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Abstract

Background: Oncogene HCCR-! functions as a negative regulator of the p53 and contributes to
tumorigenesis of various human tissues. However, it is unknown how HCCR-/ contributes to the
cellular and biochemical mechanisms of human tumorigenesis.

Results: In this study, we showed how the expression of HCCR-/ is modulated. The luciferase
activity assay indicated that the HCCR-I 5'-flanking region at positions -166 to +30 plays an
important role in HCCR-| promoter activity. Computational analysis of this region identified two
consensus sequences for the T-cell factor (TCF) located at -26 to -4 (Tcfl) and -136 to -1 14 (Tcf2).
Mutation at the Tcfl site led to a dramatic decrease in promoter activity. Mobility shift assays
(EMSA) revealed that nuclear proteins bind to the Tcfl site, but not to the Tcf2 site. LiCl, Wnt
signal activator by GSK-3f inhibition, significantly increased reporter activities in wild-type Tcfl-
containing constructs, but were without effect in mutant Tcfl-containing constructs in HEK/293
cells. In addition, endogenous HCCR-/ expression was also increased by treatment with GSK-3f3
inhibitor, LiCl or AR-A014418 in HEK/293 and K562 cells. Finally, we also observed that the
transcription factor, TCF, and its cofactor, 3-catenin, bound to the Tcfl site.

Conclusion: These findings suggest that the Tcfl site on the HCCR-/ promoter is a major element
regulating HCCR-1 expression and abnormal stimulation of this site may induce various human

cancers.
Background agent, which is known as an oncogene [2,3]. For more
Proto-oncogenes normally help regulate cell growth and  than a decade, there has been a focus on the transcrip-
differentiation under well-controlled conditions, includ-  tional regulation of oncogenes or proto-oncogenes in
ing mitogenic signal transductions in cells [1,2]. Uncon-  search of therapeutic clues against cancers which are

trolled expression of proto-oncogenes due to mutations  induced by over-transcription of their oncogenes.
or activation of signaling can give rise to a tumor-inducing
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Figure 1

Figure |

Expression of the truncated HCCR-I promoter in K562, HEK/293, or A549 cells. The DNA constructs containing
various lengths of the HCCR-/ promoter region were cloned into upstream of the firefly luciferase (LUC) reporter gene. Each
luciferase reporter construct shown in the diagram was co-transfected in K562 (A and B; filled bars), HEK293 (A; open bars),
and A549 (A; shadow bars) cells with the pRL-CMV normalizing reporter plasmid encoding with the renilla (REN) gene. The
horizontal axis shows the ratio of luciferase to renilla activity normalized by LUC/REN (= 100%) displayed by cells co-trans-
fected with pRL-CMV and pGL3-control. We designated each recombinant vector as pGL3X~Y, where X is the first base and
Y the last base of each truncated promoter (n > 5 per construct).

Wnt is known as a proto-oncogene and its signaling path-
way is a complex network of proteins with roles in embry-
ogenesis [4-6] and cancer [7]. Wnt and its signaling
pathway is also involved in normal physiologic processes,
including cell polarity [8], axon guidance [9], and stem

cell growth factor [10]. Two Wnt pathways have been
identified, the canonical and non-canonical pathways.
More than 90% of colorectal cancers and other digestive
cancers are associated with defects in the canonical Wnt
signaling pathway by mutations in APC [11,12], AXIN1
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Figure 2

Figure 2

Mutational analysis of the HCCR-I promoter. The dia-
grams depict locations of the predicted transcriptional ele-
ments in the HCCR-/ promoter. When mutated, the
diagrams are indicated by a cross. "Tcf" and "My" indicate the
consensus sequences for the TCF and C-Myb elements,
respectively. Each luciferase reporter construct was co-
transfected in K562 cells with pRL-CMV. The horizontal axis
shows the ratio of luciferase (LUC) to renilla (REN) activity
normalized by LUC/REN (= 100%) displayed by cells co-
transfected with pRL-CMV and pGL3-control (n > 4 per con-
struct).

[13], or CTNNB1 [7]. These mutations make it impossible
to assist GSK-3f in phosphorylation and in rapid degrada-

http://www.biomedcentral.com/1471-2199/10/42

tion of B-catenin through the ubiquitin pathway as a
result of accumulation of B-catenin in the cytoplasm and
formation of a complex with TCF in the nucleus, which
initiates transcription of the Wnt target genes [14,15].

The human cervical cancer oncogene 1 (HCCR-1) has
been identified as a novel oncogene with strong tumori-
genic features in nude mice [16]. HCCR-1 is post-transla-
tionally localized in the mitochondria, sub-
compartmentally in its outer membrane [17,18], and may
functionally regulate the p53 tumor-suppressor gene neg-
atively [16,19]. HCCR-1 is also overexpressed in various
types of human malignancies, including colorectal cancer
[18]. However, it is not known how HCCR-1 expression is
modulated. In this study, we characterized the proximal
promoter region of HCCR-1 to elucidate the mechanism
of expression of the oncoprotein, HCCR-1.

Results and Discussion

Characterization of the human HCCR-1 5'-flanking
sequences

Previous work has identified the initiation site for tran-
scription and the promoter region of the HCCR-1 gene
[20]. Computational analysis has shown that the HCCR-1

A B
Probes Tef1 Tef2
Nuclear Extracts SEIEIEIE S IEE IR BE Probes Tef1 mTef1
Unlabelled Probes | - | - ferEryficr2| - | - [rerzfry Nuclear Extracts | - |+ |- | +
B1—|
B2 —»
Figure 3

Figure 3

DNA-binding activity at the Tcfl site. EMSA were performed using K562 nuclear extracts and dsDNA harboring either a
consensus site for HCCR-| wild-type Tcfl, Tcf2 element (A), and a mutated sequence mTcfl (B). To show the specificity of the
bands, 10 times molar excess of cold double-stranded oligonucleotide carrying the consensus Tcfl and Tcf2 sites was used for
competition or Ery for non-competition. Bl indicates the DNA-protein complex with probe Tcfl and B2 indicates less specific

DNA-protein complex. The presence or absence of a component in the assay is indicated by a "+" or

, respectively.
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Figure 4

TheTcfl site on the HCCR-I promoter was sensitive to the GSK-3f inhibitor, LiCl. The truncated constructs (A) or
mutated constructs (B) of the HCCR-I promoter region were transfected into K562 cells with pRL-CMYV as an internal control.
Cells were then treated with or without 5 mM LiCl for 24 hours and subjected to dual luciferase analysis (n > 4 per construct).

promoter contains a TATA box, a CAAT box, and the puta-
tive DNA binding sites for various transcriptional factors
[20].

To characterize the HCCR-1 promoter, fragments from
positions -980, -538, -474, and -166 to position +30 (end

of the 5'UTR region) and position -980 to position -510
were cloned into upstream of a luciferase reporter gene
and assayed for their transcriptional activities in either
chronic myelogenous leukemia K562, HEK/293, or lung
cancer A549 cells (Figure 1A). The activities from all the
constructs tested were high in the K562, but weak in HEK/
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Endogenous expression of HCCR-I on activated Wnt/[3-catenin signal by treatment with the GSK-3 inhibitors,
LiCl or AR-A014418. Total RNAs were prepared from K562 (A and B) and HEK/293 (C and D) cells which were treated with
various concentration of LiCl (A and C) or AR-A014418 (B and D) for 24 hours in respectively. Five ng of total RNAs were

used for cDNA synthesis and subjected to real-time PCR analysis with human specific primers for HCCR-I and B-actin (mean

+S.D, n=3).

293 and nearly undetectable in A549 cells, indicating that
the activity of the HCCR-1 promoter is constitutively
enhanced in K562 cells. Northern blot analysis showed
that HCCR-1 expression is high in K562 and weak in A549
cells, which is consistent with the present work [16]. Tran-
sient transfection of a reporter fragment containing -474
to +30 of human HCCR-1 (referred to hereafter as 'pGL3-
474~+30') had 97.5 times higher promoter activity than
the reporter gene alone (pGL3-Basic) in K562 cells (Figure
1A). However, the shortest fragment (pGL-166~+30) had
high promoter activity, while the deleted mutant (pGL-
980~-510) had very weak activity (Figure 1A), suggesting
that the HCCR-1 promoter region from -166 to +30 plays
an important role in HCCR-1 gene expression.

To further characterize the HCCR-1 promoter region from
-166 to 30, promoter fragments from positions -118 and -
75 to position +30 and from positions -474 to position -

52 were cloned into upstream of a luciferase reporter gene
and assayed for their transcriptional activity in K562 cells
(Figure 1B). The fragment (pGL-166~+30) had 1.85 times
higher promoter activity than pGL-75~+30 and 1.53 times
higher promoter activity than pGL3-118~+30 in K562
cells. However, this activity was dramatically reduced by
the deleted mutant (pGL-474~-52) which was removed at
positions -52 to +30 (Figure 1B). These results suggest that
the HCCR-1 5'-flanking region at positions -52 to +30 is
required for HCCR-1 promoter activity and this region
may possess important elements enhancing HCCR-1 tran-
scription.

The Tcfl Site is involved in the activation of the HCCR-1
promoter

The Matlnspector [21] identified two T-cell factor (TCF)
binding sites, designated as Tcfl and Tcf2 in Figure
2[15,22,23] and one c-myb site designated as My in Figure
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Figure 6

TCF and 3-catenin bound with the Tcfl element on
the HCCR-I promoter region. Super-shift assays using
K562 nuclear lysates were tested with labeled oligo probes
Tcfl and 0.4 pg antibodies against either TCF (A) or p-cat-
enin (B). Anti-IgG indicate non-specific antibody for control.
Arrows indicate super-shifted bands.

2[24,25] within the -166 to +30 region of the HCCR-1
promoter. To investigate the role of these elements in the
modulation of transcriptional activity, each was inacti-
vated by site-directed mutagenesis and cloned into
upstream of a luciferase reporter gene. Each mutated con-
struct (pGL3-mTcf1, -mTcf2, and -mMyb) was transiently
expressed in K562 cells and the luciferase activity was
measured. Mutation of the Tcf2 or c-myb-binding sites
did not significantly modify luciferase expression (Figure
2). In contrast, mutation of the Tcfl site significantly
affected HCCR-1 promoter activity. We thus focused on
the Tcf1 site for further investigations.

Nuclear proteins extracted from K562 cells recognize the

sequences of the Tcfl site

To confirm that Tcfl plays a role in HCCR-1 promoter
activation, we then performed an electrophoretic mobility
shift assay (EMSA) in the K562 nuclear extracts by using
double-stranded oligonucleotides harboring either the
HCCR-1 wild-type sequences, designated as Tcf1 (-26~-4),
Tcf2 (-136~-114), or a mutated Tcfl sequence (mTcf1).
Two retarded bands were obtained with the radiolabeled
probe carried the wild-type Tcf1 site, but no band in the
labeled probe carrying the Tcf2 site (Figure 3A). The band
was abolished by pre-incubation with a 10 times molar
excess of cold Tcfl probe, but not abolished with cold
probes that carried Tcf2 or Ery (erythroid krueppel like
factor; -294~-272) probes, which were used as a non-com-
petitor (Figure 3A). The band also disappeared when

http://www.biomedcentral.com/1471-2199/10/42

using the probe encoding the mutated Tcf1 site, mTcf1
(Figure 3B), suggesting that proteins included in the K562
nuclear extracts recognized and bound to the wild-type
specific sequences which are situated in the Tcf1 site on
the HCCR-1 promoter.

As shown in Figure 1B, the reporter fragment containing -
166 to +30 of human HCCR-1 was significantly increased
in comparison with the fragment containing -118 to +30.
However, EMSA assays revealed no major band when the
radiolabeled probe carried the HCCR-1 wild-type Tcf2
sequences (Figure 3A), suggesting that there is another
element downstream from the Tcf2 region to -166 of the
HCCR-1 promoter region. We have searched this region,
and detected three shifted bands by the EMSA method
(unpublished data). These bands disappeared in the pres-
ence of a cold competitor and were not with the non-com-
petitor. Site-directed mutagenesis work also revealed that
the region is important for HCCR-1 expression, but fur-
ther study is required to gain better insight into the bio-
logic significance in HCCR-1 expression.

HCCR-1I promoter was activated by LiCl, an inhibitor of
GSK-35

Lithium has been shown to stabilize -catenin via inhibi-
tion of GSK-3p [14,26], and as a result, activates TCF. To
examine whether TCF activation by treatment with 5 mM
LiCl stimulated HCCR-1 promoter expression [26], we
performed reporter assays with deletion constructs con-
taining Tcf1 or both Tcf1 and Tcf?2 sites in K562 cells (Fig-
ure 4A). LiCl treatment increased reporter activities 1.7- to
2.25-fold with constructs pGL3-75~+30,-118~+30 which
contain the Tcf1 site, and 1.8-fold with pGL3-166~+30
containing the Tcfl and Tcf2 sites (Figure 4A).

Another reporter assay with constructs pGL3-mTcf1 or -
mTcf2, which are mutated at the Tcf1 or Tcf2 sites within
the -166 to +30 region, was performed to verify Tcfl
involvment in HCCR-1 promoter activity. pGL3-mTcf1
markedly attenuated the induction of HCCR-1 promoter
activity by treatment with LiCl in comparison with wild-
type pGL3-166~+30, but there was no significant change
at the mutation of the Tcf2 site (pGL3-mTcf2; Figure 4B).
These results suggest that Tcf1 appears to be important for
LiCl-induced activation of the HCCR-1 promoter.

Endogenous HCCR-I transcripts were increased by GSK-
3pinhibitors

To verify activation induced by stimulation of the Wnt/j3-
catenin signal on endogenous HCCR-1 mRNA expression,
K562 or HEK293 cells were treated with various concen-
tration of LiCl (0, 1, 2, 5, 10, and 20 mM) [26] or AR-
A014418 (0,1, 2, 5, 10, and 20 uM) [27] for 24 h and the
levels of expression were analyzed by real-time PCR. As
shown in Figure 5A, the stimulated K562 cells (2, 5 or 10
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mM) were increased the expression of HCCR-1 compared
with unstimulated cells (0 mM), and the expression was
increased 13.7-fold in the cells treated with 5 mM LiCl
and 9.3-fold with 5 uM AR-A014418 (Figure 5A and 5B).
The expression of HCCR-1 mRNA was increased 6.6-fold
in the HEK/293 cells treated with 5 mM LiCl and 6.26-
fold in same cells with 5 uM AR-A014418 (Figure 5C and
5D). These results suggest that the expression of HCCR-1
is modulated by the activation of transcription factor,
TCF, induced by B-catenin stability.

TCF and f-catenin are bound to the Tcfl site on the
HCCR-1 promoter

We have shown that the Tcf1 site on the HCCR-1 proximal
5'-flanking region regulates endogenous HCCR-1 expres-
sion. We next investigated whether TCF and its cofactor
(B-catenin) could physically bind with the HCCR-1 pro-
moter using a super-shift assay with the radiolabeled oligo
Tcf1 probes and nuclear extracts from K562. As shown in
Figure 6, incubation with either anti-TCF (Figure 6A) or
anti-B-catenin (Figure 6B) antibodies resulted in a super
shift of the DNA-protein complexes, whereas incubation
with a nonspecific IgG did not shift the DNA-protein
complexes, confirming that TCF and B-catenin are bound
to the Tcf1 site on the HCCR-1 promoter.

Wnt signaling is constitutively active in the majority of
human colorectal cancers by mutations which lead to
increased B-catenin protein expression [7,11-13], result-
ing in nuclear accumulation of B-catenin, which subse-
quently complexes with TCF transcription factors and
activation of downstream f-catenin/TCF target genes,
including Bcl-2 family genes [28]. HCCR-1 is also overex-
pressed in colorectal cancer and interacts with DP1 on the
mitochondrial membrane [18]. Overexpressed HCCR-1
may contribute to the cellular and biochemical mecha-
nisms of human tumorigenesis [18]. In this study, we
characterized the HCCR-1 promoter and elucidated the
mechanism of expression of the strong oncoprotein
HCCR-1. We found that HCCR-1 expression is directly
modulated by TCF/B-catenin signaling and may play a
role in human cancer.

Conclusion

HCCR-1 has been isolated as an oncogene candidate and
is overexpressed in various cancers [16,18,19,29]. To
understand the modulation of HCCR-1 expression, sev-
eral deleted mutants of the proximal promoter region of
HCCR-1 were constructed. Reporter gene assays in K562
cells demonstrated that the proximal promoter region at
nucleotides -166 to +30 have a pivotal role in HCCR-1
transcription. Mutagenesis of the Tcfl site significantly
decreased the reporter activity compared with its wild-
type. Our data also indicate that the transcription of

http://www.biomedcentral.com/1471-2199/10/42

HCCR-1 is activated by treatment with LiCl, the reagent
sensitive to GSK-3p. Site-directed mutagenesis on the Tcf1
site makes the HCCR-1 promoter activity insensitive to the
stimulation of B-catenin/TCF signaling by LiCl. In addi-
tion, stimulation with LiCl or AR-A014418 also increased
endogenous HCCR-1 expression in K562 and HEK/293
cells, suggesting that the Tcf1 site on the HCCR-1 proxi-
mal promoter is a major element for HCCR-1 expression.
Finally, we also observed that the transcription factor,
TCF, and its cofactor (-catenin) are indeed bound to the
Tcf1 site.

Methods

Cell culture

Human embryonic kidney (HEK) 293 (ATCC CRL-1573),
K562 chronic myelogenous leukemia (ATCC CCL-243),
and A549 lung cancer (ATCC CCL-185) cells were obtained
from the American Type Culture Collection (Manassas, VA,
USA). The HEK/293 cells were maintained at 37°C and 5%
CO, in DMEM (Gibco, Grand Island, NY, USA) supple-
mented with 10% FBS and 1% penstrep (Gibco). K562 and
A549 were maintained at 37°C in 5% CO, in RPMI
(Gibco) containing 10% FBS and 1% penstrep.

Isolation of the promoter region and DNA transfection
Eight DNA fragments from the HCCR-1 promoter region
(Figures 1A and 1B) were synthesized using a Pfu DNA
polymerase (MBI Fermentas, MD). The lambda phage
DNA containing the HCCR-1 genomic DNA was ampli-
fied using the primers G1-R and G1-F for pGL3-75~+30,
G1-R and G2-F for pGL3-118~+30, G1-R and G3-F for
pGL3-166~+30, G1-R and G4-F for pGL3-474~+30, G2-R
and G4-F for pGL3-474~-52, G1-R and G5-F for pGL3-
538~+30, G1-R and G6-F for pGL3-980~+30, and the
primers G3-R and G6-F for pGL3-980~-510 (Additional
file 1: Table S1). The primer sequences used in these PCR
reactions are shown in Additional file 1: Table S1 (Gen-
oTech, Daejeon, Korea). The PCR cycling parameters were
as follows: initial denaturation at 94°C for 2 min; 30
cycles of 30 s at 94°C for denaturation; 30 s at 55°C for
primer annealing; 1 min at 72°C for extension; and final
extension at 72 °C for 10 min. The PCR products were sub-
cloned into the pGL3-Basic vector (Promega, Madison,
WI, USA) at the Kpnl and Xhol sites and confirmed by
sequencing (GenoTech). All plasmids and recombinant
plasmids were prepared using Qiagen columns (Qiagen
Inc, Valencia, CA, USA).

For DNA transfection, K562, HEK/293, and A549 cells
were co-transfected with 200 ng pGL3-basic vector con-
taining the HCCR-1 promoter regions and 40 ng pCMV-
RL, as an internal standard, using 3 pl Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA), according to the manu-
facturer's protocol.
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Luciferase (LUC) reporter assay

K562, HEK/293, and A549 cells were co-transfected with
the pGL3-basic vector containing various HCCR-1 pro-
moter regions and pCMV-RL. To investigate the effect of
the Wnt-signal pathway on HCCR-1 expression, cells were
treated with 5 mM LiCl (Sigma-Aldrich Corporation, St.
Louis, MO, USA) for 24 h, then harvested. After lysis, the
cell suspensions were centrifuged at 12,000 x g. Firefly
and Renilla luciferase activities of cell lysates were meas-
ured according to the manufacturer's instructions for the
Dual Luciferase Assay System (Promega) in a Turner TD-
20/20 luminometer (Turner Designs, Sunnyvale, CA,
USA). The relative firefly luciferase activity was calculated
by normalizing transfection efficiency to Renilla luciferase
activity for each cell type. An error bar is used to show the
SD derived from more than four independent experi-
ments.

Mutagenesis

Pairs of complimentary oligonucleotides containing the
desired mutations were synthesized (GenoTech). Mutated
plasmids were obtained using the QuikChange site-
directed mutagenesis kit (Stratagene, La Jolla, CA, USA).
The mutagenesis reaction was performed following the
manufacturer's protocol using the pGL3-166~+30 plasmid
for pGL3-mTcf1, pGL3-mTcf2, and pGL3-mMyb as a tem-
plate. Mutagenesis products were obtained as follows:
pGL3-mTcfl using primers mT1-F and mTI1-R; pGL3-
mTcf2 using mT2-F and mT2-R; and pGL3-mMyb using
mMyb-F and mMyb-R (Additional file 1: Table S2). The
nucleotide sequence of each construct was verified by auto-
mated sequencing (GenoTech). All primer sequences used
in mutagenesis are shown in Additional file 1: Table S2.

Nuclear protein extraction

Nuclear extracts were prepared from K562 cells according
to the manufacturer's instructions using a nuclear extrac-
tion kit (Sigma-Aldrich Corporation), with minor modifi-
cations. Briefly, 1 x 107 cells were washed twice with ice-
cold phosphate-buffered saline and resuspended in 500 pl
hypotonic lysis buffer (10 mM HEPES [pH 7.9], 1.5 mM
MgCl,, 10 mM KCl, 1 mM dithiothreitol, and protease
inhibitor cocktail) for K562 and left on ice for 15 min.
Cells were centrifuged for 5 min at 420 x g and resus-
pended again in 200 pl of the hypotonic lysis buffer. After
the lysates were passed 5 times through a 27-gauge needle,
nuclei were recovered by centrifugation at 10,000 x g for
20 min at 4°C. The nuclei were resuspended in 80 ul of
extraction buffer (60 mM HEPES [pH 7.9], 1.5 mM
MgCl,, 420 mM NacCl, 0.2 mM EDTA, 25% glycerol, 1
mM dithiothreitol, and protease inhibitor cocktail) and
incubated on ice for 30 min. The mixture was centrifuged
at 20,000 x g at 4°C for 5 min, and the supernatant (the
nuclear extract) was collected and stored at -70°C until

http://www.biomedcentral.com/1471-2199/10/42

use. Protein concentrations of the nuclear extract were
determined by the Bradford assay.

Electrophoretic mobility shift assay (EMSA)

EMSA was performed using 3.0 pug of nuclear extracts pre-
pared from K562 cell lines. Double-stranded oligonucle-
otide probes (Tcf1 for primers emT1-F and emT1-R, Tcf2
for emT2-F and emT2-R, Ery for emEry-F and emEry-R,
and mTcf1 for mT1-F and mT1-R; Additional file 1: Table
S2) were generated by annealing an antisense strand to its
complementary matched sense strand and labeled with [y-
32P]ATP (3,000 Ci/mmol [10 mCi/ml]; NEN Life Science
products) and T4 polynucleotide kinase (Takara). The Gel
Shift Assay System kit (Promega) was used for the binding
reaction, which was performed as recommended by the
manufacturer. The 32P-labeled probes were added to the
nuclear extract and reacted for 20 min.

For super-shift analysis, 0.4 pg of a nonspecific goat anti-
rabbit IgG, a rabbit anti-human TCF polyclonal antibody
or a rabbit anti-human B-catenin polyclonal antibody
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) was
added to the nuclear extract mixture containing 32P-
labeled probes and reacted for 20 min. The reaction mix-
tures were resolved on a 6% non-denaturing polyacryla-
mide gel in 0.5 times Tris borate-EDTA buffer at 250 V for
30 min. The gel was dried and exposed to an x-ray film
(Kodak) at -70° C for ~6 h. After that, the bands were vis-
ualized by autoradiography. The putative consensus oli-
gonucleotides and mutant oligonucleotides are listed in
Additional file 1: Table S2.

Real-time PCR and Reverse Transcription-Polymerase
Chain Reaction (RT-PCR)

K562 and HEK/293 cells were incubated with serum-free
media for 24 h and then treated with LiCl (0, 1, 2, 5, 10,
or 20 mM; Sigma-Aldrich Corporation) [26] or AR-
A014418 (0, 1, 2, 5, 10, or 20 uM; Sigma-Aldrich Corpo-
ration) [27] for 24 h and harvested. Total RNAs were pre-
pared using a TRIZOL Reagent (Invitrogen) according to
the manufacturer's recommendation. 3~5 pg of total RNA
were reverse-transcribed using RevertAid™ M-MuLV
reverse transcriptase (MBI Fermentas, USA), 0.2 g ran-
dom primer (Invitrogen, USA), 1 mM dNTPs, and the sup-
plied buffer. Each group of the first strand cDNAs was
amplified using Power SYBR Green PCR master mix (Abi-
oscience, UK) with the primer pairs RT-F and RT-R for the
HCCR-1 gene or Act-F and Act-R for B-actin (Additional
file 1: Table S1). The real-time PCR cycling parameters
were as follows: initial denaturation at 95°C for 10 min;
40 cycles of 15 sec at 95°C for denaturation, 1 min at
60°C for primer annealing and extension. An error bar is
used to show the S.D. derived from three independent
experiments.
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