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Abstract
Background: Scavenger receptor type B class I (SR-BI), ABC transporter A1 (ABCA1) -and G1
(ABCG1) all play important roles in the reverse cholesterol transport. Reverse cholesterol
transport is a mechanism whereby the body can eliminate excess cholesterol. Here, the regulation
of SR-BI, ABCA1, and ABCG1 by dexamethasone (a synthetic glucocorticoid) and insulin were
studied in order to gain more insight into the role of these two hormones in the cholesterol
metabolism.

Results: By use of real time RT-PCR and Western blotting we examined the expression of our
target genes. The results show that SR-BI, ABCA1 and ABCG1 mRNA expression increased in
response to dexamethasone while insulin treatment reduced the expression in primary rat
hepatocytes. The stimulatory effect of dexamethasone was reduced by the addition of the anti-
glucocorticoid mifepristone. In HepG2 cells and THP-1 macrophages, however, the effect of
dexamethasone was absent or inhibitory with no significant change in the presence of mifepristone.
The latter observation may be a result of the low protein expression of glucocorticoid receptor
(GR) in these cell lines.

Conclusion: Our results illustrates that insulin and glucocorticoids, two hormones crucial in the
carbohydrate metabolism, also play an important role in the regulation of genes central in reverse
cholesterol transport. We found a marked difference in mRNA expression between the primary
cells and the two established cell lines when studying the effect of dexamethasone which may result
from the varying expression levels of GR.

Background
The process in which cholesterol is transported from
peripheral cells, including those in the arterial wall, to the
liver for excretion is termed reverse cholesterol transport.
A key player in reverse cholesterol transport is the high
density lipoprotein (HDL). The process can be divided

into three stages: 1) the efflux of cellular cholesterol to
HDL from peripheral cells, 2) the transport of HDL-cho-
lesterol in blood to the liver, and 3) the delivery of choles-
terol esters to hepatocytes from HDL [1]. The delivery of
HDL cholesterol esters to the liver is mediated by Scaven-
ger receptor class B type I (SR-BI). SR-BI also mediates
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selective uptake of HDL-cholesterol esters into adrenals,
testis and ovaries [2,3] and cholesterol efflux to nascent
HDL particles from macrophages and other peripheral
cells [4,5]. SR-BI therefore plays an important role in both
early and late stages in the reverse cholesterol transport
pathway.

ATP-binding cassette (ABC) transporter A1 (ABCA1),
abundantly expressed in the liver and peripheral macro-
phages among other tissues, mediates the transfer of cel-
lular cholesterol and phospholipids to lipid-poor
apolipoprotein A-I (apoA-I) to form nascent HDL parti-
cles [6-12]. ABCG1, another member of the ABC trans-
porter family, has been suggested to be involved in
cholesterol efflux to mature HDL and not to lipid-poor
apoA-I [13,14].

Glucocorticoids are among the most widely used agents
for the treatment of inflammatory and autoimmune dis-
eases. Glucocorticoids exert their diverse effects through
the glucocorticoid receptor, GR. GR belongs to the nuclear
receptor superfamily and functions as a ligand-inducible
transcription factor [15]. In the nucleus, activated GR can
interact with the regulatory regions of responsive genes to
alter the level of gene expression [16].

The aim of the present investigation was to study the role
of the synthetic glucocorticoid dexamethasone in the reg-
ulation of ABCA1, ABCG1, and SR-BI. Here we show that
dexamethasone-treatment increased the mRNA expres-
sion of ABCA1, ABCG1, and SR-BI in primary rat hepato-
cytes while an opposite tendency or no response was
observed in HepG2 cells and THP-1 macrophages. We
suggest that the observed inhibitory effect of dexametha-
sone is an unspecific/indirect effect since these cells
express undetectable levels of GR protein. Moreover, the
GR antagonist mifepristone had no significant antagonis-
tic effect in these cell lines. The inhibitory effect of insulin
on the mRNA expression was similar in primary rat hepa-
tocytes, HepG2 cells and THP-1 macrophages.

Results
Dexamethasone and insulin exert opposite effects on the
mRNA expression of SR-BI, ABCA1, and ABCG1 in pri-
mary rat hepatocytes

The expression of SR-BI, ABCA1, and ABCG1 were ana-
lyzed in primary rat hepatocytes by real time RT-PCR and
Western blotting. As illustrated in figure 1A dexametha-
sone increased the abundance of SR-BI, ABCA1, and
ABCG1 mRNA. Cells receiving insulin-treatment alone
inhibited while treatment with both dexamethasone and
insulin showed no significant effect on the mRNA expres-
sion levels of SR-BI, ABCA1 or ABCG1 compared to non-
treated control cells indicating that insulin is capable of

reversing the stimulatory effect of dexamethasone. In
order to further evaluate the involvement of GR in the
stimulatory actions of dexamethasone, mifepristone
(RU38486), a progesterone and glucocorticoid receptor
antagonist [17] was tested. The anti-glucocorticoid was
shown to reduce the stimulatory effect of dexamethasone
for all three target mRNAs (Fig. 1A). These treatments did
not, however, notably alter the protein levels of SR-BI,
ABCA1, and ABCG1 (Fig. 1B). Two well-documented
HDL metabolism target genes for dexamethasone,
CYP7A1 [18-21] and apoA-I [22-27], were also tested
under the same conditions. As shown in figure 1C, the
increased mRNA expression coincides well with previous
reports demonstrating a stimulatory effect of dexametha-
sone on both CYP7A1 [18-21] and apoA-I [22-27] expres-
sion in rat liver. The addition of insulin to these cells
reduced the mRNA levels and abolished the stimulatory
effect of dexamethasone on both CYP7A1 and apoA-I
expression. Again, the GR antagonist mifepristone
reduced the stimulatory effect of the GR agonist dexame-
thasone. Thus the results presented in figure 1 show that
dexamethasone and insulin have opposite effects on the
mRNA expression of SR-BI, ABCA1, ABCG1, CYP7A1, and
apoA-I in primary rat hepatocytes and that the stimulatory
effect most likely is via binding and activation of GR.

In HepG2 cells and THP-1 macrophages dexamethasone
and insulin have similar effects on the mRNA levels of SR-
BI, ABCA1, and ABCG1

Further observations in non-primary cells, such as the
human hepatoma cell line HepG2 and the human macro-
phage-stimulated THP-1 cell line were carried out in order
to test the effects of the two hormones in human-related
cell systems. Surprisingly dexamethasone inhibited the
mRNA expression of ABCA1 and ABCG1 in both HepG2
cells (Fig. 2A) and THP-1 macrophages (Fig. 3A). The SR-
BI mRNA levels were reduced in HepG2 cells (Fig. 2A)
while no effect could be observed in THP-1 macrophages
(Fig. 3A). Again, no obvious change in protein levels
could be observed for ABCA1, ABCG1 or SR-BI after these
treatments for either HepG2 cells (Fig. 2B) or THP-1 mac-
rophages (we did not observe any protein band for
ABCA1) (Fig. 3B). The addition of mifepristone did not
antagonize the dexamethasone effect for any of our target
genes (Fig. 2A) or reference genes (Fig. 2C). Further exper-
iments revealed, to our surprise, that the two cell lines
indeed lack GR protein, at least compared to the expres-
sion level observed in primary rat hepatocytes (Fig. 4).
The negative effects on mRNA expression observed with
dexamethasone treatment in these cells (except for SR-BI
mRNA in THP-1 macrophages) are therefore most likely
unspecific or indirect. Thus, these findings link the stimu-
latory effect of dexamethasone to the endogenous expres-
sion levels of GR in primary rat hepatocytes. As observed
Page 2 of 8
(page number not for citation purposes)



BMC Molecular Biology 2007, 8:5 http://www.biomedcentral.com/1471-2199/8/5
in primary rat hepatocytes (Fig. 1), the effect of insulin
was inhibitory on all the target mRNAs indicating that the
insulin effect is intact in the established cell lines com-
pared to the primary cells.

Discussion
In this report, we have examined the regulation of a set of
genes important in reverse cholesterol transport. Cells

were treated with dexamethasone or insulin and mRNA
and protein levels were quantified by use of real time RT-
PCR and Western blotting, respectively. The data obtained
show that dexamethasone treatment increased the mRNA
expression of ABCA1, ABCG1, and SR-BI in primary rat
hepatocytes while an opposite tendency was observed in
HepG2 cells and THP-1 macrophages. It appears that the
stimulatory effect of dexamethasone is specific/direct on

Effects of dexamethasone, insulin or mifepristone in primary rat hepatocytesFigure 1
Effects of dexamethasone, insulin or mifepristone in primary rat hepatocytes. Primary rat hepatocytes were incu-
bated with the indicated concentrations of dexamethasone (Dex), insulin (Ins), or mifepristone (Mif) in lipid-deficient medium 
for 24 hours and examined by real time RT-PCR and Western blotting. A. The relative mRNA expression of SR-BI (black 
bars), ABCA1 (white bars) and ABCG1 (gray bars). B. Representative Western blots of ABCA1, ABCG1, SR-BI and β-actin. 
Proteins (50 μg) were separated on a 7.5% polyacrylamide gel as described in materials and methods. C. The relative mRNA 
expression of CYP7A1 (black bars) and apoA-I (white bars). The results were normalized to GAPDH mRNA expression and 
expressed relative to the non-treated controls (medium B only) (± STDEV). The experiments were performed at least three 
times. * (p < 0.05) indicate significantly difference from control.
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the three target genes since it coincided well with the
endogenous expression level of GR protein. This conclu-
sion is further supported by the observation that the stim-
ulatory effect of dexamethasone is reversed by the
addition of the anti-glucocorticoid mifepristone. The neg-
ative effect of dexamethasone in THP-1 macrophages is in
agreement with a previous study [28] indicating that dex-
amethasone alone reduced while co-transfection with GR

alone increased the ABCA1 promoter activity in
RAW264.7 and THP-1 macrophages.

By the use of classical Western blotting we were unable to
detect any clear change in the protein expression of our
target genes. As compared to real time RT-PCR, which can
detect small changes in the levels of mRNAs, Western blot-
ting is typically used for qualitative purposes and may

Effects of dexamethasone, insulin, or mifepristone in HepG2 cellsFigure 2
Effects of dexamethasone, insulin, or mifepristone in HepG2 cells. HepG2 cells were incubated with the indicated 
concentrations of dexamethasone (Dex), insulin (Ins), or mifepristone (Mif) in lipid-deficient medium for 24 hours and exam-
ined by real time RT-PCR and Western blotting. A. The relative mRNA expression of SR-BI (black bars), ABCA1 (white bars) 
and ABCG1 (gray bars). B. Representative Western blots of ABCA1, ABCG1, SR-BI and β-actin. Proteins (50 μg) were sepa-
rated on a 7.5% polyacrylamide gel as described in materials and methods. C. The relative mRNA expression of CYP7A1 (black 
bars) and apoA-I (white bars). The results were normalized to GAPDH mRNA expression and expressed relative to the non-
treated controls (medium B only) (± STDEV). The experiments were performed at least three times. * (p < 0.05) indicate sig-
nificantly difference from control.
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therefore not display comparable changes in protein
expression. The lack of effect of hormone treatments were
nevertheless unexpected as earlier studies have shown that
the protein levels of SR-BI respond within 24 hours to
PPAR [29], FXR [30], and PXR [31] agonists. The dexame-
thasone treatment used in the present study should cer-
tainly be long enough to induce changes in protein levels.

A plausible explanation for the lack of effect may be that
it takes time before a detectable amount of protein is accu-
mulated following dexamethasone treatment. This
remains to be seen in future studies.

It is well recognized that glucocorticoids such as dexame-
thasone exerts catabolic actions while insulin exerts ana-

Effects of dexamethasone, insulin, or mifepristone in THP-1 macrophagesFigure 3
Effects of dexamethasone, insulin, or mifepristone in THP-1 macrophages. Macrophage-differentiated THP-1 cells 
were incubated with the indicated concentrations of dexamethasone (Dex), insulin (Ins), or mifepristone (Mif) in lipid-deficient 
medium for 24 hours and examined by real time RT-PCR and Western blotting. A. The relative mRNA expression of SR-BI 
(black bars), ABCA1 (white bars) and ABCG1 (gray bars). The results were normalized to GAPDH mRNA expression and 
expressed relative to the non-treated controls (medium B only) (± STDEV). B. Representative Western blots of ABCG1, SR-
BI and β-actin. Proteins (50 μg) were separated on a 7.5% polyacrylamide gel as described in materials and methods. The 
experiments were performed at least three times. * (p < 0.05) indicate significantly difference from control.
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bolic actions in carbohydrate metabolism. The present
data show that dexamethasone and insulin may have
opposite effects on cholesterol metabolism as well. One
of the most important ways for the body to get rid of
excess cholesterol is via the reverse cholesterol pathway
and this pathway is tightly regulated by hormones and
nutrients. Since SR-BI is the major route by which HDL-
cholesterol esters can enter into the hepatocytes, and
HDL-cholesterol is the preferred substrate for bile acid
synthesis [32], the need for cooperative regulation of SR-
BI and CYP7A1 is crucial in order to prevent accumulation
of toxic high levels of bile acids. Our results suggest that
dexamethasone increases reverse cholesterol transport by
increasing genes central in these processes while insulin
most likely has the opposite role by reducing the expres-
sion of the same set of genes. Moreover, our results are in
agreement with a number of reports demonstrating that
dexamethasone increases [18-21] while insulin decreases
[19,20,33,34] the expression of CYP7A1, the rate-limiting
enzyme in the conversion of cholesterol to bile acids, in

rat liver cells. Also apoA-I expression increases in response
to dexamethasone in primary rat hepatocytes as reported
in numerous studies [22-27]. Our results show that insu-
lin inhibits the mRNA expression of apoA-I in primary rat
hepatocytes. This is in contrast to observations made in
previous reports [22,23]. One study, however, shows that
insulin at physiological concentrations and an incubation
time of 12 hours inhibits the secretion of apoA-I from rat
hepatocytes [24]. ApoA-I regulation by insulin may be
affected by dose and time since Masumoto et al [24] and
our results show that 10 nM insulin had an inhibitory
effect after 12 and 24 hours, respectively. It appears that
increased incubation time (44 or 96 hours) with both
physiological and supraphysiological doses [22,23]
switches the effect to be positive suggesting that insulin
may have both fast and long term effects on target genes.

In summary, the present results suggest that dexametha-
sone and insulin have opposite roles in the regulation of
genes participating in the reverse cholesterol pathway. It
has been demonstrated that dexamethasone increases the
internalization of HDL particles in rat hepatocytes [35]
which may result from the increased hepatic expression of
SR-BI observed here. Furthermore, the conversion of the
accumulated cholesterol to bile acids is stimulated by the
increased expression and activity of CYP7A1 [18-21]. This
alone would be expected to result in reduced plasma HDL
levels, but since the synthesis of apoA-I [22-27] and the
mRNA expression of ABCA1 and ABCG1 is increased at
the same time, it is not unreasonable to assume that the
levels of plasma HDL actually increases. Thus dexametha-
sone-treatment, at least in short-time studies (24 h), may
increase reverse cholesterol transport to get rid of the
excess cholesterol and thus result in a healthier lipid pro-
file with increased levels of plasma HDL.

Conclusion
Our work demonstrates that the synthetic glucocorticoid
dexamethasone increases the mRNA levels while insulin
reduces the mRNA expression of SR-BI, ABCA1, and
ABCG1 in primary rat hepatocytes. In the two human cell
lines HepG2 and THP-1, however, the effect of dexameth-

Table 1: Primers for quantitative real time RT-PCR analysis

Gene GeneBank accession Forward primer (5'-3') Reverse primer (5'-3') Size (bp)

ABCA1* AACAGTTTGTGGCCCTTTTG AGTTCCAGGCTGGGGTACTT 157
hABCG1 NM_207630 GGTTCTTCGTCAGCTTCGAC GTTTCCTGGCATTCAGGTGT 317
rABCG1 NM_053502 GAAGGTTGCCACAGCTTCTC CATGGTCTTGGCCAGGTAGT 339
hapoA-I NM_000039 TGGATGTGCTCAAAGACAGC AGGCCCTCTGTCTCCTTTTC 190
rapoA-I NM_012738 CCTGGATGAATTCCAGGAGA TCGCTGTAGAGCCCAAACTT 192

hCYP7A1 NM_000780 CCTCACCACACAGTCCCTTT CCACACCTGGCTGTAATGTG 299
rCYP7A1 NM_012942 CGCTATTCTCTGGGCATCTC GTACCGGCAGGTCATTCAGT 197
hGADPH AF261085 GGCCTCCAAGGAGTAAGACC AGGGGTCTACATGGCAACTG 147
mGADPH BC023196 ACCCAGAAGACTGTGGATGG CACATTGGGGGTAGGAACAC 171

hSR-BI BC022087 CTGTGGGTGAGATCATGTGG GCCAGAAGTCAACCTTGCTC 216
rSR-BI NM_031541 CAAGAAGCCAAGCTGTAGGG CCCAACAGGCTCTACTCAGC 230

* Primer sequences based on an alignment of human (h) (AF285167) and rat (r) (NM_178095) ABCA1.

GR protein expressionFigure 4
GR protein expression. Immunoreactive protein levels of 
GR and β-actin in primary rat hepatocytes, THP-1 macro-
phages and HepG2 cells were visualized by use of Western 
blotting. Proteins (25 μg) were separated on a 10% polyacry-
lamide gel as described in materials and methods.
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asone was absent or inhibitory, illustrating an important
difference in the use of cell lines vs. primary cells in the
study of glucocorticoids. We suggest that this difference is
a result of the endogenous expression levels of GR as illus-
trated by Western blotting and the use of the anti-gluco-
corticoid mifepristone.

Methods
Isolation and culturing of primary rat hepatocytes
Rats used in the experiments were treated according to
established Guidelines for the Use of Experimental Ani-
mals. Primary rat hepatocytes were isolated from adult
Wistar rats as described elsewhere [36]. After isolation,
cells were grown in Dulbecco's modified Eagle's medium
(DMEM) supplemented with 2 mM L-glutamine, 100 U/
ml penicillin, 100 μg/ml streptomycin (Bio Whittaker,
Europe), and 10% fetal bovine serum (Sigma) (medium
A) at 37°C, 5% CO2. After 3–4 hours cells were stimulated
with the given concentrations of dexamethasone, mife-
pristone (RU38486), or insulin (Sigma) in medium con-
taining 0.5% charcoal-treated fetal bovine serum
(medium B). Lipoprotein-depleted serum was prepared as
described [37].

Cell cultures
Human hepatoma cells, HepG2, were grown in DMEM
supplemented with 2 mM L-glutamine, 100 U/ml penicil-
lin, 100 μg/ml streptomycin, 1× non-essential amino
acids (Bio Whittaker, Europe), and 5% fetal bovine serum
(Sigma) (medium A) at 37°C, 5% CO2. After reaching
70–80% confluence, cells were stimulated with the given
concentrations of dexamethasone, mifepristone
(RU38486), or insulin (Sigma) in medium containing
0.5% charcoal-treated fetal bovine serum (medium B).
The human monocyte-like cells (THP-1) were grown in
RPMI-1640 supplemented with 2 mM L-glutamine, 100
U/ml penicillin, 100 μg/ml streptomycin (BIO WHIT-
TAKER EUROPE) and 5% fetal bovine serum (Sigma)
(medium A). The THP-1 cells were treated with 200 nM
phorbol 12-myristate 13-acetate (PMA) (Sigma) for 72
hours to induce a macrophage phenotype. After reaching
70–80% confluence, the THP-1 macrophages were stimu-
lated with the given concentrations of dexamethasone,
mifepristone (RU38486), or insulin (Sigma) in lipid-
depleted medium (containing 0.5% charcoal-treated fetal
bovine serum) (medium B).

Quantitative real time RT-PCR
Total RNA was isolated from primary rat hepatocytes,
HepG2 cells or THP-1 macrophages using Versagene™
RNA Cell Kit (Gentra Systems) according to the manufac-
turer's instructions. Total RNA was reverse transcribed
using SuperScript II RNase H- Reverse Transcriptase (Invit-
rogen) and oligo dT primers (DNA Technology A/S, Den-
mark). The cDNA was used as template for quantitative

real time RT-PCR on a Light Cycler (Roche) using SYBR
Green I technology (Roche). The primers were designed
by the Primer3 Program [38] and are listed in Table 1.

Western blotting
Primary rat hepatocytes, THP-1 macrophages or HepG2
cells were washed twice with phosphate-buffered saline
prior to lysis in lysis buffer (20 mM Hepes, 300 mM NaCl,
0.2 mM EDTA, 1.5 mM MgCl2, and 1% Triton X-100) con-
taining 2% phenylmethylsulfonyl fluoride. Protein con-
centrations were determined by BCA protein assay
(Pierce) and 25 or 50 μg of cell lysates were subjected to
SDS-polyacrylamide gel electrophoresis on 7.5% or 10%
polyacrylamide gels. Proteins were transferred onto nitro-
cellulose membranes (Millipore, USA) and pre-incubated
with 5% skim milk phosphate-buffered saline-0.1%
Tween 20 to prevent unspecific binding. Polyclonal rabbit
anti-GR (P-20, Santa Cruz Biotechnology), anti-SR-BI (NB
400-104D, Novus Biologicals), anti-ABCA1 (400-105,
Novus Biologicals), anti-ABCG1 (36969-100, Abcam), or
polyclonal mouse anti-β-actin (AC-74, Sigma) were
diluted in 5% skim milk phosphate-buffered saline-0.1%
Tween 20 and interacting anti-rabbit or anti-mouse HRP-
IgG (Amersham Biosciences) was detected by chemilumi-
nescence ECL blot detection system (Amersham Bio-
sciences). The blots were stripped with the Restore
Western Blot Stripping Buffer (PIERCE).

Statistics
Statistical significance of the data was evaluated by Stu-
dent's t test. Probability values p < 0.05 was considered
statistically significant.
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