comparably (half) occupied. The results
of both analyses are presented in Figure 5.

Every point in panel A of Figure 5 represents a promoter-
site unit, its abscissa being the K of the TF binding site
and its ordinate, the probability of RNAP-promoter bind-
ing. The color of the point corresponds to the TF concen-
tration at which the probability was calculated, according
to the legend at the left side of the pane. Combining equa-
tions I, II, and 111, applying the restriction [Pol] = Kp, and
substituting @ by 20, we find that the probability of
RNAP-promoter binding for activators may be calculated
by:

_ Kg+20[TF|
©2Kg+21[TF]

The graph in panel A shows that if differences in promot-
ers' strength are disregarded (with [Pol] = K,), at the same
TF concentrations, the dependency of the probability of
promoter occupancy on regulatory site strength follows
roughly a sigmoid curve. This may be obtained from the
previous equation: if the TF concentration is kept at negli-
gible values with respect to K, the promoter is half occu-
pied. On the other hand, at high TF concentration values
relative to K, activated promoters tend to be occupied
almost permanently. These two boundaries of the equa-
tion determine the sigmoid shape of the probability
(semi-log) graph, with its linear portion populated by reg-
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ulatory sites with K; values approximately within two
orders of magnitude immediately above the TF concentra-
tion. Varying the TF concentration causes a shift of the
probability distribution: as the former increases, the latter
is displaced to the right, with more promoters close to sat-
uration and fewer promoters in the half occupied state.

The probability of RNAP-promoter interaction in the case
of repressor sites applying the aforementioned conditions
(with @ = 0) and restrictions may be computed by the
equation:

- Ka
2Kg+[ TF]’

whose results on the set of promoter-site units within our
study are represented graphically in pane B of Figure 5. In
this case, the upper and lower limits of the probability val-
ues are 0.5 and O, respectively, and the analysis of the
graph shows that, as expected, promoters associated with
stronger sites tend to have lower probability of occupancy
and the shift imposed on the graph by varying TF concen-
trations is the opposite of the one observed for activators.
In this case, the linear portion of the sigmoid is composed
of promoter-site units with K, values approximately
within the two orders of magnitude at both sites of TF
concentration.

Panels C and D of Figure 5 correspond to the assessment
of the probability of RNAP-promoter binding vs the K, of
simple promoters, calculated at TF concentrations equal
to the K of their associated regulatory sites. In this analy-
sis, all regulatory sites are half occupied; therefore, by
combining Equations I, II, and III, and transforming them
accordingly (|TF] = K,), the probability of RNAP-pro-
moter binding for activator sites (w = 20) may be
expressed as:

_ 21[Pol ]
~21[ Pol ]+2K

The graphs that correspond to promoters with activator
sites (panel C) exhibit some similarities with their coun-
terparts from the previous analysis (panel A). Their shapes
tend to follow a sigmoid as the RNAP concentration
increases. The lowest RNAP concentration used in this
analysis is one order of magnitude lower than the K, of the
strongest promoters. However, these graphs present no
discernible (and invariant with RNAP concentration) lim-
its: instead, they occupy the entire scale of probability val-
ues, and their lowest and highest values are determined by
RNAP concentration. This means that if an activator site is
half occupied, the occupancy of the promoter it regulates
may be close to 100% given that RNAP concentration is
within the same order of magnitude as its K. On the other
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Probability of RNAP-promoter interaction. A, activator sites, at RNAP concentration equal to K, of promoters, at four
TF concentrations; B, repressor sites at RNAP concentration equal to K, of promoters, at four TF concentrations; C, activator
sites, at TF concentration equal to K of sites, at four RNAP concentrations; D, repressor sites, at TF concentration equal to

the K, of sites, at four RNAP concentrations.

hand, if the RNAP concentration is between two and three
orders of magnitude lower than the promoter K,,, it will be
unoccupied almost 100% of the time, even if the activator
site that regulates it is half occupied.

The results for promoters associated with repressor sites
are somewhat different. The probability of the RNAP
binding them, given all previously mentioned conditions,
is described by:

[Pol]
[ Pol ]+2Kp '

In this case, the shape of the graph is closer to a negative
exponential whose fall becomes steeper as the RNAP con-
centration increases. Obtaining a sigmoid curve in this
case requires RNAP concentrations on the order of 10-°,
much higher than that observed physiologically [2]. A
RNAP concentration higher by almost one order of mag-
nitude than the K, of a promoter increases its probability
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of occupancy to a value below 80%. This number
decreases rapidly with promoters' strength: for a value of
RNAP concentration lower, by exactly one order of mag-
nitude than promoter K|, its occupancy is around 25%.

Discussion

The log-likelihood function employed to compute the
information content of a group of known TF binding
sequences is associated with the free energy of interaction
between the TF and the DNA sequences. Specifically, this
information is an estimate of the average specific binding
energy for this set of known binding sites [10,20,22]. Sev-
eral studies have used this property either to compute an
experimental free energy matrix for a TF [24] or to corre-
late the information content of individual binding sites of
a TF -- calculated from a previously constructed PWM -- to
their experimentally estimated K, [23]. In addition, some
other papers have used several structure-based theoretical
approaches to calculate interaction energies between DNA
sequences and TFs and compared them with experimen-
tally determined values, in some cases with the aim of dis-
covering new TF binding sites [25-27].

In this work, we combined a set of TF-DNA sequence dis-
sociation constants calculated by different experimental
strategies for a group of six TFs (under similar experimen-
tal conditions) to assess their correlation with the infor-
mation content obtained for those same sequences when
they were scored against PWMs of the TFs. Not surpris-
ingly, the correlation between these two variables was
weaker (r = 0.78 against r = 0.85) than the one found by
Shultzaberger et al. [23] for sequences of a single TF (FIS),
whose K; were determined by a unique experimental
approach. This weaker correlation is probably a conse-
quence of the difference in quality of the PWMs of differ-
ent TFs and the fact that K; values in ProNIT are generated
by different experimental procedures. These two factors
produce the outliers in the graph of Figure 1. Since the
accuracy of the calculation of K, and K, depends on the
quality of this fitting line, it would be important to con-
sider, as part of the proposed extension of this work, to
improve the starting data -- including refining the PWMs
and experimental data sources -- of promoters and TF
binding sites.

Nevertheless, we decided that at this stage the obtained
coherence between theory and experiment was sufficient
towards the main goal of our work: to produce a primary
estimation of the K values of real E. coli regulatory sites
and use them to study the kinetic response of their associ-
ated promoters to variations in site strength. In other
words, we intended to explore first, the dynamical behav-
ior of activated and repressed promoters as TF and RNAP
concentrations change, and second, how transcription ini-
tiation at various promoters regulated by the same TF may
respond differently to changes of its concentration
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through the influence of different factors, such as the var-
iation of its binding sequences, the occurrence of more
than one binding site, or RNAP concentration.

The analysis of the kinetic of RNAP-promoter binding,
exemplified through the behavior of LexA in Figure 4,
revealed several interesting insights. One first aspect that
becomes apparent from the analysis of Table 2 is that the
standard deviation of -log(K;) does not surpass 20% of the
mean within any regulon. This implies that over 60% of
the regulatory sites possess K, values that fall roughly
within the three orders of magnitude centered at the mean
of the distribution. This is approximately the range within
which TF concentration value fluctuations may produce
changes of promoter occupancy, at RNAP concentration
values that are lower by 1-3 orders of magnitude than the
promoter K, as is the case in physiological conditions [2].
Figure 5A illustrates that promoter-sites are responsive to
changes in TF concentration values within the two orders
of magnitude immediately below the K;, when the pro-
moter is half occupied. Moreover, most outliers of regu-
lons' K, distributions correspond to sites associated with
promoters with other sites whose K values are closer to
the distribution mean.

The previous discussion implies that the versatility of TFs,
understood as the ability to produce different outcomes at
the level of (simple) promoter occupancy only by virtue of
modulations of its binding sequences, has precise limita-
tions. In other words, only a limited number of base pair
modifications in the site will produce binding sequences
that are still responsive to physiological TF concentra-
tions. Another mechanism that resulted in the increase of
versatility in the course of evolution is the modulation of
protein-protein interactions through changes in pro-
moter-site distances [7-9,14].

The comparison of the strength of several binding sites
upstream various LexA regulated promoters allowed us to
explore the effect of the existence of several binding sites
that may be independently bound by a TF. Although some
TFs exert their action on promoters through their simulta-
neous binding to several sites leading to the formation of
tetrameric molecules [28,29], this is not the case for LexA,
which in vivo binds to each site as a dimeric molecule [30].
Our findings suggest that placing more than one LexA
binding site in the vicinity of a promoter may be a mech-
anism of modulation of transcription initiation rate at
that promoter. This "redundant" design is illustrated in
Figure 4. For instance, the regulatory region of the
lexA_dinF TU has three LexA binding sites with K values
of 1.2E-08, 8.65E-09, and 2.32E-10. One may assume that
for sufficiently distant sites a LexA molecule bound to one
site does not hinder occupation of another site, as may be
the case for the first site (at -50.5 bp) with respect to the
other two (at +13 bp and -9 bp, respectively). On the other
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hand, close sites may interact with each other in a way that
only one of them may be occupied at a given time, such as
sites two and three in the previous example. The actual
outcome, in terms of promoter occupancy, in both scenar-
ios would be different than the one calculated for each
separate site, shown in Figure 4A. The probabilistic nature
of the interaction between the TF and the DNA would
determine that the chance that at least one of the sites be
occupied is higher than the likelihood of occupancy of
any of them separately.

One way to estimate the probability of promoter occu-
pancy considering that either one of two LexA binding
sites may be occupied is by using the equation of the log-
ical OR gate implemented by Buchler et al. [6]. Although
they originally employed it to compute the probability of
RNAP-promoter interaction in regulatory constructs at
which a promoter is under the regulation of two TFs, it
may be applied to the case of a promoter regulated by two
sites bound by the same TF. We selected the -50.5 bp and
the -9 bp sites to study how multiple independent sites
affect promoter occupancy. Let the dissociation constants
of their respective interaction with LexA be labeled K, and
Kz, then the probability of RNAP-promoter interaction,
applying the OR gate logic, may be calculated as follows:

b K AK [ Pol ]
K AK B[ Pol |+K AK gK p+K BK p[ TF |+K oK p[ TF ]+K p[ TF

2

Figure 6A shows the results of substituting K, K5, Kp, and
[Pol] by their values in this example, and calculating the
probabilities of the lexA_dinF promoter occupancy con-
sidering a) only occupancy of site A by LexA, b) only occu-
pancy of site B by LexA, and ¢) occupancy of either site by
LexA. As expected, within the range of TF concentrations
assayed the probability of promoter occupancy decays at
a higher rate when both sites are considered than for each
individual site. (Opposite results will be obtained for pro-
moters under the control of more than one activator site).
In sum, our results suggest that the location of multiple
LexA binding sites in regulatory regions may be regarded
not only as a source of robustness of the SOS system -- that
increases its resistance to mutations affecting LexA bind-
ing sites -- but also as a device of gene expression fine tun-
ing in response to changes of LexA concentration. This
conclusion may be generalized to TFs that bind independ-
ently to several sites upstream a promoter: the occurrence
of multiple binding sites of this nature may act, together
with variations of TF binding sequences and promoter-site
distances, as a modulator of the effects of TF binding upon
promoter occupancy by the RNAP.

However, there is a limit to the effect of a weak site on the
probability of polymerase-promoter interaction. A muta-
tion that rendered site B weaker by only one order of mag-
nitude would almost override its effect on lexA_dinF
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promoter occupancy, as presented in Figure 6B. The K of
this theoretically mutated site B corresponds to a PWM
score of approximately 7.02, very close to the weaker LexA
site (7.034, upstream uvrB) in our starting data set. This
limit is probably a mechanism that prevents any sequence
within regulatory regions from significantly affecting the
effect of strong TF sites on promoter occupancy. In other
words, while weak sites may indeed ploy a role in affect-
ing the regulatory output of strong sites located in their
vicinity, only true TF binding sites may do this; and the
stronger the strong site, the stronger the weak site must be
in order to have a significant effect on polymerase-pro-
moter interaction.

Finally, we analyzed the general landscape of transcrip-
tion initiation regulation through simple promoters by
assessing the probability of promoter occupancy, first as
the response of promoter-site units when the former is
half occupied and second as their response to changes in
RNAP concentration when regulatory sites are half occu-
pied changing TF concentrations. Clearly, the first theoret-
ical situation is far from the natural behavior of promoter-
site units, which respond as a whole set to a single RNAP
concentration. Nevertheless, some interesting extrapola-
tions on the kinetic behavior of promoter-site units can be
made from these theoretical results. First, it becomes
apparent from panes A and B of Figure 5 that RNAP con-
centration imposes boundaries to promoter-site units'
responsiveness to changes in TF concentrations. In this
case, these limits are set to 0.5-1 for activators and 0-0.5
for repressors. In other words, if RNAP concentrations are
about the K, of a promoter, and it is under the regulation
of a repressor site, its occupancy will never be higher than
50% (or lower than 50% if its associated site is an activa-
tor), irrespective of the concentration of the TF that binds
to the site. The variation of RNAP concentration changes
these limits. For instance, if it falls to one-tenth of the K,
the upper limit of occupancy probability for promoters
associated with repressor sites drops below 10%; a descent
of the limits occurs also in the case of activator sites (Addi-
tional file 2).

In general terms, these results imply that RNAP concentra-
tions impose restrictions on the effects that changes of TF
concentrations may produce on promoter occupancy.
They constrain the growth of promoter occupancy that
may result from increasing -- or activating -- an activator
TF, or from decreasing a repressor TF -- for instance,
through the presence of an inducer.

Testing model predictions

In order to indirectly test the validity of our model, we
compared theoretical predictions made using our equa-
tions with microarray data from FNR-activated TUs in
three experimental conditions (aerobiosis, presence of
nitrate, and presence of nitrate). Briefly, we obtained
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Probability of polymerase-promoter interaction at the lexA_dinF promoter
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Figure 6

Probabilities of lexA_dinF promoter occupancy calculated only on the basis of two of the LexA binding sites
located within the regulatory region of the TU. Panel A: The blue dots represent probability of promoter occupancy cal-
culated considering only occupation of the -50.5 LexA binding site. The red dots represent probability of promoter occupancy
calculated considering only occupation of the -9 site. The green dots represent probabilities calculated relying on the possibility
of occupancy of either site by LexA. (RNAP concentration: |E-08). Panel B: The blue and green dots represent exactly the
same calculations as in panel A; the red dots represent the probability of lexA_dinF promoter occupancy calculated assuming
that the -9 site mutates to produce a sequence whose binding to LexA is weaker by one order of magnitude than the wild type.
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microarray data for FNR-activated TUs in three experi-
mental conditions from Constantinidou et al. [31] and
used them to compute activated FNR concentration in
those three situations. Using each TU iteratively as predic-
tor in this manner, we calculated the theoretical Polymer-
ase-promoter binding probability for all other promoter-
site complexes under the same simulated condition with
respect to the reference culture. Finally, we evaluated the
degree (or trend) of activation of each TU in cells culti-
vated with nitrate (or nitrite) with respect to those culti-
vated under aerobiosis, both experimentally and
theoretically, and computed the consistency between
experimental and theoretical equivalent ratios. (The pro-
cedure is described in detail in Additional file 3 which also
presents the results of calculations and comparisons
between experimental and theoretical trends.)

To analyze the results, we considered three levels of con-
sistency between theoretically predicted ratios and experi-
mental ones. First, the ratio of theoretical to experimental
quotient is between 0.5 and 2 -- i.e.: the disagreement
between theoretical and experimental ratios is no more
than two-fold --; second, the ratio is between 0.25 and 4;
third, the ratio is between 0.1 and 10. We found that 65%
of the predicted ratios are consistent with experimental
ones according to the first; the disagreement of 81% of
them with experimental ratios is no more than four-fold;
and 93% of them are of the same order of magnitude than
experimental ratios. Several points may be raised to
explain why we fail obtaining a perfect consistency
between theoretical and experimental trends. First, it is
important to bear in mind the limitations of the model we
employed, limited to representing the first step of tran-
scription initiation, a complex processed whose dynami-
cal behavior is influenced by a number of other stages.
Second, the computations rely on thermodynamic con-
stants approximated from a correlation, which was
obtained employing fragmented experimental data.
Finally, the noisy nature of microarray data [32] is another
point to take into consideration. Taking all these factors
into account, the levels of consistency found in this con-
frontation may be considered acceptable.

Conclusion

A fairly good correlation between experimentally deter-
mined K, values and PWM scores of regulatory sites
allowed us to approximate theoretical K, values of E. coli
known regulatory sequences and K, values of their associ-
ated simple promoters. Using a formalism developed
somewhere else [6], we explored how variations of TF
concentrations impact the probability of RNAP-promoter
interaction, and thus influence the process of transcrip-
tion initiation, in order to understand how diverse pro-
moters under the control of the same TF may produce
different outcomes by virtue of different variables, such as
the variations of their regulatory sequences, the location
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of several sequences bound independently by the same
TF, or RNAP concentrations.

The variations of regulatory sequences bound by the same
TF and changes of promoter-site distances have long been
recognized as mechanisms that have resulted in increasing
the versatility of gene expression outcomes within a regu-
lon in the course of the evolutionary process. Neverthe-
less, we found that placing several regulatory sites bound
by the same TF close to a promoter -- if they are bound by
the TF in an independent manner -- may act as a third ver-
satility-producing device, in addition to serving as a
source of robustness of the transcription machinery. We
also observed that RNAP concentrations impose well-
defined constraints to the impact of fluctuations of TF
concentrations on promoter occupancy. These results
open the perspective of extending this study in three main
areas: a) improving promoter and TF starting data in order
to improve the correlation between PWM scores and K;
b) extending the model to promoters regulated by more
than one TF (with the aim of studying the dynamics of the
regulation of genes involved in closely related biochemi-
cal processes) and relaxing protein-protein interaction
coefficients (®) to more accurately reflect the wide reper-
toire of contacts between the TFs and the RNAP; and c)
designing new strategies to confront theoretical predic-
tions with microarray data.

Methods

Obtaining and processing data

Experimentally calculated thermodynamics constants (K}
and 4G) of the interaction between 6 E. coli TFs and vari-
ants of their DNA binding sequences (which totaled 193;
see Table 1) were downloaded from the ProNIT database
[21] in July 2008. (Most data collected in this database
were obtained from experiments of gel shift, fluorescence,
filter binding, calorimetry, among others.) From this orig-
inal set we extracted the data that corresponded to experi-
ments carried out at 25°C, and within a range of pH from
7.3t0 7.8, in order to reduce the sources of variation in the
set. As a consequence, the number of sequences was
reduced to 97.

At the same time, we obtained the PWMs representing E.
coli TF binding sites (and all the information on regulatory
sites) from RegulonDB, release 6.2 [11], and scored the
binding site variants from ProNIT using the Patser pro-
gram included within the Consensus package [33,34].
Certain DNA sequences bound by the same TF (that pro-
duced identical PWM scores) presented different K val-
ues. This was the case not only for identical DNA
sequences, where experimental variability or the employ-
ment of two or more different methods may have led to
computing slightly different K, values, but also with very
similar ones, which may be discriminated by the TF (thus
producing different interaction K values), but not by the
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PWM, which relies solely on the information of binding
sequences positional conservation [20,32]. The K, values
of these sequences with equal PWM score were averaged,
thus resulting in a set of 29 sequences described by unique
pairs of K;and PWM values.

The data on E. coli Sigma 70 promoters were downloaded
from the Center of Genomics' Repository at
http:www.ccg.unam.mComputational GenomicPromote
rTools/[35]. Promoters' scores in this repository are calcu-
lated as a simple sum of the PWM scores of the -10 and -
35 boxes. The information contained in this file regarding
promoters' location was used to link the promoters to the
corresponding TF binding sites. We used TUs -- or pro-
moter-site units -- as the basic elements of our analysis in
the subsequent parts of the study. Each TU was therefore
represented as a pair of PWM scores: the score of the TF
binding site (TUs regulated by more than one TF were
eliminated from the set), and that of the promoter. Only
TUs with a full pair of scores were maintained within the
study. On the other hand, TUs with more than one bind-
ing site for the TF were multiplied as many times as neces-
sary to include all of their binding sites. After all these
processes, the set was composed of 105 TUs.

Assessing the correlation between experimental Kd values
and PWM scores

Let K;; be the K; value of the i-th DNA binding site within
the ProNIT filtered set; let score; be the score calculated for

that same DNA sequence using the PWM of the corre-
sponding TF. The mean of the K; and PWM scores distri-

butions may be written as K; and score, respectively.

Then, the equation to calculate the Pearson's correlation
coefficient (p) is:

%]0( Kdi —K_d )( scorej—score )
p= 1=

N 2 N ___\2
\/2 (Kdi—Kd) \/Z (scorei—score)
i=0 i=0

To assess the statistical significance of the p computed, we
reshuffled the pairs of K;-PWM score values 1000 times
and re-calculated the Pearson's correlation coefficient of
each randomized set. We then computed the Z-score and
the associated p-value of the Pearson's correlation coeffi-
cient that corresponded to the original set.

Parameters of kinetic simulations

Whereas in the work by Buchler et al. (2003) the values of
q, ([Pol]/K,) and K, are set theoretically, here we estimated
the values of K, and K for each individual promoter and
site, respectively from experimental data. Therefore, we
only changed in each simulation the values of [Pol] and
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[TF]. The values of the RNAP concentration have been cal-
culated within the nanomolar range in the E. coli cyto-
plasm (DeHaseth et al., 1998). Therefore, we employed
[Pol] values between 10-10and 10-8in all the simulations.
The concentration of TFs was taken, most of the times,
very close to the K, of the site, in order to explore the
behavior of promoter-site units within the responsive [TF]
range. Alternatively, in some simulations, [TF] was varied
across wider ranges, in order to explore the response of
arrays of sites.

The other parameter in the equation, w, was given a qual-
itative two-level treatment: it took value 20 for activators
and O for repressors. Although these two fixed values are
set from empirical knowledge they do not invalidate our
main findings, which are related to regulatory sites bound
by the same TF. As the graph in Additional file 4 shows for
an example TU, variations of the value of the w parameter
only displace the curve of RNAP-promoter interaction
probability thus attaining saturation of the promoter at
lower TF concentrations. Nevertheless, the shape of the
curve remains unaltered, indicating that all simulations, if
performed at lower TF concentrations will render identical
results. In a future extension of this work, a mechanism of
finer tuning should be put in place to better represent the
variety of TF-RNAP interactions, in order to realistically
expand this model to promoters regulated by more than
one TF. All simulations were implemented by ad hoc PERL
scripts; individual TUs' graphs were automatically built
using GNUPLOT scripts.
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