
BioMed CentralBMC Molecular Biology

ss
Open AcceResearch article
Multiple histone modifications in euchromatin promote 
heterochromatin formation by redundant mechanisms in 
Saccharomyces cerevisiae
Kitty F Verzijlbergen†, Alex W Faber†, Iris JE Stulemeijer and Fred van 
Leeuwen*

Address: Fred van Leeuwen, Division of Gene Regulation B4, Netherlands Cancer Institute, The Netherlands

Email: Kitty F Verzijlbergen - k.verzijlbergen@nki.nl; Alex W Faber - faberalexw@gmail.com; Iris JE Stulemeijer - i.stulemeijer@nki.nl; Fred van 
Leeuwen* - fred.v.leeuwen@nki.nl

* Corresponding author    †Equal contributors

Abstract
Background: Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of
heterochromatin structure in yeast and humans. However, this histone modification occurs
predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not
act by the recruitment model commonly proposed for histone modifications. To better understand
the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by
genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other
global euchromatic histone modifiers.

Result: We determined that loss of H3K79 methylation results in a partial silencing defect that
could be bypassed by conditions that promote targeting of Sir proteins to heterochromatin.
Furthermore, the silencing defect in strains lacking Dot1 was dependent on methylation of H3K4
by Set1 and histone acetylation by Gcn5, Elp3, and Sas2 in euchromatin. Our study shows that
multiple histone modifications associated with euchromatin positively modulate the function of
heterochromatin by distinct mechanisms. Genetic interactions between Set1 and Set2 suggested
that the H3K36 methyltransferase Set2, unlike most other euchromatic modifiers, negatively affects
gene silencing.

Conclusion: Our genetic dissection of Dot1's role in silencing in budding yeast showed that
heterochromatin formation is modulated by multiple euchromatic histone modifiers that act by
non-overlapping mechanisms. We discuss how euchromatic histone modifiers can make negative
as well as positive contributions to gene silencing by competing with heterochromatin proteins
within heterochromatin, within euchromatin, and at the boundary between euchromatin and
heterochromatin.

Background
Post-translational modifications of histone proteins influ-
ence DNA transactions such as transcription, repair,
recombination, and chromosome segregation. Many his-

tone modifications affect local chromatin structure and
function by recruitment of effector proteins that specifi-
cally recognize a modified state of a given residue
[reviewed in [1-4]]. However, several histone modifica-
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tions seem to act by alternative mechanisms. One such
example is methylation of lysine 79 of histone H3
(H3K79) by Dot1. H3K79 methylation is required for het-
erochromatin formation in yeast and humans [5-10]. Par-
adoxically, methylation of H3K79 is low or absent from
heterochromatic regions and is abundant in euchromatic
regions of the genome [5,7,11-14]. Furthermore, methyl-
ation of H3K79, which causes small local changes of the
nucleosome surface [15], negatively affects binding of the
heterochromatin protein Sir3 in yeast [16-18]. Therefore,
this histone modification most likely affects heterochro-
matin structure by mechanisms other than direct recruit-
ment of repressive factors. We previously proposed that
H3K79 methylation in yeast might act as an anti-binding
signal to prevent non-specific binding of silencing pro-
teins in euchromatin, thereby leading to efficient targeting
of the limiting silencing proteins to the unmethylated het-
erochromatic regions of the genome [5,19].

Heterochromatin in yeast, often referred to as silent chro-
matin, is found at telomeres, the silent mating type loci
(HMLα and HMRa) and the ribosomal DNA repeats. At
telomeres and HM loci, DNA elements called silencers
recruit the Sir2/3/4 complex, which subsequently spreads
along the chromosome to form a silent or heterochro-
matic domain [reviewed in [20]]. Besides H3K79 methyl-
ation, methylation of H3K4 and H3K36, histone
acetylation, and deposition of the histone variant Htz1
(H2A.Z) in euchromatin have been shown to affect hete-
rochromatin formation in yeast [reviewed in [20]]. Some
euchromatic modifications have been suggested to act by
(indirect) global effects, whereas others have been sug-
gested to primarily act (directly) at the boundary between
euchromatin and heterochromatin to prevent excessive
spreading of the Sir2/3/4 complex. For example, loss of
the histone variant Htz1, the H3K36 methyltransferase
Set2, or the histone acetyltransferase Sas2 leads to loss of
heterochromatin boundaries and excessive spreading at
yeast telomeres [21-24], whereas in cells lacking Dot1 or
the histone H3K4 methyltransferase Set1, Sir proteins
become redistributed throughout the genome [5,25,26].
Methylation of H3K4 in euchromatin negatively affects
binding of the C-terminus of Sir3, which led to the sugges-
tion that Set1 enhances silencing by a mechanism similar
to that of Dot1 [27].

The molecular mechanisms responsible for the different
silencing functions of many of the euchromatic histone
marks are still largely unknown. Here we used genetic sup-
pressor and enhancer analysis to investigate the role of
Dot1 in heterochromatin formation and its connection
with several other global histone modifiers (see Table 1).
We found that the silencing defect in strains lacking Dot1
was partial and could be suppressed by conditions that
promote targeting of the Sir complex to telomeres. These

results are in agreement with the proposed function of
Dot1 in preventing non-specific binding to euchromatin.
We show that Dot1 functions in parallel with the histone
methyltransferase Set1 and histone acetyltransferases,
suggesting that multiple euchromatic histone modifica-
tions promote silencing by non-overlapping mechanisms.

Results
Suppressor analysis of the silencing defect in strains 
lacking Dot1
Previous studies suggest that H3K79 methylation by Dot1
improves targeting of silencing proteins to heterochroma-
tin by preventing promiscuous interactions of Sir3 within
euchromatin [5,16,17,28]. To test this hypothesis we
investigated three predictions of this model: 1) loss of tel-
omeric silencing in dot1Δ cells due to redistribution of the
Sir proteins can be overcome by increased expression of
Sir3, which is present in limiting amounts, 2) loss of telo-
meric silencing in dot1Δ cells can be suppressed by
improving the recruitment of Sir proteins by increasing
the strength of the Sir2/3/4-recruiting silencer element, 3)
the telomeric silencing defect in dot1Δ cells can be sup-
pressed by increased levels of other active marks that affect
Sir protein binding or enhanced by decreased levels of
these same marks. Our analyses were carried out in a
strain carrying two reporter genes: ADE2 at the right arm
of telomere V (VR) produces a color phenotype and URA3
at telomere VIIL provides a sensitive growth phenotype
(Figure 1A).

First, Sir3 levels were increased by expression of SIR3 from
a multi-copy plasmid. Overexpression of Sir3 partially
suppressed the silencing defect of the dot1Δ strain (Figure
1B–C). Thus, Dot1 is not a critical component of hetero-
chromatin. We note that Sir3 overexpression was not toxic
for dot1Δ cells (Figure 1B and data not shown) indicating
that an increase in Sir3 did not lead to ectopic silencing of
essential genes.

Second, silencer function of the telomeric repeats was
altered. Recruitment of the Sir2/3/4 complex to telomeres
is mediated by the telomere-binding protein Rap1
[reviewed in [20]]. Strains lacking the Rap1-interacting
factor Rif1 have longer telomeres, which has been sug-
gested to improve recruitment of Sir proteins to the chro-
mosome ends and thereby enhance silencing [29-32].
When RIF1 was deleted, silencing of the URA3 gene in the
dot1Δ strain was partially restored (Figure 1D). Using a
different approach, we recently showed that Dot1
becomes critical for silencing of the HMLα locus when the
silencer strength at that locus is compromised due to inac-
tivation of Sir1, a silencer-binding protein that facilitates
recruitment of the Sir complex to HMLα [33]. We con-
clude that the contribution of Dot1 to gene silencing
depends on strength of the cis silencer element. Unexpect-
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edly, deletion of RIF1 resulted in decreased silencing of
the telomeric ADE2 gene in wild-type and dot1Δ cells in
multiple independent clones (Figure 1D and data not
shown), whereas a previous study using an ADE2 gene at
a different telomere showed that deletion of Rif1 made
cells more red [32]. Silencing of the ADE2 gene and/or
color development in strains with no or low expression of
ADE2 is somewhat variable and can depend on media and
growth conditions (e.g. see Figure 2A below and compare
WT and dot1Δ in Figure 1B with 1D) [34]. This may in part
be due to the stochastic nature of ADE2 silencing that is
observed in yeast colonies [34]. In general, strains lacking
Dot1 showed a modest change in color development on
complete synthetic media (Figure 1D and see below). To
verify whether the changes in colony color and growth on
FOA plates were caused by changes in ADE2 and URA3
expression, respectively, mRNA expression of these genes
was determined by reverse-transcriptase combined with
quantitative real-time PCR (RT-qPCR). Whereas deletion
of Dot1 did not substantially affect ADE2 expression
under these conditions, deletion of Rif1 caused derepres-
sion of the telomeric ADE2 gene (Figure 1E). The telom-
eric URA3 gene was derepressed in strains lacking Dot1,
and additional deletion of Rif1 partially suppressed the
silencing defect. These expression data are in agreement

with the color and growth phenotypes of the rif1Δ strains
(Figure 1D). To verify whether the changes in silencing
were caused by changes in Sir protein targeting, binding of
Sir3 to the telomeric reporter genes and to a third tel-
omere was determined by chromatin immunoprecipita-
tion (ChIP) combined with qPCR. As expected, Sir3
binding at all three telomeres was reduced in the dot1Δ
strain (Figure 1F). In the rif1Δ and rif1Δdot1Δ strains, Sir3
binding was decreased at ADE2-TEL-VR, unaffected or
slightly increased at URA3-TEL-VIIL and increased at TEL-
VIR (Figure 1F). These results suggest that although dele-
tion of Rif1 can partially suppress the URA3 silencing
defect of dot1Δ cells, the role of Rif1 in silencing is context
dependent.

Third, to test whether additional histone modifications
are involved in Sir protein targeting, we investigated the
consequences of inactivation of the histone deacetylase
(HDAC) Rpd3. Acetylation of lysines in the histone tails
negatively affects interactions between Sir3 and Sir4 with
histones in vitro [35,36]. We deleted RPD3 because cells
lacking Rpd3 activity show increased global levels of his-
tone acetylation in euchromatin [37-43]. Deletion of
RPD3 enhanced silencing of ADE2 in wild-type cells,
which is consistent with previous observations [40,44-

Table 1: Chromatin modifiers analyzed in this study

Protein Alias* Enzymatic Complex Target sites

Dot1 KMT4 - H3K79me1,2,3

Set1 KMT2 Compass H3K4me1,2,3, Dam1

Set2 KMT3 - H3K36me1,2,3

Gcn5 KAT2 SAGA, SALSA, SLIK, HatB3.1 H3K9,14,18,23,36; H2B, Htz1K14, Rsc4

Elp3 KAT9 Elongator H3

Sas2 KAT8 SAS H4K16

Sas3 KAT6 NuA3 H3K14,23

Eaf1 NuA4 (KAT) H4; H2A; Htz1

Rpd3 Rpd3L, Rpd3S (HDAC) promoters/global/ORFs

Dep1 Rpd3L promoters/global

Rco1 Rpd3S ORF

Htz1 H2A.Z Histone variant -

Rif1 - Rap1 interacting factor -

* KMT = histone lysine methyltransferase, KAT = histone lysine acetyltransferase, HDAC = histone deacetylase.
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Suppression of the silencing defects of dot1Δ strainsFigure 1
Suppression of the silencing defects of dot1Δ strains. (A) Reporter genes used for telomeric silencing. Cells in which the 
ADE2 gene is silenced accumulate a red pigment whereas cells that express ADE2 are white. Cells in which URA3 is silenced are 
resistant to 5-FOA, whereas cells in which URA3 is expressed convert 5-FOA into a toxic product and are sensitive to 5-FOA. 
(B) Wild-type (WT) and dot1Δ strains were transformed with empty vector (p) or a Sir3 overexpression plasmid (pSir3) and 
were spotted in 10-fold dilution series on media (YC) with and without 5-FOA. (C) Immunoblot analysis of Sir3 expression in 
sir3Δ and WT cells, and cells containing the Sir3 overexpression plasmid. Ctrl indicates a non-specific band recognized by the 
Sir3 antibody that was used as a loading control. (D) Telomeric silencing in WT and dot1Δ strains lacking RIF1 or RPD3; sir2Δ 
and sir3Δ strains are shown as no-silencing controls (E) mRNA expression levels of ADE2 and URA3 relative to ACT1 were 
determined by RT-qPCR. mRNA was isolated and quantified in duplicate with the difference as the standard error. (F) Sir3 
binding at ADE2-TEL-VR, URA3-TEL-VIIL and 3500 bp from telomere VIR (VIR3500) relative to binding at control locus ACT1 was 
determined by ChIP combined with real-time qPCR. Each clone was analyzed in duplicate with the difference as the standard 
error. (G) Silencing in strains lacking DEP1 (Rpd3L complex) or RCO1 (RPD3S complex).
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Multiple euchromatic histone modifiers promote gene silencing by redundant mechanismsFigure 2
Multiple euchromatic histone modifiers promote gene silencing by redundant mechanisms. (A) Analysis of telom-
eric silencing at 23, 30, and 37°C. (B-G) Single, double and triple mutants of the indicated genes involved in chromatin modifi-
cation were analyzed as in Figure 1. dot1Δ strains have a partial silencing defect and are 5-FOA sensitive at 30°C. Cells were 
spotted at 37°C to partially restore silencing and identify mutants that enhance the partial silencing defect of dot1Δ. Each sec-
tion represents a different experimental panel.
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47], and suppressed the URA3 silencing defect of the
dot1Δ strain (Figure 1D), suggesting that increased acetyla-
tion in euchromatin can compensate for the loss of
H3K79 methylation. Analysis of URA3 mRNA levels con-
firmed that deletion of Rpd3 improved transcriptional
silencing of telomeric URA3 in wild-type cells and sup-
pressed the silencing defect of dot1Δ cells (Figure 1E).
Deletion of Rpd3 also improved silencing of the ADE2
gene but did not improve transcriptional silencing of
ADE2 in cells lacking Dot1 (Figure 1E), despite the similar
dark red colony color of rpd3Δ and dot1Δrpd3Δ cells. We
expect that red color development was near saturation in
rpd3Δ and dot1Δrpd3Δ cells due to a combination of par-
tial ADE2 silencing and slow growth of cells lacking Rpd3
and that a small reduction in silencing did not result in a
color change in these slow growing cells. To investigate
how Rpd3 enhanced silencing, binding of Sir3 was exam-
ined by ChIP. In wild-type cells, deletion of Rpd3 led to
an increase in Sir3 binding at all three telomeres exam-
ined (Figure 1F), which supports the idea that global his-
tone acetylation can promote targeting of Sir proteins to
heterochromatin. However, in cells lacking Dot1, loss of
Rpd3 did not lead to a detectable increase in Sir3 binding
(Figure 1F), suggesting that the suppression of the dot1Δ
silencing defect of telomeric URA3 was not caused by res-
toration of Sir3 binding.

Rpd3 is active in two multi-subunit complexes (see Table
1). The larger Rpd3L complex localizes to promoter
regions. The smaller Rpd3S complex is active at tran-
scribed coding regions and is recruited to these regions via
the subunits Eaf3 and Rco1, which together bind methyl-
ated H3K36, a histone modification co-transcriptionally
introduced by Set2 [48-51]. DEP1 deletion, which specif-
ically eliminates the Rpd3L complex, phenocopied dele-
tion of RPD3 (Figure 1G). In contrast, deletion of RCO1,
which eliminates the Rpd3S complex, did not affect
silencing, showing that the Rpd3L complex and not the
Rpd3S promoted gene silencing (Figure 1G). A very recent
study identified a third Rpd3 complex, containing Rpd3,
Snt2 and Ecm5 [52]. We expect that this complex is not
involved in the silencing functions of Rpd3 that we iden-
tified here because deletion of ECM5 did not affect silenc-
ing (data not shown).

Together, the results shown in Figure 1A–G show that
Dot1 modulates the strength of gene silencing and that
the loss of this modifier can be compensated for by
increased Sir3 dosage, strong silencers, and inactivation of
Rpd3, a global HDAC.

Dot1 collaborates with histone acetyltransferases to 
promote gene silencing
To analyze the genetic relationship between DOT1 and
other genes involved in euchromatic histone modifica-

tion, we analyzed silencing of the reporter genes at differ-
ent temperatures. Growth at high temperature enhances
gene silencing in yeast by unknown mechanisms [33,53]
and was sufficient to suppress the dot1Δ silencing defect
(Figure 2A). Perhaps non-specific association of Sir pro-
teins with nucleosomes is decreased at higher tempera-
tures, which improves binding at telomeres. This
conditional silencing phenotype provided us with a
genetic tool to identify enhancers of the silencing defect in
dot1Δ strains. Having found that increased acetylation
suppressed the dot1Δ silencing defect (Figure 1D–E), we
examined which HAT might be responsible for the
acetylation marks that promote gene silencing. We exam-
ined the non-essential HATs Elp3 [54], Gcn5 [55-60],
Sas3 [61], and Sas2 [62-64], as well as Eaf1 [65], which
encodes the only non-essential subunit of the NuA4 HAT
complex (Table 1). Analysis of dot1Δ double and triple
mutants showed that Elp3, Gcn5, and Sas2 were all
required for efficient silencing in dot1Δ cells at high tem-
perature (Figure 2B–F). These findings suggest that Gcn5
and Elp3, which have been shown to affect global levels of
histone H3 acetylation [41,66-68,68-70], and Sas2, which
has been shown to be the major H4K16 acetyltransferase
[21,62] all promote silencing in parallel to histone H3K79
methylation by Dot1. Analysis of sas2Δ in combination
with elp3Δ or gcn5Δ showed that each double mutant had
more severe silencing defects than either single mutant,
suggesting that the three HATs affect silencing by redun-
dant mechanisms (Figure 2E). Loss of Sas3, which affects
bulk histone H3 acetylation when combined with loss of
Gcn5 [70,71], did not alter silencing in wild-type or dot1Δ
cells (Figure 2C), whereas a single deletion of EAF1 was
sufficient to disrupt telomeric silencing (Figure 2F), even
at high temperature (Figure 2F). The histone variant Htz1
(H2A.Z), which is acetylated by NuA4 [72,73] and of
which the deposition into chromatin is dependent on
Sas2 [74], was not critical for silencing in wild-type or
dot1Δ strains (Figure 2G).

Dot1 and Set1 have distinct functions in silencing and cell 
division
Having found that histone H3K79 methylation and vari-
ous histone H3 and H4 acetylation events influence hete-
rochromatin by distinct mechanisms, we next investigated
the relationship between Dot1 and the H3K4 methyl-
transferase Set1 and the H3K36 methyltransferase Set2.
These enzymes are the only known histone lysine methyl-
transferases in yeast. Strains lacking Dot1, Set1, or Set2
have no detectable methylation of H3K79, H3K4, and
H3K36, respectively. Previous studies showed that histone
H3K4 methylation by Set1 and H3K79 methylation by
Dot1 may affect silencing by a similar mechanism [7,27].
Indeed, overexpression of Sir3 has been shown to rescue
telomeric silencing defects of a set1Δ strain [27]. Using our
silencing reporters, we found that a dot1Δ set1Δ double
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knock-out strain has more severe silencing defects than
either single knock-out strain (Figure 3), showing that
they work through different mechanisms. SET2 deletion
did not affect silencing of the two reporter genes in wild-
type or dot1Δ cells (Figure 3). However, deletion of SET2
partially suppressed the silencing defect caused by dele-
tion of SET1 (Figure 3), suggesting that some aspect of
gene silencing is negatively regulated by the presence of
Set2. Methylation of H3K36 by Set2 has been shown to
lead to recruitment of the Rpd3S complex to coding
regions [48-51]. The negative role of Set2 in gene silencing
in set1Δ cells (Figure 3) was not mediated by Rpd3S since
inactivation of the Rpd3S complex by deletion of RCO1
did not improve silencing in a set1Δ strain (Figure 4A).
Deletion of RPD3 or deletion of DEP1, which specifically
inactivates the Rpd3L complex, did suppress the silencing
defects (Figure 4A), indicating that Set1 modulates gene
silencing by a mechanism that acts in parallel with Dot1
as well as histone acetylation. To verify this idea, we
deleted GCN5 and ELP3 in the set1Δ strain to determine
whether reduced acetylation would enhance the silencing
defect caused by loss of Set1 function, as we found for
Dot1. We noticed that strains lacking Set1 and either one
of the two HATs had severe growth defects, especially at
37°C (data not shown). In certain yeast mutants, growth
defects are mediated by the Sir complex, presumably
because of ectopic Sir-mediated silencing of genes
required for cell growth [23,75,76]. These growth defects
can be alleviated by deletion of one of the SIR2/3/4 genes.
To determine whether the growth defects in set1Δ gcn5
and set1Δ elp3Δ strains were mediated by the Sir complex
a diploid strain heterozygous for SET1, GCN5, ELP3, and
SIR3 was sporulated to generate isogenic single, double,
and triple histone modifier knock-out cells that were
either silencing proficient (SIR3) or deficient (sir3Δ) (Fig-
ure 4B–C). Tetrad analysis confirmed that haploid spores
lacking SET1 require GCN5 and ELP3 for normal growth.
Cells lacking all three genes were extremely sick or did not

grow at all, indicating that Set1, Gcn5, and Elp3 promote
cell division by different mechanisms (Figure 4B–C).
Deletion of SIR3 did not alleviate any of the growth
defects of set1Δ, elp3Δ and gcn5Δ double and triple knock-
out strains (Figure 4B–C), which shows that the reduced
fitness was not caused by ectopic silencing by the Sir com-
plex.

Since the set1Δ silencing defect could be suppressed by
increased histone acetylation by inactivation of Rpd3, we
asked whether increased activity of Dot1 could also
improve silencing and suppress the set1Δ silencing defect.
To test this, wild type and set1Δ strains were transformed
with a DOT1 multi-copy plasmid (Figure 4D). Under
these conditions of Dot1 overexpression (Figure 4E)
silencing of the telomeric URA3 gene was unaffected in
wild-type strains and not or only slightly improved in
set1Δ strains (Figure 4D). We conclude that the endog-
enous levels of H3K79 methylation are not limiting for
silencing.

Sir2 and Sir3 expression in strains with silencing 
phenotypes
Our results show that heterochromatin function in bud-
ding yeast is positively affected by several euchromatic
histone modifications and strong silencers. To exclude
that phenotypes in the chromatin mutants studied here
were caused by altered Sir protein levels we examined the
expression of Sir2 and Sir3 by immunoblot analysis. We
found that deletion of most of the chromatin modifiers
investigated in this study did not affect expression of Sir2
or Sir3 (Figure 5). The immunoblots indicate that expres-
sion of Sir2 and Sir3 was reduced in the eaf1Δ strain,
which might explain why the silencing defect in this strain
could not be suppressed by growth at high temperature
(Figure 2F) and why Eaf1 affects gene silencing while no
changes have been observed in global levels of histone H4
acetylation [65].

Discussion
We investigated the role of Dot1 in gene silencing by look-
ing for suppressors and enhancers of silencing defects of a
dot1Δ strain. Our results show that Dot1 is not essential
for gene silencing but modulates the efficiency of hetero-
chromatin formation. Silencing in dot1Δ strains could be
restored by conditions that improve recruitment of the Sir
complex: increased Sir3 dosage and stronger silencers.
These properties of the dot1Δ strains are compatible with
a role for Dot1 in enhancing targeting of Sir proteins to
regions of heterochromatin. Silencing in wild-type and
dot1Δ strains was dependent on the activity of other his-
tone modifiers; mutations that increase genome-wide his-
tone acetylation enhanced silencing whereas several
mutations that reduce histone acetylation or H3K4 meth-
ylation reduced silencing. Therefore, H3K79 methylation

Histone lysine methyltransferases Dot1, Set1 and Set2 affect silencing by different mechanismsFigure 3
Histone lysine methyltransferases Dot1, Set1 and 
Set2 affect silencing by different mechanisms. Telom-
eric silencing in strains lacking DOT1, SET1, and/or SET2 was 
analyzed by growth on media with or without 5-FOA, at 30 
and 37°C as described in Figure 1.
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Silencing and viability of strains lacking Set1 is modulated by histone acetylationFigure 4
Silencing and viability of strains lacking Set1 is modulated by histone acetylation. (A) Deletion of RPD3 or DEP1 
(Rpd3L complex) suppressed the silencing defects of strains lacking SET1, whereas deletion of RCO1 (Rpd3S complex) had no 
effect. (B) A diploid strain homozygous for the ADE2 and URA3 silencing reporters and heterozygous for SET1/set1::NatMX, 
GCN5/gcn5::HphMX, ELP3/elp3::KanMX, and SIR3/sir3::HIS3 was sporulated and spore viability was analyzed by tetrad analysis. 
Each row indicates the four-spore progeny of one diploid cell. Genotypes and mating type of the individual colonies were 
determined by replica-plating. Only those tetrads are shown of which the genotype of all four spores could be determined or 
deduced. The genotype of each colony is indicated by the position of the squares, where white indicates the WT allele and 
black indicates the mutant allele. (C) Combined deletion of SET1, GCN5, and ELP3 affected cell viability. Colony sizes of panel B 
(large, small, very small/no colony) were scored for each genotype indicated in SIR3 and sir3Δ backgrounds. (D) Wild type and 
set1Δ strains were transformed with an empty multi-copy plasmid (p) or a multi-copy plasmid carrying a genomic copy of Dot1 
(pDot1) to examine the effect of intermediate levels of Dot1 overexpression on telomeric silencing. (E) Protein levels of Dot1 
expressed from its endogenous locus and from the multi-copy plasmid were examined by immunoblot analysis. Pgk1 was used 
as a loading control and a dot1Δ strain was used as a negative control.
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and other marks of euchromatin positively influence het-
erochromatin function by different mechanisms (Figure
6). The redundancy of these pro-silencing functions may
reflect differences in genomic locations of the various his-
tone marks. For example, Set2 mono-, di-, and tri-methyl-
ates H3K36 mainly in coding regions, Set1 generates
mono-, di-, and trimethylated H3K4 preferentially in cod-
ing sequence, 5' coding sequence, and promoter regions,
respectively, and Dot1 mono-, di-, and tri-methylates
H3K79 at similar levels throughout the genome. The
redundancy may also reflect the fact that the different

marks are located on different areas of the nucleosome
and thereby affect multiple contacts between the Sir com-
plex and nucleosome arrays. H3K4, H3K36 and most of
the acetylated lysines are located on the tails of histone H3
and H4, while H3K79 is located on the nucleosome core
surface and might interact with the tail of histone H4. In
vitro studies have shown that Sir3 can interact with the his-
tone tails as well as with the nucleosome core and that
methylation of H3K4 and H3K79 as well as acetylation of
the tail of H3 or H4 can affect Sir-nucleosome interac-
tions. Our genetic studies suggest that binding of the Sir
complex to nucleosomes is not affected by post-transla-
tional modifications in a combinatorial manner by a spe-
cific histone code. Rather, many modifications all seem to
make independent contributions to promoting gene
silencing. We note that it cannot be excluded at this point

A competition model for positive and negative roles of euchromatic histone modifications in heterochromatin for-mationFigure 7
A competition model for positive and negative roles 
of euchromatic histone modifications in heterochro-
matin formation. Euchromatic histone modifications can 
have positive roles (arrows) and negative roles (blunt 
arrows) in heterochromatin formation. Competition 
between euchromatic histone modifiers and heterochroma-
tin proteins for interactions with nucleosomes can occur at 
three locations and can have different outcomes (see text). 
1) Competition within heterochromatin regions creates a 
semi-stable epigenetic state. 2) Competition at the interface 
between euchromatin and heterochromatin prevents local 
spreading of the Sir complex, thereby on the one hand avoid-
ing ectopic silencing of regions adjacent to heterochromatin 
and on the other hand ensuring availability of limiting silenc-
ing proteins for the endogenous heterochromatic regions. 3) 
Competition throughout euchromatin prevents non-specific 
binding of the Sir2/3/4 complex to bulk chromatin, thereby 
enhancing targeting of Sir proteins to endogenous hetero-
chromatic regions to ensure sufficient spreading of the Sir 
complex. By these mechanisms, the function of a euchro-
matic histone modification in gene silencing depends on the 
relative contribution that it makes to each of these mecha-
nisms and to what extend the negative and positive functions 
counteract each other.

Summary of genetic relationships identified in this studyFigure 6
Summary of genetic relationships identified in this 
study. Genetic interactions between Dot1 and other histone 
modifiers. Grey nodes indicate positive regulators of silenc-
ing and black nodes indicate negative regulators of silencing. 
Grey lines indicate phenotypic enhancement; black lines indi-
cate phenotypic suppression; arrows indicate the directions 
of the interactions. No silencing phenotypes were observed 
for SAS3, HTZ1, and RCO1.

Expression of Sir2 and Sir3 in strains with altered silencing propertiesFigure 5
Expression of Sir2 and Sir3 in strains with altered 
silencing properties. Immunoblot analysis of whole-cell 
protein extracts using antibodies against Sir2 and Sir3. A 
Pgk1 antibody was used as a loading control. The specificity 
of the Sir2 antibody is shown in the left panel. The specificity 
of the Sir3 antibody was shown previously [33] and is shown 
in Figure 1.
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Table 2: Strains used in this study

Strain Relevant genotype (all strains are isogenic to UCC7366)

UCC7366 MATa lys2Δ0 trp1Δ63 his3Δ200 ade2Δ::hisG ura3Δ0 leu2Δ0 met15Δ0 ADE2-TEL-VR URA3-TEL-VIIL

NK1121 MATa/α ELP3/elp3Δ::KanMX GCN5/gcn5Δ::HphMX SET1/set1Δ::KanMX SIR3/sir3::HIS3

UCC7356 dot1Δ::NatMX

UCC7367 set1Δ::KanMX

NKI5154 set1Δ::NatMX

UCC7368 set2Δ::HphMX

NKI5092 gcn5Δ::HphMX

NKI5090 elp3Δ::KanMX

NKI5183 sas2Δ::NatMX

NKI5185 sas2Δ::HphMX

NKI5142 sas3Δ::KanMX

NKI5048 htz1Δ::HphMX

NKI5372 eaf1Δ::HphMX

NKI1001 rif1Δ::HphMX

NKI5061 rpd3Δ::HphMX

NKI5152 dep1Δ::HphMX

NKI5148 rco1Δ::HphMX

UCC7359 dot1Δ::NatMX set1Δ::KanMX

UCC7357 dot1Δ::NatMX set2Δ::HphMX

UCC7360 set1Δ::KanMX set2Δ::HphMX

UCC7361 dot1Δ::NatMX set1Δ::KanMX set2Δ::HphMX

NKI5088 dot1Δ::NatMX gcn5Δ::HphMX

NKI5086 dot1Δ::NatMX elp3Δ::KanMX

NKI5083 gcn5Δ::HphMX elp3Δ::KanMX

NKI5082 dot1Δ::NatMX gcn5Δ::HphMX elp3Δ::KanMX

NKI5226 dot1Δ::NatMX sas2Δ::HphMX

NKI5144 dot1Δ::NatMX sas3Δ::KanMX

NKI5046 dot1Δ::NatMX htz1Δ::HphMX
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that the histone modifying enzymes investigated in this
study affect gene silencing by post-translational modifica-
tion of non-histone proteins or by indirect effects on other
histone modifications. For example, Gcn5 acetylates not
only histone tails but also other chromatin-associated fac-
tors such as Rsc4, a subunit of the RSC nucleosome
remodeling complex [68,77]. In addition, Set1 has been
shown to influence histone acetylation [78] and to meth-
ylate the kinetochore protein Dam1 [79]. Since Gcn5 is
also involved in kinetochore function [80], it is perhaps
loss of these functions that caused fitness problems in
set1Δgcn5Δ (and set1Δelp3Δ) strains (Figure 4).

Heterochromatin in yeast is characterized by the absence
of post-translational modifications of histone proteins
and biochemical and genetic studies indicate that binding
of Sir proteins to nucleosomes is negatively affected by
histone methylation and acetylation. Therefore, hetero-
chromatin formation and spreading seems to be deter-
mined by a competition between binding of the Sir
complex and action of euchromatic histone modifying
enzymes. Competition between histone modifiers and the
Sir proteins can in principle affect heterochromatin at
three distinct genomic or chromatin locations (Figure 7).
First, histone modifiers can compete with Sir proteins
within heterochromatin domains. By doing so they are
expected to destabilize heterochromatin domains.
Indeed, when Sas2 or Dot1 are overexpressed and lead to
increased global histone acetylation and methylation,
respectively, Sir protein binding and silencing at telom-
eres is reduced [5,17,28,81]. Furthermore, the presence of
Sas2 and Dot1 in yeast cells delays the onset of silencing
at a previously active locus [82]. Second, modifying
enzymes can deposit an anti-silencing mark at the inter-

face between euchromatin and heterochromatin and
thereby form a boundary. By this mechanism, loss of a
histone modifying enzyme is expected to lead to increased
spreading of heterochromatin into adjacent regions.
When excessive spreading occurs of the limiting Sir pro-
teins this may be accompanied by reduced Sir protein
binding and impaired silencing of the distal wild-type
silenced loci, as has been observed for strains lacking
SAS2, BDF1 or GCN5+ELP3 [21,22,75,83]. Third, histone
modifications throughout euchromatin can prevent non-
specific binding of Sir proteins, which increases the avail-
ability of the limiting Sir proteins for heterochromatic
regions [19]. By this model, loss of a modifying enzyme is
expected to reduce targeting of Sir proteins to heterochro-
matic areas as well as their flanking regions, as has been
described for DOT1 and SET1. In cells lacking Dot1 or
Set1, Sir proteins do not spread excessively but become
redistributed throughout the genome [5,25,26]. Also by
this model, higher levels of a global and limiting histone
modification are expected to improve targeting, silencing,
and ectopic spreading of Sir proteins, in which case the
degree of spreading will depend on how the increased
mark affects competition within heterochromatin and at
the boundary.

Our results and previous studies show that multiple
euchromatic histone modifiers influence telomeric silenc-
ing and here we show that many of them seem to act by
non-overlapping mechanisms. How might they affect
gene silencing? Deletion of a histone modifier generally
does not enhance silencing (e.g. Figures 2, 3 and 4).
Therefore, they do not seem to weaken silencing by local
competition with heterochromatin formation. Several fac-
tors might determine the importance of local competi-

NKI5374 dot1Δ::NatMX eaf1Δ::HphMX

NKI1004 dot1Δ::NatMX rif1Δ::HphMX

NKI5059 dot1Δ::NatMX rpd3Δ::HphMX

NKI5152 dot1Δ::NatMX dep1Δ::HphMX

NKI5146 dot1Δ::NatMX rco1Δ::HphMX

NKI5224 set1Δ::NatMX rpd3Δ::HphMX

NKI5322 set1Δ::NatMX dep1Δ::HphMX

NKI5323 set1Δ::NatMX rco1Δ::HphMX

NKI5212 sas2Δ::NatMX gcn5Δ::HphMX

NKI5210 sas2Δ::NatMX elp3Δ::KanMX

Table 2: Strains used in this study (Continued)
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tion. For example, euchromatic modifiers might not have
access to the nucleosomal substrates in heterochromatin
[17,84], local disruption of silencing by histone modifiers
might be counteracted by (indirect) positive silencing
effects, or post-translational modification in heterochro-
matin might be counteracted by histone-demodifying
activities such as the HDAC activity of Sir2 and the H2B
deubiquitinating activity of UBP10, which is recruited to
heterochromatin by Sir4 and negatively affects methyla-
tion by Dot1 and Set1 [85,86]. We expect that Dot1, Set1,
Gcn5, Elp3, and Sas2, which we investigated here, act at
least in part by long-distance targeting effects because they
deposit abundant histone modifications throughout the
euchromatic genome and loss of the modifying enzymes
leads to reduced silencing. Similarly, based on the pheno-
types of rpd3Δ cells i.e. more spreading into flanking
regions (Figure 1 and [31]) as well as increased silencing
within wild-type heterochromatin regions (Figures 1 and
4), we propose that deletion of RPD3 leads to improved
targeting of silencing proteins to heterochromatin

domains, which can overrule the local boundary and lead
to ectopic spreading. Set2 and Htz1 might act by a similar
mechanism. Strains lacking Set2 show increased spread-
ing [87] as well as increased silencing within existing het-
erochromatin regions in a set1Δ strain (Figure 4) and
strains lacking Htz1 show increased spreading [24] with-
out loss of silencing at wild-type heterochromatin loci
(Figure 2). These silencing phenotypes suggest that Set2,
Htz1, and Rpd3 might not act as local boundary factors,
as has been proposed previously [23,24,31,87], but
instead affect the degree of spreading from a distance by
reducing the targeting efficiency of Sir proteins to hetero-
chromatin. Thus, these factors might set heterochromatin
boundaries by weakening Sir-protein targeting to hetero-
chromatin domains.

The mechanism by which Rpd3 weakens silencing is still
unclear, however. Whereas increased gene silencing in
rpd3Δ cells (Figure 1D+E) was accompanied by increased
Sir3 binding (Figure 1F), deletion of Rpd3 in dot1Δ cells

Table 3: qPCR primers used in this study

RT-PCR Primers Sequence

ACT1_QforORF TCGTTCCAATTTACGCTGGTT

ACT1_QrevORF CGGCCAAATCGATTCTCAA

ADE2_ORF_Qfor TTGGGTTTTCCATTCGTCTTG

ADE2_ORF_Qrev CAACGAAGTTACCTCTTCCATCGT

URA3orf_Qfor GGGCAGACATTACGAATGCA

URA3orf_Qrev CCTGCTTCAAACCGCTAACAA

ChIP Primers Sequence

ACT1_Qfor CTCTTTTTATCTTCCTTTTTTTCCTCTCT

ACT1_Qrev CGTGAAAAATCTAAAAGCTGATGTAGTAG

ADE2_ORF_Qfor TTGGGTTTTCCATTCGTCTTG

ADE2_ORF_Qrev CAACGAAGTTACCTCTTCCATCGT

URA3_Qfor GGAAGGAGCACAGACTTAGATTGG

URA3_Qrev CTGTGCAGTTGGGTTAAGAATACTG

VIR3500_Qfor CCCATGTTTTTCAGTTTATCAATGA

VIR3500_Qrev CGATGAAGATTGTATGCAAGCAA
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restored URA3 silencing without any detectable changes
in Sir3 binding (Figure 1D–F). Although Sir3 is the major
Sir protein that can spread along the chromosome over
long distances, these results suggest that factors other than
Sir3 restored silencing in rpd3Δdot1Δ cells. Whether Rpd3
affects binding of one of the other Sir proteins remains to
be determined. Changes in silencing without detectable
changes in Sir protein binding have been described previ-
ously, however [88]. Therefore, it is also possible that
Rpd3 might affect the activity of the Sir proteins, such as
the deacetylase activity of Sir2, or targeting of repressor
proteins that can act as heterochromatin factors but are
normally not found in Sir-occupied heterochromatin
domains, such as Sum1, Hst1, or Hda1 [89-94]. Interest-
ingly, our results also indicate that the effect of Rpd3 on
Sir3 targeting to telomeric heterochromatin requires the
presence of Dot1. This suggests that targeting of Sir pro-
teins to heterochromatin by increased histone acetylation
might involve simultaneous recognition of methylated
H3K79. The redundant roles of Dot1 and the histone H3
HATs Gcn5 and Elp3 in promoting gene silencing indi-
cates that histone H3 acetylation and H3K79 methylation
involve non-linked mechanisms. To fully understand the
connection between Dot1 and Rpd3, it will be important
to determine which of the many target lysines of Rpd3
affect Sir3 targeting in a Dot1-dependent manner and
whether Rpd3 and Dot1 affect each others activity.

Conclusion
Targeting of the Sir complex to regions of heterochroma-
tin in yeast is positively modulated by a range of euchro-
matic factors indicating that euchromatin and
heterochromatin are interdependent. Our results and pre-
vious studies suggest that histone modifiers can compete
with heterochromatin proteins at different locations and
thereby make positive as well as negative contributions to
heterochromatin formation. We expect that similar rules
apply to histone modifications in higher eukaryotes,
which might help to explain the paradoxical role of Dot1
in gene activation and repression in flies and mammals
[8,9,11,95-98].

Methods
Yeast strains are described in Table 2. Gene knock-outs
were made by replacing the coding sequences of the
respective genes by homologous recombination with PCR
products of plasmids pRS400 (KanMX), pRS40NatMX,
pRS40HygMX, or pRS303 (HIS3) [33,99]. Most gene dele-
tions were generated as heterozygous diploids. Haploids
were subsequently obtained by sporulation. For spore
analysis of the elp3Δgcn5Δset1Δsir3Δ heterozygous diploid
(NKI1121) genotypes of the four spores of each tetrad
were determined by drug resistance, histidine prototro-
phy, and mating to tester strains PT1a and PT2α [34].
Genotypes that could not be determined directly (due to

synthetic lethality or due to loss of mating type caused by
the absence of Sir3) were deduced from the segregation of
the markers in the remaining spores. Only tetrads of
which the genotypes of all four spores could be unambig-
uously assigned were included for further analysis. Yeast
media were prepared and silencing assays were performed
as previously described [28,34] and repeated at least two
times. Silencing assays were performed with cells that had
been pre-grown at the appropriate temperature for at least
one day. Plasmids pRS424 (2 μ-TRP1) and pHR67-23
containing a SIR3 genomic region in pRS424 were
described previously [33,99].

Immunoblots
Whole-cell extracts were obtained from approximately 5 ×
107 cells by the classical glass beads breakage method
using 200 μl of glass beads and SUMEB (1% SDS, 8 M
Urea, 10 mM MOPS pH 6.8, 10 mM EDTA, 0.01%
bromophenol blue, 1 mM DTT) [100] complemented
with PMSF (1 mM), benzamidine (5 mM), pepstatin (1
μg/ml), leupeptin (1 μg/ml) and DTT (1 μM). Primary
antibody incubations were performed in Tris-buffered
saline-Tween with 2% dry milk. Antibodies used were Sir3
[33], Dot1 [28], Sir2 (Santa Cruz, Sc-6666), and Pgk1
(Invitrogen, A-6457).

Reverse-transcription
Total yeast RNA was prepared from 5 × 107 cells of each of
the indicated growth condition using the RNeasy kit (Qia-
gen) according to the manufacturer's protocol. RNA sam-
ples were treated with RNase free DNAse (Qiagen), and
cDNA was made by using Super-Script II reverse tran-
scriptase (Invitrogen).

Chromatin immunoprecipitation
ChIP was performed as described previously [101].
Briefly, the chromatin was sheared using a bioruptor
(Diagenode) for 6 minutes with 30 seconds intervals at
high. The obtained fragments have an average size of 500
bp, as determined on a 2% TAE gel stained with ethidium
bromide and quantified using TINA software. The isolated
chromatin of the equivalent of 5 × 107 cells was immuno-
precipitated overnight at 4°C using magnetic Dynabeads
(Invitrogen) which were previously incubated with anti-
body o/n at 4°C.

Real-time PCR
ChIP DNA and cDNA was quantified by real-time PCR
using the SYBR® Green PCR Master Mix (Applied Biosys-
tems) and the ABI PRISM 7500. A ChIP input sample was
used to make a standard curve, which was then used to
calculate relative IP efficiencies and mRNA expression lev-
els, using the 7500 fast system software. Primers used for
qPCR are listed in Table 3.
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