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Abstract

Background: DNA polymerase § plays an essential role in chromosomal DNA replication in
eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast,
Pol & is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the
catalytic subunit Pol3 and three smaller subunits Cdcl, Cdc27 and Cdml|. Pol3 binds directly to the
B-subunit, Cdcl, which in turn binds the C-subunit, Cdc27. Human Pol & comprises the same four
subunits, and the crystal structure was recently reported of a complex of human p50 and the N-
terminal domain of p6é6, the human orthologues of Cdcl and Cdc27, respectively.

Results: To gain insights into the structure and function of Cdcl, random and directed
mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdcl
proteins. Each allele was tested for function in fission yeast and for binding of the altered protein
to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid
changes in each protein were mapped onto the three-dimensional structure of human p50. The
results obtained from these studies identify amino acid residues and regions within the Cdcl
protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations
specifically defective in Pol3-Cdcl interactions allow the identification of a possible Pol3 binding
surface on Cdcl.

Conclusion: In the absence of a three-dimensional structure of the entire Pol & complex, the
results of this study highlight regions in Cdcl that are vital for protein function in vivo and provide
valuable clues to possible protein-protein interaction surfaces on the Cdcl protein that will be
important targets for further study.
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Background

Three  evolutionarily-conserved DNA  polymerase
enzymes play essential roles at the eukaryotic replication
fork [1]. DNA polymerase a-primase is essential for the
initiation of leading strand synthesis at individual replica-
tion origins and for the initiation of each Okazaki frag-
ment on the discontinuously-synthesised lagging strand.
Extending from the RNA-DNA primers laid down by DNA
polymerase o (Pol a)-primase, recent results indicate that
DNA polymerase ¢ (Pol ¢) is likely to replicate the bulk of
the leading strand [2] while DNA polymerase & (Pol 6)
synthesises the bulk of the lagging strand [3], reviewed by
[4,5]. In the absence of catalytically-active Pol ¢, Pol § is
apparently able to synthesise both leading and lagging
strands [6]. Completion of lagging strand synthesis
requires subsequent processing of the nascent Okazaki
fragments to remove the RNA primer and ligation to form
a continuous DNA strand [1].

Each of the three replicative polymerases a, & and ¢ is a
member of the B family of DNA polymerases [1] and each
is a multi-subunit entity, comprising an essential catalytic
subunit and a number of smaller subunits, some of which
are also essential for cell viability based on the results of
genetic analysis in the yeasts [1]. Until recently, very little
high-resolution three-dimensional structural information
on the three polymerases was available, as the only solved
structures were those of a 38 amino acid zinc finger
derived from the carboxy-terminal end of the catalytic
subunit of human Pol o and 75 amino acids of the amino-
terminal domain of the B-subunit of human Pol ¢, both
determined by NMR [7,8]. A low-resolution structure of
the budding yeast Pol ¢ complex was also obtained by
cryo-EM reconstruction [9]. However, high-resolution
structures are now available for the complex of p50 (the
second subunit) and the N-terminal 144 amino acids of
p66 (the third subunit) of human Pol & (designated
p50ep66y) [10,11] and for the complex of the C-terminal
domain of budding yeast Pol1 protein, the catalytic subu-
nit of Pol o, and the C-terminal PDE and OB fold
domains of the Pol a B-subunit Pol12 [12].

The fission yeast Schizosacchromyces pombe is an excellent
model for studying Pol & structure and function [1]. In
this organism, DNA polymerase & is a heterotetrameric
complex, comprising the catalytic subunit Pol3 and three
smaller subunits Cdcl, Cdc27 and Cdm1 [13,14]. Pol3,
Cdcl and Cdc27 are essential proteins [15-18] whereas
Cdm1 is not [19]. Orthologues of all four subunits make
up human Pol 4. In contrast, Pol & in the budding yeast
Saccharomyces cerevisiae is a three-subunit enzyme; no
Cdm1 orthologue is present in this organism. Pol3 binds
directly to the B-subunit Cdc1 [20] via one of two con-
served zinc finger modules located at the C-terminus of
Pol3 [21]. Cdcl binds the C-subunit Cdc27 [20] which
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interacts directly with two other key components of the
replisome - the catalytic subunit of Pol a-primase [22]
and the sliding clamp processivity factor PCNA [23].
Cdc27 has an unusual structure: a globular N-terminal
domain of ~160 amino acids is followed by a highly
extended C-terminal region of ~210 amino acids [14]. The
interactions with Pol a-primase and PCNA both involve
short conserved protein-protein interaction motifs
located within this C-terminal region, but neither interac-
tion is essential for replisome function [22,24]

In contrast to PCNA and Pol a-primase, Cdc1 binds the N-
terminal domain of Cdc27 [23]. The structure of
p50ep66, complex [10,11] (where p50 and p66 are
human orthologues of Cdcl and Cdc27) now enables the
mapping of the interactions within the Cdc1Cdc27
assembly. Figure 1 provides a summary view of the
human p50ep66y complex (Figure 1A) together with a
schematic representation of the domain structure of the
two proteins in humans and yeast (Figure 1B). Three
domains are apparent: p50 comprises a phosphodieste-

p66y WHTH
domain

Cdc1
119 33 166 462
N C

PDE

Figure |

Structure of the human p50+p66, complex. A. Struc-
ture of the human p50°p66N complex showing the p50 PDE
and OB domains (cyan and magenta respectively) and the
p66N wHTH domain (gold). The figure was prepared with
PyMol software (Delano Scientific) using the coordinates of
p50+p66, complex (Protein Data Bank with accession code
3EQ)) [10]. B. Schematic showing the predicted location of
the PDE and OB domains in fission yeast Cdcl in relation to
their sequence numbering.
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rase-like domain (PDE domain) and an oligonucleotide/
oligosaccharide binding domain (OB domain) while
p66y comprises a winged helix-turn-helix (wHTH)
domain. The PDE domain is located in the centre of the
complex with the OB domain on one side and the wHTH
on the other (Figure 1A). The PDE and OB domains are
present in the B-subunits of all three eukaryotic replicative
polymerases as well as in the essential second subunit of
the archaeal DNA polymerase PolD [25,26] found exclu-
sively in the Euryarchaeota and Thaumarchaeota phyla
[27]. In the case of the euryarchaeal proteins the PDE
domain is active as a 3'-5' exonuclease, affording the PolD
enzyme proofreading activity. Key residues required for
nuclease activity are absent from the eukaryotic proteins;
in the case of Pol 8 and Pol ¢, proofreading activity resides
in the catalytic subunit of the complex [1].

This study describes the results of mutational analysis of
fission yeast Cdcl. Despite its essential cellular role and
widespread evolutionary conservation, the precise bio-
chemical function of the Cdc1/p50 protein is not known
nor is it clear how the structure of the protein is related to
this. In fission yeast, a small number of temperature-sen-
sitive mutant alleles of cdc1 have been isolated and char-
acterised, and several truncated Cdcl proteins tested for
function in vivo [20]. The temperature-sensitive mutations
were shown to result from single nucleotide changes in
the gene sequence, resulting in a single amino acid
changes in the encoded proteins. These changes mapped
towards the C-terminus of the Cdcl protein, within the
PDE domain [20]. Similar results were seen with budding
yeast pol32/hys2 mutations [28,29]. Analysis of truncated
mutant Cdc1 proteins showed that removal of 20 amino
acids from the C-terminus of Cdc1 abolished the in vivo
function of the protein, while removal of the first 25
amino acids from the N-terminus led to dominant nega-
tive cell cycle arrest that could be reversed by simultane-
ous overproduction of Cdc27, suggesting that the mutant
Cdc1-NA2-25 protein exerted its function by titrating
Cdc27 from the cell [20].

To investigate further the structure and function of Cdc1,
a collection of thirty mutant cdc1 alleles were generated by
directed and random mutagenesis methods. Each of the
mutations was mapped onto the three-dimensional struc-
ture of human p50 [10] and each mutant protein was then
tested for function in fission yeast cells, and for binding to
Pol3 and Cdc27 using the two-hybrid system.

Results

Pentapeptide insertion mutagenesis

Random mutagenesis of the cdc1+ gene was carried out
using the pentapeptide scanning mutagenesis (PSM)
method [30,31]. This method makes use of a modified
form of the Tn3-related transposon Tn4430 of Bacillus
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thuringiensis. Tn4430 transposes efficiently in E.coli and in
doing so duplicates 5 bp of host sequence at the insertion
point. The transposon also contains Kpnl restriction sites
5 bp from the outer end of its terminal repeats. If, follow-
ing insertion of Tn4430 into the target gene, the bulk of
the transposon is deleted by in vitro Kpnl restriction and
re-ligation, a 15 bp sequence insertion remains. Since
Tn4430 inserts with low sequence specificity, the pen-
tapeptide insertions will vary in composition. The useful-
ness of this system has been demonstrated through its
application for random mutagenesis of, amongst others,
TEM-1 B-lactamase [30,32], XerD recombinase [33] and
phospholipase D1 [34].

The strategy for mutagenesis of cdc1+is outlined in Figure
2. Plasmid pBR322-Cdc1 (see Methods) was transformed
into E.coli FH1046 containing plasmid pHT385 which
carries the Tn4430 transposon [30]. Individual transform-
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Figure 2

Pentapeptide scanning mutagenesis (PSM) strategy.
A schematic representation of the mutagenesis and cloning
strategies used to create the cdc/ PSM alleles. Plasmid
pBR322-Cdcl (top left) carries a cdc/* cDNA on a BamHI-
BamHI fragment. This plasmid was transformed into E.coli
FH1046 containing pHT385. Following mating with E.coli
DS94 1 (see Methods), plasmids in which the Tn4430 transpo-
son had inserted into the cdc/* ORF (indicated as pBR322-
Cdcl-Tn, top right) were identified by restriction mapping
and the bulk of the Tn4430 sequences excised by Kpnl diges-
tion and self-ligation of the digested plasmids. The mutant
alleles were then transferred into pREP3XH6BN, a fission
yeast expression vector, and either pBTMI 16 or

pBTMI 16BN, budding yeast two-hybrid bait vectors.
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ant colonies were then mated with E.coli DS941 and resist-
ant colonies identified and plasmids recovered.
Restriction mapping was then used in order to identify
clones in Tn4430 had inserted into cdc1+ rather than the
plasmid backbone, and the bulk of the transposon
sequences then removed by cleavage with Kpnl followed
by ligation under conditions that promoted self-ligation
(see Methods).

Number and distribution of insertion mutations

In total, 31 mutant alleles were generated by the PSM
method (Table 1, Figure 3). Despite their independent
origins, DNA sequence analysis revealed that these corre-
sponded to only 20 different mutant alleles (Table 1),
indicating that insertion of Tn4430 is not entirely ran-
dom, as noted previously [30]. The insertions also clus-
tered towards the 5' end of the cdc1+ gene, with 26 of the
31 insertions mapping within the first 420 bp of the 1386
bp ORF. Clustering towards the 5' end of the ORF was
observed in a similar study of the S.pombe 1fc2+ gene
cloned into pBR322 [35]. Thirty of the mutant alleles con-
tained a 15 nt insertion when compared with the wild-
type cdcl* sequence. The remaining allele (Cdc1-E2) con-
tained a 16 nt insertion, presumably the result of an inex-
act transposition event. This insertion leads to the Cdc1
protein being truncated after amino acid 26. Another
insertion also led to production of a truncated protein:
Cdc1-J17 was truncated after amino acid 27. Two of the
insertions resulted in different insertions at the same
amino acid position in the protein (Cdc1-J6 and Cdc1-E9,
between amino acids 124 and 125).

Site-directed mutagenesis

In addition to the random pentapeptide insertion muta-
tions, ten additional c¢dc1 mutations were constructed by
oligonucleotide-directed in vitro mutagenesis (see Meth-
ods). Eight of these alleles resulting in the encoding pro-
teins (Cdc1-A1 to -A8) differing from the wild-type Cdcl
by a single amino acid substitution. The remaining two
alleles encoded proteins (Cdc1-A9 and Cdc1-A10) that
featured substitutions of two adjacent amino acids. All the
mutated amino acids were amongst those that are found
conserved between the eukaryotic DNA polymerase B-
subunits and the archaeal PolD small subunit [26,36].
Mutations A1 — A4 and A9, which combines mutations A1
and A2, cluster in conserved region VI [36], whereas muta-
tions A5, A6 and A10, which combines A5 and A6, map to
conserved region VII. A7 and A8 map to conserved regions
VII and VIII, respectively (see Figure 3).

Analysis of mutant function in fission yeast

Expression in cdclA cells

In order to test for function in S.pombe, each allele was
subcloned to plasmid pREP3XH6BN to permit expressing
of the mutant proteins under the control of the thiamine-
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repressible nmtl promoter (Figure 2, see Methods for
details). The resulting plasmids were then transformed
into a cdcl*/cdcl::ura4+ h-/h+ diploid strain and diploid
transformants isolated at 32°C on supplemented EMM
plates with and without 5 pg/ml thiamine. Transformant
colonies were then picked and subjected to treatment with
helicase to kill vegetative cells and degrade the walls of the
asci present in the nutritionally-depleted colony centres.
Following washing, the spores were plated on supple-
mented EMM media with and without 5 pg/ml thiamine
and incubated at 32°C for 4-6 days (see Methods for fur-
ther details).

Figure 3 summarises the properties of the Cdcl mutants.
When overexpressed (in cells grown in the absence of thi-
amine), twenty-three of the thirty mutant proteins were
able to substitute for complete loss of wild-type Cdcl
function (grey/green circles/triangles in Figure 3). Given
that all the pentapeptide insertion sequences include a
proline residue that might be expected to have a signifi-
cant effect on the secondary structure in the vicinity of the
insertion, it is perhaps surprising that only seven of the
insertions abolish Cdc1 function outright (purple circles/
triangles in Figure 3). However, related studies of two
other essential fission yeast DNA replication factors Rfcl
[37] and Rfc2 [35] have revealed similar ratios of func-
tional to non-functional mutations, as have published
studies of unrelated proteins [30,32-34]. Of the twenty-
three functional alleles, nine were able to support growth
only in cells grown in the absence of thiamine, indicating
that high level expression of the mutant proteins is
required for rescue (Figure 3, green circles/triangles).

Expression in cdc1-P13 cells

In addition to testing the function of the mutant proteins
in a cdc1A4 background, each was expressed in wild-type
cells and in cells carrying the temperature-sensitive cdc1-
P13 allele [15]. Expression of the mutant proteins had no
detectable effect on wild-type cells. In cdc1-P13 cells, the
proteins were tested for their ability to rescue at the restric-
tive temperature of 36.5°C in cells grown in the presence
and absence of thiamine. The results obtained broadly
mirrored those seen with the cdc1 4 strain but with the fol-
lowing exceptions: at low expression levels, several of the
mutant proteins that could not rescue cdc14 could rescue
cdc1-P13 at 36.5°C, namely Cdcl1-A6, -J3, -J4, -J5, -J10, -
J11, -J13 and -J21, and two of the mutants, Cdc1-A10 and
-J7, displayed dominant negative properties at 28°C,
described further below.

Analysis of protein-protein interactions using the two-
hybrid system

As described in the Introduction, the Cdcl protein inter-
acts directly with both the catalytic subunit of the Pol &
complex Pol3 and also with the C-subunit Cdc27. These
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Table I: Pentapeptide insertion and site-directed mutants: a summary

Mutant Sub-domain Location Inserted sequence or point Ability to substitute for Cdcl Interaction with Pol3 and
mutation(s) at different expression levels  Cdc27 by two-hybrid analysis
(%)
Low High Pol3 Cdc27
WT + + 100 100
J12 N 7 Ser-GlyValProHisSer-lle + + <l 59
E4 N 10 Cys-GlyValProProCys-Glu + + 16 62
J2 | 25 Tyr-ArgGlyThrProTyr-Ser + + 46 <l
E2 | 26 Ser-GlyValProLysTer - - <l <l
J17 I 28 GIn-Ter - + 2 <l
J3 i 62 Leu-GlyValProLeuLeu-Asp - + 54 <l
El I 66 Ser-GlyValProGInSer-Asp + + 65 |
J10 I 77 Tyr-ArgGlyThrProTyr-Met - + <l 30
8 I 83 Lys-GlyValProLeulys-Pro + + <I 128
E5 ] 86 Val-MetGlyTyrProVal-Met + + 48 88
Jé 11l 124 Tyr-GlyValProHisTyr-Gly - + <l <l
E9 LI} 124 Tyr-GlyGlyTyrProTyr-Gly - + 24 <l
J4 1] 127 lle-GlyValProArglle-Asp - + 36 <l
] I 141 Thr-GlyValProLeuThr-Gly - - <l <l
J16 nv 160 Val-GlyGly ThrProVal-Asp - - <l <l
)9 nnv 174 Met-ArgGlyThrProMet-Thr + + 9l 102
JI5 VIV 203 GIn-GlyValProLeuGIn-Val + + | 78
J22 VIV 212 Arg-GlyValProlLeuArg-Gly - + 25 7
J21 VIVI 275 Leu-GlyValProGInLeu-Asp - + <l <I
Al Vi 292 Pro292Ala + + 39 44
A2 \| 293 Gly293Ala + + <l 19
A9 Vi 292-293  Pro292Ala, Gly293Ala - - <l 58
A3 Vi 296 Asp296Ala - - <l 23
A4 \| 303 Pro303Ala + + <l 31
A5 Vil 328 Asn328Ala + + 4 37
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Table I: Pentapeptide insertion and site-directed mutants: a summary (Continued)

A6 Vil 329 Pro329Ala - + <l 6
AlO \ 328-329  Asn328Ala, Pro329Ala - - <l 72
A7 Vil 344 Gly344Ala + + 9 <l
A8 Vil 374 Pro374Ala + + 17 8
J7 Vil 393 Met-GlyValProLeuMet-Glu - - <l 19

For the pentapeptide insertion mutants, multiply isolated insertions were as follows: J2 (re-isolated as |18, J20, E10), J3 (E3, E8), 10 (11, E6, E7), )8
(J19) and J4 ()5, J13). The location of the insertions is given as the number of the last amino acid residue N-terminal to the insertion. The insertion
sequences are shown between the hyphens. Note that the target site duplication results in the amino acid immediately N-terminal to the insertion
being duplicated as the fifth amino acid of the insertion (except where stop codons are inserted) and that the insertions in Cdcl-J6 and Cdcl-E9 are
found at the same amino acid but are of different sequence. Quantitative two-hybrid assay values are given as percentages of the interaction seen
with wild-type Cdcl with Pol3 (in the presence of Cdml) or Cdc27. See Results for further details.

interactions can be conveniently monitored using the
yeast two-hybrid system [20,23]. Each cdcl mutant allele
was therefore cloned into the two-hybrid bait pBTM116
(or the related pBTM116BN plasmid) to allow expression
of Cdcl fused to the DNA binding domain of bacterial
LexA protein (see Methods). The resulting plasmids were
initially co-transformed into S.cerevisiae CTY10-5d along
with the prey plasmid pGAD2F-Cdc27, which expresses
Cdc27 fused to the yeast Gal4 transcriptional activation
domain. Co-transformants were monitored for B-galac-
tosidase activity by X-gal overlay assay (data not shown)
and ONPG liquid assay (Figure 4A).

To examine whether the mutant Cdc1 proteins interacted
with Pol3, each pPBTM116-Cdc1 plasmid was transformed
into CTY10-5d along with the prey plasmid pACT-Pol3
and pAA-Cdc27. The latter directs expression of Cdc27 as
a c-myc epitope-tagged fusion protein. Previously it was
shown that interaction between LexA-Cdc1 and Gal4-Pol3
could only be detected when Cdc27 was simultaneously
co-expressed in the cells [23]. Presumably Cdc27 binds to
Cdcl1 to stabilise the protein or alter its conformation,
allowing interaction with Pol3 to take place at a level that
can be detected under two-hybrid assay conditions. As
above, B-galactosidase activity was monitored by X-gal
overlay assay (data not shown) and ONPG liquid assay
(Figure 4B). Those mutant Cdc1 proteins that were unable
to bind to Cdc27 in the two-hybrid system would be pre-
dicted to be also incapable of binding Pol3.

Analysis of dominant negative Cdcl mutants

Two of the Cdc1l mutant proteins exerted a strong domi-
nant negative phenotype when expressed at high level in
cdc1-P13 cells. Transformed cdc1-P13 cells carrying either
pREP3XBN-Cdc1-J7 or -A10 were viable at 28°C only
when grown on medium containing thiamine to repress
the nmtl promoter (Figure 5). When transferred to
medium lacking thiamine, high-level expression of the

mutant proteins led to cell cycle arrest (elongated cell phe-
notype) and a failure to form colonies. Similar behaviour
was observed when these mutant proteins were expressed
in cdc1-223 cells at 28°C, although the phenotype was
somewhat weaker (data not shown).

The two-hybrid analysis described above (Figure 4) sug-
gests that both Cdc1-J7 and Cdc1-A10 retain the ability to
bind to Cdc27 but cannot bind Pol3, suggesting that the
dominant negative phenotype may be the result of the
mutant proteins interacting with Cdc27 to form non-
functional Cdc1-Cdc27 dimers, thus titrating Cdc27 from
the cell, impairing Pol3-Cdc1-Cdc27 (Pol §) complex for-
mation and inhibiting chromosome replication. If this
were the case, simultaneous overproduction of Cdc27
would be expected to reverse the toxic effects of Cdc1-J7
and Cdc1-A10, by providing excess Cdc27 to interact with
non-mutant Cdcl.

To test this, cdc1-P13 cells expressing Cdc1-J7 and Cdcl1-
A10 were co-transformed with plasmid pREP4X-Cdc27
which expresses the full-length Cdc27 protein, also from
the nmt1 promoter [23]. However, no rescue of the dom-
inant negative phenotype was observed: cdc1-P13 cells
expressing Cdc27 and either Cdc1-J7 and Cdc1-A10 were
still unable to grow on plates lacking thiamine at 28°C.
We also tested whether overproduction of Pol3 or a
nuclear-targeted form of the C-terminal ZnF domain of
Pol3 would rescue the toxic effects of Cdc1-J7 and Cdc1-
A10, despite their apparent inability to bind Pol3 as
gauged by two-hybrid assay (Figure 4): again, no rescue
was seen. Previously, overproduction of an N-terminally
truncated form of Cdcl, Cdc1-NA25, has been shown to
exert a similar effect on cdc1-P13 cells [20]. In the case of
Cdc1-NA2-25, however, simultaneous overproduction of
Cdc27 was sufficient to rescue the phenotype. This sug-
gests that the Cdc1-J7 and -A10 proteins exert their effects
through a mechanism distinct from that of Cdc1-NA2-25,
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Figure 3

Location of mutants in Cdcl protein. Sequence align-
ment of the fission yeast Cdc| protein and its human ortho-
logue p50 in single-letter code. Residues identical between
the two proteins are highlighted in yellow. The sites of inser-
tions and point mutations in Cdcl are indicated by colour-
coded triangles (pentapeptide insertions, E and | mutants)
and circles (point mutations, A mutants). Grey circles/trian-
gles indicate fully-functional mutants; green circles/triangles
indicate partially-functional mutants; magenta circles/triangles
indicate non-functional mutants. Note that the A9 and Al0
mutants see two adjacent amino acids mutated and are
therefore indicated by side-by-side (magenta) circles. Where
the same insertion was found more than once, only one allele
appears on the figure (see Table | for further information).
The ten conserved regions defined in the previous study [36]
are underlined and indicated by Roman numerals (I — X). The
red, cyan and grey bars correspond to positions of a-helices,
B-strands and disordered regions in human p50 [10]. The
amino acid residues in the p50 protein that are involved in
interactions with p66y, are shown in green type. See text for
details.

perhaps by binding to, and titrating out, an as yet uniden-
tified Pol 8 interacting factor. Screening for high copy sup-
pressors of the Cdc1-J7 and Cdc1-A10 dominant negative
phenotypes might allow this factor to be identified,
although negative regulators of the nmtl promoter are
also likely to be identified in such a screen.

Discussion
In this report, we describe the results of mutational analy-
sis of the fission yeast Cdcl protein using both random
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Figure 4

Quantitative two-hybrid analysis. A. The Cdcl mutants,
arranged depending on the position of the mutation within
the Cdcl protein, from N- to C-terminus, were tested for
their ability to interact with Cdc27 using the two-hybrid sys-
tem in S.cerevisiae CTY 10-5d. Quantitative values were
obtained using an ONPG-based [3-galactosidase assay from
liquid cultures (see Methods). Values are expressed in arbi-
trary units with the wild-type Cdcl-Cdc27 interaction being
set at 100 units (~65 Miller units of 3-galactosidase activity,
see [20]). B. Similar analysis of Cdcl-Pol3 interactions, per-
formed in the presence of Cdc27 (see text).

and site-directed mutagenesis techniques. In total, thirty
mutant proteins were expressed and assayed for function
in vivo and for binding to Pol3 and Cdc27 by two-hybrid.
The results of these assays are summarised in Table 1.

For the purposes of the following discussion, we divide
the mutations in four separate groups based on the two-
hybrid interaction data presented in Figure 4 and use the
structure of the human p50 protein [10] as the basis for
discussion of possible structural effects of the mutations.
In the absence of a crystal structure for the fission yeast
Cdcl protein, the human p50 structure represents the
only available option for this type of analysis but it is
important to note that the two proteins are only ~35%
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pREP3X-Cdc1-A10

Figure 5

Dominant negative Cdcl mutants. cdc/-P|3 cells carry-
ing plasmids pREP3X, pREP3XH6BN-Cdcl, pREP3XH6BN-
Cdcl-J7 or pREP3XH6BN-Cdc|-Al0 were grown up in EMM
medium at 28°C before being plated onto EMM plates with
(+T, right hand panels) or without 5 pg/ml thiamine (-T, left
hand panels) and incubated for 4 days at 28°C.

http://www.biomedcentral.com/1471-2199/10/82

identical at the primary sequence level and that this could
affect some of the conclusions drawn. An additional point
to note, particularly when considering mutations that
appear to disrupt Cdc1 function altogether, is that possi-
ble effects of individual mutations on protein stability
have not been addressed in this study. For technical rea-
sons we have been unable determine the expression levels
of the mutants, even in cells cultured in the absence of thi-
amine. Figure 6 shows the locations of the mutations in
each group mapped onto the structure of human p50
according to the protein sequence alignment shown in
Figure 3.

Mutations that disrupt both Pol3-Cdcl and Cdcl-Cdc27
interactions

The E2, J1, J16, J21, J17 and J6 mutations disrupt Cdcl
interactions with both Pol3 and Cdc27 in two hybrid-
assays (Figure 4); the locations of the mutated residues on
the three-dimensional structure of human p50 are shown
in Figure GA.

Five of the six mutations in this group are pentapeptide
insertions (J1, J16, J21, J17 and J6, see Table 1). The J21
insertion is in the middle of a5 (Figure 6A) and likely
interferes with the folding of this helix, which is an impor-
tant feature of PDE domain. Several residues within a5 are
also involved in Cdc27 binding, raising the possibility
that loss of Pol3-Cdc1 interaction in two-hybrid assays is
the caused by disruption of the Cdc1-Cdc27 interaction
since Pol3-Cdc1 interactions were only detectable by two-
hybrid in yeast cells co-expressing Cdc27. In contrast, the
J1, J6 and J16 insertions are located within, and appear
likely to disrupt the folding of, the OB domain (Figure
6A). The fact that none of the three latter insertions are
close to the Cdcl-Cdc27 interface (based on the
p50ep66,, structure) appears to rule out the possibility
that Pol3-Cdcl two-hybrid interaction is impaired by
direct modification of Cdc1-Cdc27 interaction interface.
Instead, the disruption of OB domain fold by J1, J6 and
J16 insertions is likely to affect the Cdc1-Cdc27 interac-
tion in part by destabilizing the PDE domain and in part
by preventing the correct positioning of N-terminal resi-
dues which are important for the function of Cdc1 [20].
The consequences of the J1 and J16 mutations for Cdc1
activity in vivo were more severe than for J6 and J21, since
neither J1 nor J16 was able to substitute for loss of Cdcl
in cdc1A4 cells under any conditions, while J6 and J21 were
able to rescue when overexpressed (Figure 3).

For the remaining two mutations in this group (J17 and
E2), it is not surprising these the mutant protein fail to
interact with both Pol3 and Cdc27, as both mutations
result in incorporation of a stop codon into the cdcl
sequence and premature termination of translation in the
flexible B,a, linker, after amino acids 26 and 28 respec-
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tively. When expressed at near wild-type levels in S.pombe,
from the repressed nmt1 promoter, neither protein is able
to support growth of cdc1A4 cells. However, when overex-
pressed (nmt1 promoter depressed in the absence of thia-
mine), cdc1A cells expressing Cdc1-J17 were able to grow
(Figure 3). This is most likely a consequence of low-level
readthrough of the amber (UAG) stop codon in the cdc1-
J17 allele. Although E2 is also an amber mutation, the
sequence insertion in this allele comprised 16 nucleotides
rather than the usual 15, so that expression of a full-length
Cdc1 protein would require the unlikely combination of
readthrough of the AUG codon and translational
frameshifting.

Mutations that disrupt Pol3-Cdcl interactions only

This group contains a total of thirteen mutations that can
be further divided into two sub-groups on the basis of the
ability to substitute for wild-type Cdc1 in cdc14 cells. The
first sub-group contains six mutations that display either
impaired function in vivo (rescuing cdc1A4 cells only when
overexpressed from the derepressed nmtl promoter) or
which cannot rescue cdc14 cells under either of the condi-
tions tested. This sub-group comprises the pentapeptide
insertions J7 and J10, the single point mutations A3 and
A6, and the double point mutations A9 and A10 (Figure
6B). A9 is a combination of A1 and A2; A10 of A5 and A6
(Figure 3). Five of the six mutations are located in the PDE
domain and one (J10) in the OB domain. Each of the six
mutant proteins is able to bind Cdc27 in two-hybrid
(although in the case of A6 binding is reduced to <10% of
that seen with the wild-type Cdc1 protein) but is greatly
impaired in Pol3 binding ability (< 0.5% of binding seen
with wild-type protein, see Figure 4). Strikingly, all six
mutations map to the same side of Cdcl, identifying a
possible Pol3-interacting surface. In support of this,
glutamine 345 in human p50 (glutamine 347 in Cdcl)
also maps to this region (indicated in Figure 6B). A muta-
tion in the corresponding residue in budding yeast Pol31
(lysine 358 mutated to glutamate) was identified in a
screen for dominant extragenic suppressors of the temper-
ature-sensitive pol3-13 mutation, in which one of four
cysteines of the second C-terminal zinc finger of Pol3
(designated ZnF2) is replaced by serine [38,39]. Subse-
quent work showed that the ZnF2 domain was both nec-
essary and sufficient for Pol31 binding by Pol3 and that in
two-hybrid assays, the K358E mutant of Pol31 interacted
more strongly with both wild-type and mutant forms of
ZnF2 [21]. Taken together, these results suggest that the
region defined by these mutations constitutes a Pol3
binding site on Cdcl. This suggestion is consistent with
the recent crystal structure of interacting domains of the
budding yeast Pol1 and Pol12 proteins, the catalytic and
B-subunits of Pol a respectively [12]. The C-terminal
domain of Pol1, comprising the two zinc fingers ZnF1 and
ZnF2 and a three a-helix bundle, makes extensive contacts
with the PDE and OB fold domains of Pol12 over a strik-
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Figure 6

Mapping of Cdcl mutants to the structure of human
p50°p66, complex. The secondary structure elements are
colour-coded as follows: a-helices, B-strands and coils are
red, yellow and green in p50, and cyan, magenta and light
pink in p66y. The sites of pentapeptide insertions and amino
acid substitutions are highlighted by double and single grey
spheres, respectively. In panel B the blue sphere indicates the
position of GIn347. The labels in magenta, green and grey
correspond to non-functional, partially functional and fully
functional pentapeptide insertions or amino acid substitu-
tions. The disordered region dl was modelled for panels A,
C, and D. The positions of disordered regions d1-d4 are
drawn by dotted lines in panel B. The figure was prepared
with PyMol software (Delano Scientific) using the coordi-
nates of p50+p66y, complex (Protein Data Bank with acces-
sion code 3EQ)) [10].

ingly large area that is equivalent to that defined by our
study of Cdc1-Pol3 interactions (Figure 6B). Intriguingly,
the disordered regions d1-d4 in the human p50 structure
(indicated by the grey bars in Figure 3) are localised to the
same region [10]. It is tempting to speculate that these dis-
ordered regions also have a part to play in binding Pol3
and become structured only once Pol3 is bound.
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The second sub-group of mutations unable to bind to
Pol3 comprises mutations J8, J12, J15, A2, A4 and AS5.
These display >20% binding to Cdc27 in the Cdc1-Cdc27
two hybrid assay but with the exception of A5, display <
0.5% binding to Pol3 in the Pol3-Cdc1-Cdc27 two hybrid
assay (A5 displayed ~5% binding compared to wild-type
Cdc1, Figure 4). Despite their extremely limited ability to
bind to Pol3, however, these mutant proteins were able to
function in vivo, even when expressed at near wild-type
levels from the repressed nmt1 promoter (Figure 3). The
reason for this discordance is unclear but one possibility
is that the mutants benefit from the presence of the fourth
subunit of the Pol & complex in fission yeast, Cdm1 [19].
In both fission yeast and in mammalian cells, the Cdm1
protein (designated p12 in mammals) appears to have a
stabilising effect on the Pol  complex [13,40-42] possibly
through direct binding to both Pol3 and Cdc1 [43]. There
is no Cdm1 orthologue in the budding yeast S.cerevisiae,
the host for the two-hybrid analysis presented here [44].
Mapping ofthe]8,J12,J15, A2, A4 and A5 mutations onto
the structure of human p50 reveals that J8, A2, A4, and A5
may directly affect the disordered loops (Figure 6B),
which we propose to form an area of protein-protein
interactions. The remaining two mutations, J12 and J15,
are apart from the suspected interaction area and are likely
to exert their influence to Pol3-Cdc1 interactions via an
allosteric effect: J12 via an N-terminal residues to a disor-
dered region d1, and J15 via a loop B8-a3 to the disor-
dered region d2.

Mutations that disrupt Cdc27 interactions only

As noted above, in the two-hybrid assay system used here
and described previously [21,23], Pol3-Cdc1 interactions
were only detectable when Cdc27 was co-expressed in the
reporter cells. Under these conditions, Cdc27 presumably
serves to stabilise or alter the conformation of Cdcl to
facilitate its binding to Pol3. It is therefore surprising that
five of the insertion mutant Cdcl proteins generated in
this study (E1, J2, J3, E9, J4) were able to interact with
Pol3 in the Pol3-Cdc1-Cdc27 two-hybrid assay (display-
ing >20% of wild-type binding activity) despite being
unable to interact with Cdc27 in the Cdc1-Cdc27 assay.
Interestingly, four of these map to the OB domain and the
fifth (J2) to the B,a, disordered linker. All five are there-
fore located some distance away from the Cdc1-Cdc27
interface (Figure 6C) making it unlikely that they have a
direct effect on Cdc27 binding. It may be the case that dis-
ruption of the OB domain and B,a, linker results in a
widespread perturbation of the structure of Cdc1 and dis-
ruption of the Cdcl-Cdc27 interface. When Pol3 is
present (as in the Pol3-Cdc1-Cdc27 two-hybrid assay),
the structure of the Cdcl protein, and more specifically
the putative Pol3 binding region described in the preced-
ing section, may be stabilised, effectively insulating the
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Cdc1-Cdc27 interface from the effects of disruption of the
OB domain and B,a, linker. Cdc1-Cdc27 interactions are
also impaired by the J22 insertion (<10% binding in two-
hybrid assay) which maps close to the Cdc1-Cdc27 inter-
face (Figure 6C).

Mutants unimpaired in Pol3 or Cdc27 binding

Five mutations fall into this group: the insertions E4, E5
and J9, and the single point mutations A1 and A8. Four of
these (the exception is E4) map to loop regions in the
human p50 protein (Figures 3 and 6D) and probably do
not disrupt the secondary structure of Cdc1. The E4 inser-
tion is on the N-terminus of ,. However, the two amino
acids preceding the insertion site (proline 9 and cysteine
10) are identical with the residues at the positions 4 and 5
of the pentapeptide insertion (see Table 1). This has the
effect of shifting the insertion from the N-terminal end of
B, to the B,B, linker, which likely explains the low impact
of this insertion.

Conclusion

Using both site-directed and random mutagenesis strate-
gies, thirty new mutant Cdc1 proteins have been test for in
vivo function and for Pol3 and Cdc27 binding using the
two-hybrid system. The results obtained can be rational-
ised in the context of the recently published crystal struc-
ture of human p50 bound to the N-terminal domain of
human p66 [10] and, in addition, offer new insights into
the potential location of interaction surfaces on Cdc1 for
Pol3.

Methods

Bacterial strains and methods

E.coli FH1046 and DS941, used as the donor and recipient
strains for pentapeptide mutagenesis, have been described
elsewhere [30] and were the generous gift of Dr F. Hayes
(now at UMIST, UK). Otherwise, E.coli J]M109 and DH5a
were used for routine cloning work. Standard molecular
cloning methods [45] were used throughout, unless oth-
erwise stated.

Yeast strains and methods

The fission yeast strains used in this study were as follows:
cdc1-223 (mis1-223) his2 leul-32 h+, cdc1-64 (mis1-64)
ade6-704 leul-32 h-, cdc1-A24 leul-32 ura4-D18 h-, cdcl-
P13 leul-32 h+, ¢dc27-P11 leul-32 h+, leul-32 ura4-D18
h- and cdc1+/cdcl::urad+ leul-32/leul-32 ura4-D18/ura4-
D18 ade6-M210/ade6-M216 h-/h* [20]. The cdcl/misl
strains [46] were a generous gift of M.Yanagida (Kyoto
University, Kyoto, Japan); cdc1-A24 was a generous gift of
K.L. Gould (Vanderbilt Uinversity, Nashville, USA).
Standard growth conditions [47] were used throughout.
For two-hybrid analysis, S.cerevisiae CTY10-5d and stand-
ard methods were used [20].
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Pentapeptide mutagenesis method

For pentapeptide mutagenesis, a 1.5 kb BamHI fragment
containing a cdc1+ cDNA was sub-cloned from pBTM116-
Cdc1 [20] into pBR322, at the unique BamHI site in the
latter, to generate plasmid pBR322-Cdcl. pBR322 was
chosen as it is a low copy number plasmid that is devoid
of restriction sites for Kpnl, two features that are impor-
tant for the mutagenesis strategy [30]. The orientation of
the cdci+insert in pBR322-Cdc1 is such that the 3' end of
the insert is proximal to the unique HindlIIl site in
PBR322. Mutagenesis was carried out as described previ-
ously [30]. Briefly, pBR322-Cdc1 was transformed into
the donor E.coli strain FH1046 containing the kanamycin-
resistant Tn4430-carrying plasmid pHT385. Transformant
(donor cell) colonies obtained after overnight growth at
37°C on LB agar plates containing kanamycin (50 pg/ml)
and ampicillin (50 pg/ml) were picked and resuspended
in 100 pl of LB broth (no antibiotics) and 2.5 pl spotted
onto LB agar plates. Next, 2.5 ul aliquots of recipient cells
(from an overnight culture of E.coli DS941 in LB supple-
mented with 50 pg/ml streptomycin) were applied to the
donor spots, after which the plates were air-dried and
incubated for 3 hours at 37°C to allow mating. The mat-
ing mixes were then resuspended in 300 ul of LB broth,
and 100 pl plated onto LB agar plates containing ampicil-
lin, kanamycin and streptomycin. Colonies were then
screened either by preparing plasmid DNA and digesting
this with BamHI to determine if the Tn4430 had inserted
within the vector or the BamHI insert, or by PCR analysis
of individual colonies using oligonucleotides flanking the
BamHI site in pBR322, in which case those isolates in
which a 1.6 kb band corresponding to a Tn4430-less cdc1+
insert were discarded. Each pBR322-Cdc1-Tn plasmid was
then digested with Kpnl, re-ligated and transformed into
E.coli J]M109. Plasmids were prepared from ampicillin-
resistant, kanamycin-sensitive colonies and checked for
absence of the transposon by restriction mapping. The 1.5
kb BamHI-Notl fragments from the transposon-free plas-
mids were then cloned into plasmid pREP3XHG6N
(below) to facilitate expression in S.pombe, sequence anal-
ysis and subsequent sub-cloning to pBTM116.

Oligonucleotide-directed mutagenesis

Oligonucleotide-directed in vitro mutagenesis was carried
out using the Mutagene II in vitro mutagenesis system
(BioRad). The template used was pTZ19R-Cdcl-cDNA
[20]. Oligonucleotides used were as follows: mutant A1,
oligonucleotide =~ AANO1  (5'-TAGATGTCACTITAAT-
GGCTGGTCCITATG-3', with mutant alanine codon
underlined); A2, AANO2 (5'-GTCACTTTAATGCCTGCTC-
CITATGATTAC-3"); A3, AANO3 (5'-CCTGGTCCITATGC
TTACAGTTCAACTATC-3'); A4, AANO4 (5'-GTTCAA
CTATCCTTGCTCAACAGCCTITTGC-3'); A5, AANOS5 (5'-
ACAAACAGTTACGGCTCCCACTTGGCITTC-3'); A6, AA
NOG6 (5'-AAACAGTTACGAATGCCACTITGGCITTCTC-3');
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A7, AANO7 (5'-TGGCTACTAGCGCCCAAAACATTAAT-
GATC-3'); A8, AANOS8 (5'-AATCATATCACAGCTACCAG
CCCTGATACC-3"); A9, AANO1/2 (5'-GTCACTTTAATGG
CTGCTCCITATGATTAC-3"); A10, AANOS5/6 (5'-ACA A
ACAGTTACGGCTGCCACTTGGCTITC-3"). The resulting
mutants were then subcloned to pREP3XHG6BN and either
pBTM116 or pBTM116BN, as below.

Expression in yeast

Each pentapeptide insertion allele was subcloned as a
BamHI-Notl fragment from pBR322-Cdcl-Tn into
PREP3XHG6BN, a derivative of pREP3XH6 [48] in which a
Notl site was introduced just 3' to the existing BamHI site
by cutting the vector with BamHI and Smal and ligating in
a short linker made up from the following oligonucle-
otides: 3XH6Not-1 (5'-gatcCATCATCGCGGCCGCATCG-
3', with Notl site underlined and BamHI 5' overhang in
lower case) and 3XH6Not-2 (5'-CGATCGCCGGCGGAT-
GATG-3"). When cloned into pREP3XHG6BN, the Cdcl
protein is expressed as a hexahistidine fusion with the 13
amino acid sequence MRGSHHHHHHGIL N-terminal to
the native initiating methionine [48]. The resulting plas-
mids were then transformed into S.pombe cdcl+/
cdcl::urad+ leul-32/leul-32 wura4-D18/ura4-D18 ade6-
M210/ade6-M216 h-/h+ [20] by electroporation [49] and
transformants obtained on EMM medium [47]. Individ-
ual colonies were then patched overnight at 32°C on ME
medium to induce sporulation, before being treated over-
night with SRP-Helicase enzyme (BioSepra, France) to
break down the ascus walls and eliminate vegetative cells.
Spores were then washed with water before being plated
on EMM plates supplemented with adenine (EMM+A),
uracil and adenine (EMM+AU), adenine and 5 uM thia-
mine (EMM+AT) and adenine, uracil and 5 uM thiamine
(EMM+AUT) at 32°C. Leucine was omitted from all plates
to facilitate selection of pREP3X plasmids which carry the
LEU?2 selectable marker. Adenine is required to permit the
growth of haploid cells either the ade6-M210 or ade6-
M216 alleles. The addition of uracil permits growth of
cdc1+ haploids; in the absence of uracil, only cdc1::ura4+
haploids expressing functional Cdcl proteins can grow.
The presence of 5 uM thiamine represses the nmtl pro-
moter in pREP3X, reducing cdc1 expression by a factor of
80-100 compared to cells grown on EMM without thia-
mine. Following 4-6 days growth at 32°C, colonies were
analysed by microscopy and by replica plating to confirm
predicted genotypes.

Two-hybrid analysis

For two-hybrid analysis, mutant cdcl alleles were sub-
cloned as a BamHI fragment into pBTM116 [20] or as a
BamHI-Notl fragment to pBTM116BN, a modified form
of pBTM116 in which a Notl site was added to the multi-
ple cloning site by digesting pBTM116 with BamHI and
Pstl and ligating in a short duplex linker comprised of the
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following oligonucleotides: PBTMMOD1 (5'-gatcCGATC-
CGGCGGCCGCTtgea-3', with Notl site underlined and
BamHI and Pstl overhangs, 5' and 3' respectively, in lower
case) and PBTMMOD?2 (5'-AGCGGCCGCCGGATCG-3').
The plasmids were then co-transformed into S.cerevisiae
CTY10-5d along with either pGAD2F-Cdc27 (for analysis
of Cdc1-Cdc27 interactions) or pGAD2F-Pol3 and pAA-
Cdc27 (for analysis of Cdc1-Pol3 interactions). B-galac-
tosidase activity was determined by an X-gal agar plate
overlay assay and later by ONPG liquid culture assay, as
previously described [20,21]. Liquid culture assays were
done in triplicate with the values for individual cultures
being within 10% of one another. The results shown in
Figure 4 are mean values from the triplicate assays.
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