- \/)
BIVMIC Molecular Biology Bioed Cena

Research article

Selection of reference genes for normalisation of real-time RT-PCR
in brain-stem death injury in Ovis aries
Margaret Passmore*!, Maria Nataatmadja! and John F Fraser?

Address: 'Department of Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia and 2Department of Intensive Care Medicine,
The Prince Charles Hospital, Chermside, Queensland, Australia

Email: Margaret Passmore* - M.Passmore@ugq.edu.au; Maria Nataatmadja - M.Nataatmadja@ugq.edu.au;
John F Fraser - John_Fraser@health.qld.gov.au

* Corresponding author

Published: 23 July 2009 Received: 8 October 2008
BMC Molecular Biology 2009, 10:72  doi:10.1186/1471-2199-10-72 Acceped: 23 July 2009
This article is available from: http://www.biomedcentral.com/1471-2199/10/72

© 2009 Passmore et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Heart and lung transplantation is frequently the only therapeutic option for patients
with end stage cardio respiratory disease. Organ donation post brain stem death (BSD) is a pre-
requisite, yet BSD itself causes such severe damage that many organs offered for donation are
unusable, with lung being the organ most affected by BSD. In Australia and New Zealand, less than
50% of lungs offered for donation post BSD are suitable for transplantation, as compared with over
90% of kidneys, resulting in patients dying for lack of suitable lungs. Our group has developed a
novel 24 h sheep BSD model to mimic the physiological milieu of the typical human organ donor.
Characterisation of the gene expression changes associated with BSD is critical and will assist in
determining the aetiology of lung damage post BSD. Real-time PCR is a highly sensitive method
involving multiple steps from extraction to processing RNA so the choice of housekeeping genes
is important in obtaining reliable results. Little information however, is available on the expression
stability of reference genes in the sheep pulmonary artery and lung. We aimed to establish a set of
stably expressed reference genes for use as a standard for analysis of gene expression changes in
BSD.

Results: We evaluated the expression stability of 6 candidate normalisation genes (ACTB, GAPDH,
HGPRT, PGKI, PPIA and RPLPO) using real time quantitative PCR. There was a wide range of Ct-
values within each tissue for pulmonary artery (15-24) and lung (16—25) but the expression pattern
for each gene was similar across the two tissues. After geNorm analysis, ACTB and PPIA were shown
to be the most stably expressed in the pulmonary artery and ACTB and PGK/ in the lung tissue of
BSD sheep.

Conclusion: Accurate normalisation is critical in obtaining reliable and reproducible results in
gene expression studies. This study demonstrates tissue associated variability in the selection of
these normalisation genes in BSD sheep and underlines the importance of selecting the correct
reference genes for both the animal model and tissue studied.
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Background

Lung transplantation represents the only prospect of
improved survival and quality of life for patients with end
stage pulmonary disease. Brain stem death (BSD) is a pre-
requisite for the majority of heart and lung transplanta-
tion, yet this process adversely affects organ function, with
lung being the most adversely affected. In Australia and
New Zealand, less than 50% of lungs offered for donation
post BSD are suitable for transplantation, as compared
with over 90% of kidneys, resulting in patients dying for
lack of suitable lungs [1]. We have been investigating the
impact of BSD on pulmonary structure, remodelling and
function to understand the process in the hope of amelio-
rating organ injury. Management of the BSD donor has
been shown to positively impact both the number of
organs which can be successfully transplanted and the
function in these organs. Early organ dysfunction has a
major impact on both short and long term survival as well
as prolonged ICU and hospital stays, with the associated
costs and risks of nosocomial infections in these immuno-
compromised patients. Hence, a clear understanding of
the molecular changes associated with BSD may lead to
further improvements of organs for transplantation. We
have previously developed a 4 hour BSD model in the rat
[2]. A clinically relevant model of BSD is an important key
towards the understanding of the lung dysfunction post
BSD, and we have subsequently developed a novel, clini-
cally relevant 24 hour ovine model. The ovine models are
treated in an animal ICU setting, with similar electrolyte
management and hormonal resuscitation (methylpred-
nisolone, tri-iodothyrosine (T3) and vasopressin) to
mimic treatment given to human lung transplant donors
prior to transplantation.

The haemodynamic changes in the systemic circulation in
BSD are well described and are due to an initial catecho-
lamine storm followed by relative hypotension, second-
ary to ischaemia of the sympathetic chain of the spinal
cord [3]. We have previously described in the ovine model
that pulmonary pressures post BSD rise by levels of 5 or
more, as compared to 2-3 times in the systemic circula-
tion [4]. The changes are more sustained and may there-
fore contribute to the changes in pulmonary
microcirculation following BSD. Ongoing studies within
our group are assessing changes in gene expression in
both pulmonary artery and parenchymal tissue, as both
may be affected by the same genes, and the differences in
the localisation, organ structure and cell types needs to be
taken into consideration. Similar gene expression levels in
both organs will determine whether the pulmonary artery
can be used as a valid representation of lung expression
changes in the event of BSD. The determination of com-
mon stably expressed genes in both organs will enable
reliable identification of gene expression changes in the
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donor lung prior to transplantation using excess pulmo-
nary artery samples.

Gene expression in the organ donor is known to correlate
to outcome post transplantation. In a recent study, gene
expression of donor tissue prior to transplantation was
correlated with severity of PGD and long term transplant
outcome [5]. Gene expression studies using Real Time RT
PCR are an integral part of understanding the impact BSD
has on lung function. A clearer understanding of gene
expression changes post BSD may lead to novel avenues of
research to improve the lung function in both the donor
and recipient. However, the donor population is inher-
ently heterogeneous and the management varies substan-
tially between centres. Use of an animal model allows for
a more homogenous population and standardisation of
management, minimising variation in assessing gene
expression.

Accurate normalisation is critical in accounting for vary-
ing amounts of cDNA input and enzyme activity. As this
is a novel ovine model, the first step in obtaining reliable
data from this model is to standardise the housekeeping
genes. The use of internal controls is the standard method
for correcting for differences in input and enzyme activity
and therefore the choice of internal standard is important
in obtaining consistent and reliable results. Several studies
have shown the importance of using multiple, stably
expressed reference genes [6-10] and that changes in the
housekeeping gene can lead to changes in the significance
and expression of the target gene. We elected to use the
geNorm program [11] which has been widely used by
many researchers and has been statistically validated [12]
to evaluate the expression of six candidate normalisation
genes (ACTB, GAPDH, HGPRT, PGK1, PPIA and RPLPO)
and their expression stability in pulmonary artery and
lung.

The aim of this study was to develop a set of reference
genes that can be used for normalisation of expression
data in the pulmonary artery and lung of BSD sheep. The
global aim is to develop a more complete understanding
of the changes seen in the target gene population in the
sheep post BSD.

Results

Primers were selected based on generation of the lowest
cycle threshold (Ct-value - number of PCR cycles at which
a significant increase in fluorescence is detected above
background) and reaction specificity (Table 1). Analysis
of melting temperatures showed only one peak and a lack
of non-specific fragments and primer dimers. Melt curve
analysis of a representative gene ACTB is shown in Figure
1.

Page 2 of 8

(page number not for citation purposes)



BMC Molecular Biology 2009, 10:72

Table I: Primer information for candidate normalisation genes.
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Gene Forward primer (5' — 3') Reverse primer (5' — 3') Tm Amplicon size (bp) PCR
(°C)2 Efficiency®
ACTB CCAAGGCCAACCGTGAGA AGCCTGGATGGCCACGT 59 80 1.87
GAPDH ATGCCTCCTGCACCACCA AGTCCCTCCACGATGCCAA 60 76 1.88
HPRT GCTGAGGATTTGGAGAAGGTGT GGCCACCCATCTCCTTCAT 58 94 1.95
PGKI ACTCCTTGCAGCCAGTTGCT AGCACAAGCCTTCTCCACTTCT 59 101 2.03
PPIA TCATTTGCACTGCCAAGACTG TCATGCCCTCTTTCACTTTGC 59 72 1.78
RPLPO CCAGGCTTTAGGCATCACCA GGCGCCTACTTTGTCTCCTGT 60 94 1.96

aTheoretical melting temperature calculated with Primer Express software (Applied Biosystems).

bPCR efficiencies were determined using the formula |0-!/slope

We selected 6 commonly used reference genes (ACTB,
GAPDH, HGPRT, PGK1, PPIA and RPLP0) of varying func-
tional classes (for full gene information see Table 2). A
dilution matrix of forward and reverse primers was per-
formed in the range of 100 nM to 900 nM to determine
the optimal concentration for each primer pair.

The Ct-value of the candidate normalisation genes is
shown in Figure 2. This shows a wide range of Ct-values
within each tissue for pulmonary artery (15-24) and lung
(16-25). However, the expression pattern for the majority
of genes is remarkably similar across these two tissues,
such that if a gene, like ACTB, is highly expressed in pul-
monary artery (16.2), it is also highly expressed (17.5) in
lung tissue.

The geNorm program was used to identify the most stably
expressed reference genes [11]. This program ranks candi-
date reference genes according to a stability value M. This
value represents the mean pairwise variation between a
candidate reference gene and all the other studied genes.
The lowest M value indicates genes with the most stable
expression. Stepwise elimination of successive genes
showed that PPIA and ACTB were the most stably

expressed genes in sheep pulmonary artery and PGK1 and
ACTB were the most stably expressed genes in sheep lung
(Figure 3). Further analysis was performed separating out
the controls from the pulmonary artery and lung. When
analysed separately the optimal reference genes for con-
trol and BSD pulmonary artery, and control and BSD lung
were identical. This shows the high stability of these refer-
ence genes and that there is tissue-associated variability of
gene expression in BSD, underlining the importance of
choosing the most stable normalisation genes.

GeNorm was also used to determine the optimal number
of reference genes for normalisation. The software calcu-
lates the normalisation factor (NF) from at least two genes
at which the variable V defines the pairwise variation
between sequential NFs. This means that V2/3 shows the
variation of the NF of two genes in relation to three genes.
We used a cut-off value of 0.15, below which the addition
of an extra gene will not significantly improve normalisa-
tion [11]. Based on this assumption the addition of a third
gene is not required for either pulmonary artery or lung
(Figure 4) where the V2/3 values are 0.149 and 0.104
respectively. In fact, the addition of a third reference gene
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Melt curve analysis. Melt curve analysis of a representative gene ACTB showing the presence of one peak and a lack of non-

specific fragments and primer dimers.
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Table 2: Function of candidate normalisation genes.
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Gene Full gene name Accession No.  Function Primer conc (nM)
Forward primer Reverse primer

ACTB beta actin U39357 Cytoskeletal structural protein 300 300

GAPDH glyceraldehyde 3-phosphate AF030943 Carbohydrate metabolism 900 300
dehydrogenase

HPRT hypoxanthine AF176419 Nucleoside, nucleotide and nucleic acid 300 300
phosphoribosyltransferase metabolism

PGKI phosphoglycerate kinase | NM_001034299 Carbohydrate metabolism 100 100

PPIA peptidylprolyl isomerase A AY251270 Protein metabolism and modification 300 300

RPLPO ribosomal protein, large, PO NM_001012682 Protein metabolism and modification 900 900

actually increases the pairwise variation to 0.179 for pul-
monary artery and 0.118 for lung.

Discussion

Real time RT PCR is a sensitive and accurate technique for
measuring gene expression but it is important to correct
for such factors as differences in sample input and enzyme
efficiency. This can be achieved by normalising to a refer-
ence gene. Ideally a reference gene is ubiquitously
expressed across all tissue types and under all experimen-
tal conditions. In sheep BSD however, little is known
about the ideal genes to use for normalisation and many
previous studies have only utilised a single reference gene
in normalising gene expression data [13-15]. This is not
ideal as variation in the housekeeping gene can lead to
changes in the quantification of the gene of interest. The
use of multiple reference genes is therefore important in
obtaining accurate results, particularly in detecting small
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Figure 2

Ct range for candidate normalisation genes in pul-
monary artery and lung. Values are given as real-time

PCR cycle threshold number (Ct values) in pulmonary artery

and lung of combined BSD and control samples. The col-
oured box represents 50% of the measurements for the

gene. The thin, black line is the median and the whiskers rep-

resent the ranges for the data of 4 BSD and 4 controls.

differences in gene expression. In order to achieve this we
used the technique described by Vandesompele et al as a
statistically validated technique which uses mean pairwise
variation to determine the optimal number of reference
genes.

We chose six commonly used reference genes from the lit-
erature. There was tissue-associated variability in the
genes selected for normalisation, with PPIA and ACTB
being the most stably expressed in pulmonary artery and
PGK1 and ACTB the most stable in lung. When controls
were analysed separately in the different tissue types the
reference genes selected were identical showing a consist-
ent level of expression for each reference gene in both con-
trol and BSD groups. Several studies have shown that
housekeeping genes show variability within each tissue
[16-18] emphasising that the stability of each housekeep-
ing gene needs to be studied in each separate tissue and
experimental set-up.

Interestingly ACTB is the most stably expressed gene in
both pulmonary artery and lung. Traditionally this gene
has been used in many studies to normalise gene expres-
sion data but recently has been shown to vary considera-
bly depending on the cell type and tissue [18].

GeNorm analysis indicated that only two reference genes
were needed for accurate normalisation. A cut-off value of
0.15 has been recommended [11] below which the inclu-
sion of additional reference genes is not required. The
addition of a third gene was shown to increase the varia-
bility in pulmonary artery and lung, therefore we used the
geometric mean of the two most stably expressed genes.

The optimal number of subjects for such a study is
unclear. The financial restraints and ethical considera-
tions must be thought of simultaneously with the scien-
tific merit of increasing the cohorts. Whilst a larger
number in each study group may have been of interest,
the high stability of the selected reference genes this study
indicates that the chosen sample size is appropriate and at
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Pairwise variation to determine the optimal number of normalisation genes. The optimal number of genes was
determined separately for pulmonary artery (A) and lung (B) in combined BSD and control samples. A large pairwise variation
V indicates that the added gene has a significant effect and should be included in the normalisation factor calculation. Based on
the pairwise variation for pulmonary artery and lung addition of a third reference gene does not improve normalisation in
either tissue.
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the very least serves as a good guide. This study lays the
groundwork for a better understanding of the molecular
changes occurring in BSD and ultimately in optimising
donor management in the lung transplant population.

Conclusion

This study identifies a new set of reference genes in pul-
monary artery (PPIA and ACTB) and lung (PGKI and
ACTB) that can be used for normalisation of expression
data in a 24 h BSD sheep model. It also demonstrates tis-
sue-associated variability in the selection of these genes
and emphasises the importance of selecting the most sta-
bly expressed genes across lung and pulmonary artery tis-
sue for standard normalisation in gene expression studies.

Methods

Induction of BSD and sample collection

Eight sheep (4 controls; 4 BSD) were anaesthetised using
Propofol (500-1200 mg/hr) and intubated with an
endotracheal tube. All experimental procedures were con-
ducted with the approval of the University of Queensland
animal ethics committee (Reference PCH/389/06). Ani-
mals underwent placement of a urinary catheter, an arte-
rial cannula followed by placement of a pulmonary
arterial catheter. A size 10 tracheostomy (Portex™) was
placed in the exposed trachea, the occiput cleared of
adventitia and the bone plate exposed. An Intracranial
Pressure "bolt" was introduced into a specifically designed
rig to stabilise the device. A size 12 Foley catheter was
introduced into a separate burr hole and then inflated
with saline over a 30 minute period in the experimental
animals. In the control animals the same procedure was
followed except the catheter was not inflated. Animals
were subsequently moved to specifically designed meta-
bolic cages and sedation ceased at 12 hrs, whereupon hor-
mone resuscitation was started with a 500 mg bolus of
methylprednisolone, infusion of tri-iodothyrosine (T3)
and vasopressin. At the end of the 24 hr period animals
were euthanized while anaesthetised and pulmonary
artery and lung specimens were immersed in RNA later
(Ambion, CA, USA) overnight at 4°C and then kept at -
80°C until RNA extraction.

Isolation of RNA and cDNA synthesis

Total RNA was isolated using Trizol (Ambion, CA, USA)
and samples purified with the RNeasy Mini Kit (Qiagen).
All samples were DNase treated (Ambion, CA, USA) and
subsequently analysed on an Agilent Bioanalyser (Agilent
Technologies) to determine RNA concentration and qual-
ity [19]. Samples with a RNA integrity number (RIN) > 6.5
were used. First strand cDNA was synthesized from 400 ng
RNA using random primer and AMV Reverse Transcriptase
(Roche, Basel, Switzerland).

http://www.biomedcentral.com/1471-2199/10/72

Real Time RT-PCR

Gene sequences were obtained from the NCBI database
[20] and primers were designed using PrimerExpress
(Applied Biosystems) and specificity checked using NCBI
BLAST. Primers for HPRT, PGK1 and RPLPO genes were
based on areas of consensus between cow, human and
sheep as only partial sequences were available for Ovis
aries. The targets were evaluated for secondary structure
formation using DNA calculator (Sigma) and primers
were purchased from Invitrogen (Table 1).

Real time Quantitative PCR was performed using a Rotor-
Gene 6000 real-time rotary analyzer (Corbett Research)
with SYBR Green PCR Master Mix (Applied Biosystems).
Reactions consisted of 5 uL. SYBR Green Master Mix, 100
nM, 300 nM or 900 nM of forward and reverse primers
and 2 pL of cDNA (equivalent to 20 ng) and nuclease free
water to a final volume of 10 pL. The cycling conditions
were as follows: cDNA was denatured at 95°C for 10 min,
followed by 40 cycles of 95°C for 15 s and 60°C for 60 s
(gain set at 10 for SYBR Green). Melt curve analysis was
programmed at the end of the run, 60-90°C with incre-
ments rising by 0.5°C each step and a 5 s hold at each
degree to determine reaction specificity and the absence of
contamination, mispriming and primer dimer. Each PCR
product had a single melt curve. A no-template and
reverse transcription negative control was included for
each primer set and PCR products were subsequently ana-
lyzed by agarose gel electrophoresis to check for correct
products.

Quantification and statistical analysis

Threshold cycle (Ct) values from the Rotor-Gene software
version 1.7 (Corbett Research) were exported to Microsoft
Excel for further analysis. All measurements were per-
formed in triplicate for each gene and samples were quan-
tified from standard curves, using serial dilutions of a
¢DNA pool of all PA and lung samples. This data was then
analysed using geNorm 3.4 software to determine the
most stable reference genes and the minimum number
required to calculate a reliable normalisation factor using
the geometric mean of multiple samples [11].
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