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Abstract
Background: The human adenovirus type 5 early region 1A (E1A) gene encodes proteins that are
potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target
promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems,
E1A has been shown to contain two regions that can independently induce transcription when
fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each
of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used
as a model system to study mechanisms by which E1A stimulates transcription.

Results: Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the
ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/
SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition,
we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation.

Conclusion: Our analysis indicates that the two activation domains of E1A function via distinct
mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can
serve as a valid model system for at least some aspects of E1A function.

Background
Human adenovirus type 5 (HAdV-5) early region 1A
(E1A) is the first viral gene expressed during infection and
plays a critical role in transcriptional activation [1,2]. The
primary E1A transcript is differentially spliced, yielding
mRNAs encoding two major products of 289 residues (R)
and 243R respectively (Figure 1A). These proteins share
identical amino and carboxyl sequences and only differ by
the presence of an additional 46 amino acids in the 289R
protein [2,3]. The region unique to the 289R E1A protein
is highly conserved amongst the E1A proteins of different
adenovirus serotypes, and is referred to as conserved
region 3 (CR3) [4-6]. The 289R E1A protein is thought to

be primarily responsible for activation of gene expression,
as mutations within CR3 generally abolish E1A transacti-
vation [7-11]. An adjacent acidic region spanning residues
189–200, termed Auxiliary Region 1 (AR1), is also essen-
tial for efficient transactivation of early viral promoters by
E1A [12].

The mechanism by which CR3 of E1A activates transcrip-
tion has been studied intensely. CR3 binds numerous
sequence specific transcription factors [13-17] via a pro-
moter targeting region embedded within CR3 [15]. These
interactions are thought to localize E1A to target promot-
ers in the infected cell. When tethered to DNA by fusion
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to a heterologous DNA binding domain (DBD), the need
for the promoter targeting region is bypassed and CR3
functions as a powerful transcriptional activator [18].

Mutations within the promoter targeting region exhibit a
dominant negative effect on transcriptional activation by
wild-type E1A [19,20], suggesting that these mutants
sequester limiting factors necessary for transactivation by
wild-type E1A. The first of these limiting factors to be
identified was TBP [21]. The Sur2/TRAP150β/Med23
component of the Mediator/TRAP complex was identified

to be the second critical target of CR3 [22,23]. Distinct
roles for different proteasome complexes and p300/CBP
in CR3 dependent transcription have also been shown
[24,25].

When fused to a heterologous DBD, a second transactiva-
tion domain was identified within the N-terminal/CR1
portion of E1A [26]. This region of E1A binds multiple
transcriptional regulators, including the p300, CBP (CREB
Binding Protein) and pCAF acetyltransferases, TBP,
TRRAP and p400 [27]. Paradoxically, this region functions

Map of the major adenovirus type 5 E1A proteins and transcriptional activation by LexA-E1A fusionsFigure 1
Map of the major adenovirus type 5 E1A proteins and transcriptional activation by LexA-E1A fusions. A) The 
two major products of E1A are 289 and 243 residues (R) in length and differ only by the presence of an additional 46 amino 
acids unique to the larger protein. Regions of sequence conservation relevant to this study (CR) are shown as are the regions 
expressed as LexA DBD fusions. B) Yeast strain BY4741 was transformed with the pSH1834 LexA responsive reporter plas-
mid and vectors expressing the LexA DBD, or the LexA DBD fused to the indicated portions of E1A. Extracts were prepared 
from transformed yeast and assayed for β-galactosidase activity as described previously [29]. Experiments were performed in 
triplicate with s.d's indicated.
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as a transcriptional repression domain in the context of
the E1A 243R protein by sequestering limiting factors,
such as p300 and CBP, from cellular transcription factors
[2]. Indeed, recent work has shown that expression of E1A
12S induces global changes in histone H3 K18 acetyla-
tion, consistent with the sequestration/retargeting of
p300/CBP by E1A [28].

E1A is the product of a virus that infects human cells.
However, both domains of E1A that function in mamma-
lian cells as transcriptional activators when fused to a het-
erologous DBD also function as transcriptional activators
in yeast [29]. Indeed, yeast have been exploited exten-
sively as a model system to genetically study the mecha-
nisms of E1A action [30-33,29,24].

Using a yeast model system, we have evaluated the role of
histone modifying and chromatin remodelling complexes
on the activity of the two transcriptional activation
domains of HAdV-5 E1A. These results show that the two
activation domains of E1A function via distinct but over-
lapping mechanisms and suggest that yeast can serve as a
valid model system for identifying new targets of E1A
involved in transcriptional regulation.

Results and discussion
LexA DBD fusions of E1A activate transcription in yeast
E1A contains two independent regions that function as
transcriptional activation domains when expressed as
DBD fusions in mammalian cells. We have previously
shown that these same regions function as transcriptional
activation domains in yeast when fused to the Gal4 DBD
[29,24]. To apply yeast genetic approaches to further
understand how E1A influences transcription, we assessed
the role of histone modifying and chromatin remodelling
complexes on the activity of these two transcriptional acti-
vation domains of HAdV-5 E1A. Specifically, we expressed
the N-terminal 82 amino acids of E1A and the region
spanning residues 139–204, which encompasses CR3 and
AR1 of E1A, as fusions to the LexA DBD (Fig. 1A). The E.
coli derived LexA DBD was chosen instead of the yeast
Gal4 DBD to eliminate confounding effects of normal
Gal4 regulation on the transcriptional activity of the E1A
fusions. In addition, the LexA-E1A fusions did not inhibit
yeast growth as substantially as the corresponding Gal4
DBD fusions [29]. Importantly, both portions of E1A
retained transcriptional activation function as LexA DBD
fusions (Fig. 1B).

Role of the SAGA, ADA and SLIK chromatin modifying 
complexes
We transformed plasmids expressing each E1A activation
domain as a LexA DBD fusion as well as a β-galactosidase
reporter gene under the control of a LexA responsive ele-
ment into the wild-type yeast strain BY4741 and isogenic
strains in which components of the SAGA and related

ADA and SLIK complexes were disrupted (Figure 2). SAGA
components can be subdivided into four general classes.
Ada1, Spt7 and Spt20 are required for the structural integ-
rity of the complex and their disruption resulted in a com-
plete abrogation of activation dependent on the E1A N-
terminus. Gcn5, Ada2 and Ada3 are necessary for acetyl-
transferase activity, and their disruption also impaired
activation by the E1A N-terminus. Indeed, the Gcn5
acetyltransferase appeared to be the most important com-
ponent of this module as its loss resulted in a 68%
decrease in activity (Figure 2). Spt3 and Spt8 function in
TBP recruitment by the complex and their disruption
reduced activation by the N-terminus of E1A, although
loss of Spt3 had a more profound effect. Recent work has
shown that Spt3 directly contacts TBP and that this inter-
action is critical for recruiting TBP to SAGA-dependent
promoters and stimulating transcription [34]. Ubp8 and
Sgf11 comprise the histone deubiquitylation module in
SAGA, and did not influence activation by the N-terminus
of E1A. Deletion of Sgf73 and Rtg2 also reduced activation
by the N-terminus of E1A, whereas the Ahc1 component
of the ADA complex was not required. Based on these
results, transcriptional activation by the N-terminus of
E1A is primarily dependent on the components necessary
to maintain the integrity of SAGA/SLIK [35] and the TBP
recruitment function of Spt3 in particular, but is less
dependent on the Gcn5 acetyltransferase and the Ubp8
deubiquitinase activities. Although transcriptional activa-
tion by the N-terminus of E1A in yeast does not require
the ADA complex, it requires SAGA/SLIK, which may in
some cases possess overlapping activities [36]. Similarly
to the N-terminus, activation by E1A CR3 required the
structural integrity of the SAGA complex, the TBP recruit-
ment function of Spt3 and was independent of the ADA
specific component Ahc1 (Figure 2). However, CR3 was
more dependent on the SAGA acetyltransferase compo-
nents (gcn5Δ, ada2Δ and ada3Δ) and the Ubp8 deubiqui-
tinase, and was not influenced by the SLIK specific
component Rtg2 (Figure 2). Western blot analysis con-
firmed that E1A was still expressed in these strains (Addi-
tional file 1).

Our previous work showed that the N-terminal and CR3
regions of E1A fused to the Gal4 DBD inhibits yeast
growth in a SAGA dependent fashion. In that study, dis-
ruption of any SAGA component, including Gcn5 and
Ada3/Ngg1 abrogated growth inhibition by either the N-
terminus or CR3 [29]. Another study also showed that
growth inhibition by the N-terminus of E1A required
numerous other SAGA components [37]. Based on these
observations, growth inhibition is clearly related to inter-
action with the SAGA complex, but is not a direct result of
E1A dependent transcriptional activation. In mammalian
cells, the N-terminus of E1A binds pCAF[38] and mam-
malian GCN5 [39], the two human orthologues of yeast
Gcn5. These interactions are important, as it is known that
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E1A is transiently recruited to a subset of cellular promot-
ers that are associated with cell cycle control and growth
during infection. E1A induces a localized enrichment of
histone acetyltransferases, including pCAF, at these loci
and activates transcription [40].

Influence of the Mediator complex on E1A dependent 
transcriptional activation in yeast
In yeast, like higher eukaryotic cells, the Mediator com-
plex interacts with RNA polymerase II and functions as
both a coactivator and corepressor [41]. It is well estab-
lished that E1A CR3 targets the Sur2/TRAP150β/Med23
component of the Mediator/TRAP complex in mamma-
lian cells, which is necessary for efficient transcriptional

activation [22,23]. Yeast Mediator is comprised of the
Gal11, Med9/10 and Srb4 modules, and Gal11 is the
Sur2/TRAP150β/Med23 orthologue [42]. We examined
E1A dependent activation in strains lacking the non-
essential components of the mediator complex (Figure 3).
Interestingly, activation by the N-terminus of E1A
decreased in all Mediator knockout strains, regardless of
which module was targeted (Figure 3). This suggests that
the N-terminus requires multiple Mediator modules,
either directly or indirectly to stimulate transcription. In
contrast, activation by CR3 was reduced only by deletion
of the Srb5 or Rox3 components of the Srb4 module.
Deletion of Gal11, the yeast orthologue of Sur2/
TRAP150β/Med23, or the Pdg1 and Sin4 components of

Influence of the SAGA, ADA and SLIK complexes on E1A dependent transcriptional activationFigure 2
Influence of the SAGA, ADA and SLIK complexes on E1A dependent transcriptional activation. The indicated 
yeast deletion strains isogenic to BY4741 (refer to Additional file 2) were transformed with the pSH1834 LexA responsive 
reporter plasmid and vectors expressing the LexA DBD, or the LexA DBD fused to the indicated portions of E1A. Extracts 
were prepared from transformed yeast and assayed for β-galactosidase activity as described previously [29] and detailed in the 
Methods. Experiments were performed in triplicate with s.d's indicated. The asterisks indicate which complexes are expected 
to be influenced by the individual gene disruptions, as several of these genes encode factors that are components of more than 
one complex. For example, Spt3 is a component of the SAGA and SLIK complexes, but not the ADA complex.
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the Gal11 module had no effect on CR3 dependent acti-
vation. These results indicate that CR3 dependent activa-
tion in yeast is not as strongly dependent on Mediator as
it is in mammalian cells.

Role of the SWI/SNF chromatin remodelling complex in 
E1A dependent transcriptional activation in yeast
The SWI/SNF complex alters chromatin structure in an
ATP-dependent manner [43]. Activation by the E1A N-ter-
minal domain fused to the LexA DBD was reduced in
most yeast strains lacking components of SWI/SNF with
the exception of the swi3Δ, snf11Δ and swp73Δ strains (Fig-
ure 4). Similarly, activation by CR3 was also decreased in
yeast lacking multiple components of the SWI/SNF com-
plex, including the swi3Δ strain (Figure 4). However,
impairment of CR3 activation was more profound in
these strains. These results suggest that the SWI/SNF
dependent chromatin remodelling complex is targeted by
both activation domains of E1A, but is more critical for
CR3 dependent transcriptional activation. Others have
reported that targeted histone acetylation by the SAGA
complex predisposes promoter nucleosomes for displace-
ment by the SWI/SNF complex, in a Snf2 dependent fash-
ion [44]. In agreement with this, CR3 dependent
activation is more dependent on the Gcn5 acetyltrans-
ferase function of SAGA and the Snf2 ATPase of the SWI/
SNF complex than is activation by the N-terminus of E1A
(Figures 2 and 4). A genetic screen in yeast previously

identified the SWI/SNF complex as a target of the N-termi-
nus of E1A [30]. That study demonstrated that the N-ter-
minus of E1A blocked SWI/SNF function and inhibited
yeast growth. In mammalian cells, the N-terminus of E1A
interacts with p400, a SWI2 family member [45].
Although this interaction is required for oncogenic trans-
formation by low levels of E1A [45] and suppression of
EGFR expression [46], the exact effects of this interaction
on transcriptional activation by E1A are not clear. A role
for SWI/SNF in transcriptional activation by CR3 in mam-
malian cells has not been shown. Our results in yeast sug-
gest that this could be a promising area of future
investigation.

Influence of Bre1, Rad6, COMPASS/Set1C complex and 
Dot1 complex on E1A dependent transcriptional 
activation in yeast
Human Bre1, a histone H2B-specific ubiquitin ligase, func-
tions as a coactivator by increasing human H2B K120 ubiq-
uitylation and histone H3 K4 and K79 trimethylation
[47,48]. CR3 activity was reduced in a bre1Δ strain to less
than 8% activity (Figure 5A). Furthermore, disruption of
RAD6, the corresponding ubiquitin conjugase, or conver-
sion of the yeast H2B target lysine to arginine (K123R) also
abrogated CR3 dependent activation to levels of less than
10%. Loss of Bur2, which is required for histone H2B
monoubiquitination and functions as a component of the
kinase complex that phosphorylates Rad6 [49], reduced
CR3 dependent activation to a lesser extent. CR3 expression
was not reduced in these strains (Additional file 1). How-

Influence of Mediator on E1A dependent transcriptional acti-vation in yeastFigure 3
Influence of Mediator on E1A dependent transcrip-
tional activation in yeast. Experiments were performed 
as in Figure 2. The asterisks indicate which modules are 
expected to be influenced by the individual gene disruptions.
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Influence of the SWI/SNF complex on E1A depend-
ent transcriptional activation in yeast. Experiments 
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ever, deletion of the genes encoding the Ubc5 or Ubc8
ubiquitin conjugases, the Rad6 interacting ubiquitin ligase
Ubr2, or the Rad6 interactor Rad18, which are not involved
in histone ubiquitylation, reduced CR3 dependent activity
to levels similar to that observed in the bur2Δ strain (Figure
5A). These results suggest a key role for Bre1 and Rad6
mediated ubiquitylation of H2B in CR3 dependent activa-
tion in yeast. Interestingly, deletion of the Ubp8 SAGA
component, which removes the ubiquitin group from H2B
K123, is also impaired for CR3 dependent activation (Fig-
ure 2). A reduction in SAGA dependent transcription has
been observed previously in ubp8Δ yeast [50].

Similarly to CR3, transcriptional activation by the N-ter-
minus of E1A was reduced in most of these strains (Figure
5A). However, the level of impairment was not as pro-
nounced as observed with CR3. Unexpectedly, the reduc-
tions observed in the bre1Δ and rad6Δ strains were not
reflected in a similar reduction in the H2B K123R strain,
suggesting that the Bre1/Rad6 ubiquitinylation complex
may have additional targets beyond H2B K123. A possi-
bility that is supported by our observation that the Ubp8
deubiquitinase, which removes the ubiquitin moiety
from H2B K123, is similarly not required for activation by
the N-terminus (Figure 2).

Ubiquitylation of histone H2B K123 is required for tri-
methylation of histone H3 K4 and K79, modifications
often associated with active transcription [51]. We next
tested the role of H3 K4 methylation in E1A activity using
strains lacking components of the COMPASS/Set1C com-
plex. Deletion of Bre2, Sdc1 or Spp1, which are preferen-
tially required to direct H3 K4 trimethylation [52], impair
CR3 function (Figure 5B). Deletion of the Swd1, Swd3
and Shg1 components of the complex also reduced CR3
dependent activation (Figure 5B). CR3 expression was not
reduced in these strains (Additional file 1). H3 K79 meth-
ylation in yeast is mediated by Dot1, and activation by
CR3 was reduced in the dot1Δ strain by about 50% (Figure
5B). These results suggest that recruitment of a Bre1 ortho-
logue and accompanying H3 K4 trimethylation may be an
important component of CR3 dependent activation by
E1A in mammalian cells, which deserves future study.
Activation by the N-terminus of E1A was reduced to a
lesser extent in these strains compared to CR3 and was not
substantially affected by the deletion of Sdc1 and Dot1
(Figure 5B). These results substantiate the data presented
in Figure 5A, suggesting that H2B ubiquitinylation and
subsequent H3 K4 methylation are not as critical for acti-
vation by the N-terminus of E1A as they are for CR3.

Influence of the ISW1 complexes and Spt4 on E1A 
dependent transcriptional activation in yeast
H3 K4 trimethylation by Set1 has been reported to stimu-
late recruitment of Isw1 and its associated complexes to
chromatin [53]. However, the ISW1 complexes don't play

general roles in transcriptional regulation as knockout of
the Isw1 ATPase component of the complex does not
effect yeast growth. This complex appears to repress a sub-
set of yeast genes as about 140 genes are activated by more
than 1.5-fold in an isw1Δ strain [54]. Deletion of compo-
nents of the ISW1 complex reduced activation by the N-
terminus of E1A modestly or not at all in the case of Ioc4
(Figure 6). However, loss of any component of the com-
plex stimulated CR3 dependent activation. Given that
CR3 dependent transcriptional activation depends on
COMPASS/Set1C induced H3 K4 trimethylation (Figure
5B), it would be predicted that this modification would
lead to enhanced recruitment of the repressive ISW1 chro-
matin remodelling complexes. Thus, in the absence of
ISW1 components, CR3 could function more effectively,
which is what was observed.

The conversion of RNA polymerase into an elongating
form is influenced by DRB Sensitivity Inducing Factor
(DSIF) [55,56]. DSIF in yeast is comprised of Spt5, which
is an essential protein, and Spt4 which is not. Interest-
ingly, transcriptional activation by either portion of E1A
was abrogated in the spt4Δ strain (Figure 6), suggesting
that both activation domains of E1A also influence tran-
scriptional elongation in yeast and that this may be a good
system to further study this activity.

Influence of the INO80, NuA3, NuA4, PAF, RSC, SAS, CSC 
and SWR1 complexes on E1A dependent transcriptional 
activation in yeast
We tested yeast strains lacking components of the INO80,
RSC, SWR1 ATP dependent chromatin remodelling com-
plexes, the NuA3, NuA4 and SAS acetylation complexes,
the CSC silencing complex, the PAF lysine methyltrans-
ferase complex and several arginine methyltransferases for
their effects on E1A dependent activation (Additional file
2). In general, relatively modest changes were observed,
with a few exceptions where a single unique component
of a complex affected E1A dependent transcription. No
direct explanation could be found for these results,
although we noted that many of these genes had synthetic
genetic phenotypes with other transcriptional regulators
essential for E1A dependent transactivation. Future devel-
opments in understanding the unique effects of these pro-
teins may lead to additional understanding of E1A
dependent transcription.

The possibility remains that disruption of certain genes
could alter the copy number of the pSH1834 reporter con-
struct used in these studies. To test this, a cassette consist-
ing of the LexA responsive Lacz reporter was integrated
into the GAL1 locus by homologous recombination in
five randomly selected deletion strains. Results obtained
using the integrated reporter or pSH1834 were compara-
ble (Additional file 3), suggesting that any changes in
reporter plasmid copy number caused by these individual
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gene disruptions did not substantially influence the
results obtained in these strains. However, it remains a
possibility that changes in copy number might contribute
to small differences in activation in other strains.

Conclusion
In conclusion, our analysis of the influence of chromatin
remodelling and histone modifying complexes on E1A
dependent activation of transcription in S. cerevisiae pro-
vides new evidence that there are many similarities, and
some differences between transcriptional control by E1A
in yeast and mammalian cells. Thus, functional analysis
of E1A in yeast using genetic approaches has the potential
to uncover novel mechanistic aspects of E1A function.
Furthermore, genome wide analysis of E1A activity in
yeast has the potential to identify novel pathways that also
influence E1A function in mammalian cells.

Methods
Yeast strains, media, and plasmid construction
The yeast strains used along with their sources are listed in
Additional file 4. Yeast culture media were prepared using

standard techniques [57]. The reporter plasmid pSH1834
(8LexA operators-LacZ) was obtained from Invitrogen
Corporation. A derivative of this plasmid that can be inte-
grated into the GAL1 locus was constructed by PCR of the
reporter cassette, which was subcloned into the pRS306
vector using KpnI and XbaI. The sequences of the oligos
used for PCR were GCATCTAGAGGCAGCTG
TCTATATGAATTACTCGAGACTAAATCTCATTCAGAA-
GAAGATCCCCAGCTTGGAAT and GTCGGTACCTTAT-
TATTATTTTTGACACCAGACCAACTGG. This vector was
linearized using the unique XhoI site before transforming
into yeast. The N-terminus of HAdV-5 E1A (residues 1–
82) and CR3 (residues 139–204) [29] were subcloned
into the LexA DBD expression plasmid pBAIT [31] using
EcoRI and SalI.

E1A-mediated transcriptional activation assay: LacZ 
Activity
Yeast transformations were performed using a modified lith-
ium acetate procedure [58] and plated on synthetic complete
(SC) media lacking appropriate nutrients. Wild-type or
mutant yeast strains were transformed with the reporter and
vector or E1A expression plasmid. β-galactosidase assays were
performed as previously described [29]. Briefly, colonies of
transformed yeast were picked off plates with sterile wooden
sticks and used to inoculate 5 ml of SC liquid media lacking
appropriate nutrients. The yeast were grown to a density of
A600 = 0.8 to 1.2. 1 ml of cultures was transferred to microcen-
trifuge tubes, pelleted by brief centrifugation and resuspended

Influence of the ISW1 complex and Spt4 on E1A dependent transcriptional activation in yeastFigure 6
Influence of the ISW1 complex and Spt4 on E1A 
dependent transcriptional activation in yeast. Experi-
ments were performed as in Figure 2.
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in 1 ml of LacZ buffer (60 mM Na2HPO4.7H20, 40 mM
NaH2PO4.H20, 10 mM KCl, 1 mM MgSO4) containing 2.7 μl/
ml of β-mercaptoethanol. Cells were lysed by addition of 20
μl of chloroform and 40 ul of 0.1% SDS and 1 minute of vor-
texing. The cell lysates were then incubated at 30°C for 15
minutes. Two hundred μl of 4 μg/ml ONPG (o-Nitrophenyl
β-o-Galactopyranoside) was added to each reaction. Reactions
were incubated at 30°C until the tube turned light yellow, at
which point it was stopped by the addition of 500 μl of 1 M
Na2CO3. The tubes were cleared by centrifuging at 21,000 g for
10 minutes. The absorbance at 420 nm was measured for each
reaction. Transcriptional activity was measured in LacZ units
using the formula: Activity = A420/(A600 × Volume × Time).
All assays were done in triplicate. Raw data is presented in
Additional file 5. Fold activation of each portion of E1A was
determined on a strain by strain basis with respect to the con-
trol LexA vector. Changes in activation with respect to parental
BY4741 strain yeast were calculated by dividing the mutant
strain fold activation by the fold activation from BY4741
obtained within the same experiment. This was done to min-
imize experimental variability and tests of N-terminus and
CR3 dependent activation were performed simultaneously to
allow direct comparison.

Yeast cell extracts and western blot analysis
Yeast colonies transformed with E1A expression vectors
were picked from the SC selection plates and used to inoc-
ulate 5 ml of selective SC liquid media. Cultures were
grown at 30°C until they reached an OD600 of 1.0. Cells
were collected by centrifugation at 4°C (5 minutes at 1500
g). They were washed in 1 ml of ice-cold extraction buffer
(10 mM Tris-HCl pH 7.5, 1× complete protease inhibitor
cocktail (Roche Diagnostics). The cells were then re-sus-
pended in 200 μl of cold extraction buffer and transferred
to a 1.5 ml microtube containing 400 μl of 425–600
micron acid-washed glass beads (Sigma Aldrich). The cells
were vortexed at high speed for 30 seconds and then put on
ice for 30 seconds for 12 cycles. Four hundred μl of cold
extraction buffer was added to the lysate which was vor-
texed for another 10 seconds. The tubes were then centri-
fuged at 21,000 g for 10 minutes at 4°C. Two hundred μl
of the supernatant was transferred to clean chilled 1.5 ml
microtubes. Protein concentrations of the lysates were
measured using the DC Assay Kit (Bio-Rad Laboratories).
Twenty μg of total protein from each sample was resolved
on Novex pre-cast 5–20% gradient Tris-Glycine PAGE gel
(Invitrogen). The E1A fusions were detected using rabbit
polyclonal anti-LexA antibody (Millipore).
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