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Abstract

Background: DLK2 is an EGF-like membrane protein, closely related to DLK1, which is involved in adipogenesis.
Both proteins interact with the NOTCH1 receptor and are able to modulate its activation. The expression of the
gene Dlk2 is coordinated with that of Dlk1 in several tissues and cell lines. Unlike Dlk1, the mouse Dlk2 gene and
its locus at chromosome 17 are not fully characterized.

Results: The goal of this work was the characterization of Dlk2 mRNA, as well as the analysis of the mechanisms
that control its basal transcription. First, we analyzed the Dlk2 transcripts expressed by several mouse cells lines and
tissues, and mapped the transcription start site by 5’ Rapid Amplification of cDNA Ends. In silico analysis revealed
that Dlk2 possesses a TATA-less promoter containing minimal promoter elements associated with a CpG island, and
sequences for Inr and DPE elements. Besides, it possesses six GC-boxes, considered as consensus sites for the
transcription factor Sp1. Indeed, we report that Sp1 directly binds to the Dlk2 promoter, activates its transcription,
and regulates its level of expression.

Conclusions: Our results provide the first characterization of Dlk2 transcripts, map the location of the Dlk2 core
promoter, and show the role of Sp1 as a key regulator of Dlk2 transcription, providing new insights into the
molecular mechanisms that contribute to the expression of the Dlk2 gene.

Background
Dlk2 encodes for a transmembrane glycoprotein with six
epidermal growth factor-like (EGF-like) motifs in the
extracellular domain, a single transmembrane domain
and a short intracellular tail. These features place DLK2
as a member of the EGF-like family of proteins, in
which NOTCH receptors and their ligands are included
[1]. The proteins of this family mediate protein-protein
interactions through their EGF-like repeats, modulating
cell fate differentiation in numerous cell types. DLK2
shares most of its structural features with DLK1, with
the highest homology located at the EGF-like domains.
DLK1 participates in several differentiation processes,
including adipogenesis [1-6], differentiation of hepato-
cytes [7,8], hematopoiesis [2,9-14], osteogenesis [15-17],
adrenal gland and neuroendocrine cell differentiation
[18-23], peripheral and central nervous system differen-
tiation [22,24], growth arrest, and increased malignancy

of undifferentiated tumors [21,25-27]. DLK1 has also
been reported to participate in the wound healing pro-
cess [28]. DLK2 has been shown to participate also in
adipogenesis [1], but its role in other differentiation pro-
cesses is yet unknown.
Dlk2 expression can be detected in several adult

mouse tissues, showing a more widespread pattern of
expression than Dlk1. Dlk2 is highly expressed in lung,
brain, adipose tissue, testicles, adult liver, placenta, ovar-
ies and thymus [1]. Little is known about the regulation
of Dlk2 expression, although it seems clear that the
expression of Dlk1 and Dlk2 appears to be coordinated
in some instances in vitro. Thus, their expression levels
in response to cell confluence vary in opposite direc-
tions. Interestingly, when the expression level of one
homolog is modified in one direction, the enforced
change exerts an opposite effect on the expression level
of the other, both in 3T3-L1 and C3H10T1/2 cells [1].
That seemingly coordinated expression appears to occur
also during tissue development: along mouse embryo-
genesis and postnatal growth, Dlk1 is highly expressed
during the development of fetal liver, when no
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expression of Dlk2 is detected; Dlk2 expression in liver
can only be detected 16 days after birth [1]. All these
data suggest the likely existence of coordinated control
mechanisms for Dlk1 and Dlk2 gene expression.
Previous to this work, in the UCSC genome browser

(http://genome.ucsc.edu), three full-length transcripts,
BC118057, BC122518, and BC019431, had been assigned
to Dlk2. The main differences among those Dlk2 tran-
scripts are restricted to the 5’ end of the mRNA, with
most of the transcripts being identical in the majority of
mRNA’s 3’ regions. To the best of our knowledge,
experimental support regarding any of the three above-
mentioned transcripts is lacking, excluding a few publi-
cations regarding the role of Dlk2 [1,29]. In this paper,
we describe the first experimental characterization of
Dlk2 transcription, showing that only one out of the
three predicted transcripts, BC019431, could be detected
in all the mouse cell lines and tissues analyzed. We have
also mapped the transcription initiation site, which cor-
relates with the abovementioned transcript, although
with 14 additional bp at the 5’ end. The Dlk2 core pro-
moter is located within a CpG island extending beyond
the transcription start site (TSS). Bioinformatics analysis
showed the presence of two core promoter elements,
the Initiator Element (Inr), and the Downstream Promo-
ter Element (DPE), which have been described as neces-
sary for basal transcription in other genes. Finally, as it
is characteristic of TATA-less promoters with an Inr
element, we have shown that Sp1, a member of the Sp/
KLF family of zinc finger transcription factors that
recognize GC/GT boxes present in many GC-rich pro-
moters, is able to bind to the Dlk2 promoter and control
Dlk2 basal transcription.

Results
Characterization of Dlk2 mRNA
Mouse Dlk2 is a gene located at chromosome 17 (posi-
tion 46434370-46440220), containing six exons. Previous
to this work, three mRNAs have been associated to
Dlk2 in GenBank: [GenBank: BC118057, BC122518, and
BC019431] (http://genome.ucsc.edu) (Figure 1A).
BC118057 and BC122518 show almost the same exon-
intron distribution, just differing in the second exon of
BC122518, which is not present in BC118057.
BC019431 share the last four exons with the former two
mRNAs. However, the transcription start site and the
splicing sites for the first and second exons are different
between the two sets of mRNAs clones, BC118057/
BC122518 and BC019431. Surprisingly, BC019431 has
been considered as a chimeric cDNA for the last few
years, although it has been the cDNA routinely used by
our research group, and the only one appearing in the
few publications regarding Dlk2 [1,29]. Thus, our first
objective was to confirm or refute if BC019431 was

indeed a real cDNA, and to analyze which of the three
mRNAs assigned to Dlk2 are expressed in different
mouse tissues and cell lines. Considering the differences
among the mRNAs, and to facilitate the nomenclature
of the transcripts, we classified them in two groups,
according to the position of their TSS: a first group,
including BC118057 and BC122518, was named as var-
iant 1, (V1, Figure 1A); a second group, including only
BC019431, was named variant 2 (V2, Figure 1A). We
next designed specific oligonucleotides capable to discri-
minating between V1 and V2 (Figure 1A), and studied
by RT-PCR whether any, or both Dlk2 mRNA variants
described above were present in total RNAs from differ-
ent origins. We prepare cDNA from total RNA
extracted from heart, spleen, testis, brain, and lung of
adult 129/C57 mice. The rest of the cDNAs were pre-
pared separately from different mouse cell lines in
which Dlk2 is expressed, including 3T3-L1, NIH3T3,
C3H10T1/2 and AT3F cells [1] (see Materials and
Methods). Lastly, mouse genomic DNA was used as a
control for primer amplification. As shown in Figure 1B,
both PCR primer sets were able to amplify the expected
DNA fragments from the genomic DNA sample. How-
ever, when cDNA was used as a template, either from
tissues or from each cell line, only the V2U/VL oligonu-
cleotide pair could amplify a fragment of the expected
size from all the samples (Figure 1B). The V1U/VL oligo-
nucleotide pair could not amplify a DNA fragment of
the expected size in any of the nine samples analyzed.
However, when brain cDNA was used as a template,
and the PCR conditions were pushed to try to amplify
any trace cDNA, a faint 700 bp fragment could be
detected (Figure 1B). Our data thus indicated that only
the V2 transcript can be detected in all the samples ana-
lyzed, suggesting that clone BC019431 derives from a
real mRNA and it is not an artifact. It can also be con-
cluded that V1 transcripts, as they have been described
in the genomic databases, are not present in the tissues
and cell lines tested in this work or, if they are, their
abundance is much lower than that of the V2 transcript.
It is interesting to note the possible existence of a differ-
ent, yet uncharacterized, splice variant that can only be
detected in brain, which we plan to analyze in detail in
future studies.
To further characterize the Dlk2 mRNA, we next

focused on mapping the TSS. We first analyzed the
expression level of Dlk2 in several cell lines, and decided
to use the mouse hepatoma cell line AT3F as a source
of RNA, due to its high level of Dlk2 expression (Figure
1C). We used the Rapid Amplification of cDNA Ends
assay (SMART RACE cDNA amplification kit, Clontech,
EEUU) to map the 5’ region of Dlk2 mRNA. Using a
Dlk2 specific oligonucleotide, we amplified a unique 880
bp DNA band (Figure 1D). This PCR product was next
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cloned into the vector pCR2.1 (Invitrogen) and twenty
independent clones were selected for DNA sequencing.
Our sequence data first showed that all clones contained
exons that were only compatible with the V2 variant
and, therefore, also with the exon-intron distribution of
the cDNA clone BC019431 (Figure 1D). In addition,
most of the clones (75%) contained 14 additional bases
as a 5’ extension when compared to the sequence of
BC019431, and the remaining 25% contained shorter 5’
extensions. The complete Dlk2 mRNA sequence, which
starts at an A located 203 bases upstream of the ATG
start of protein translation, has been submitted to Gen-
bank with the entry number FM180474 [GenBank:
FM180474].

Taken together, our data indicate that in the tissues
and cell lines analyzed, the only Dlk2 mRNA species
that could be detected is solely compatible with the
cDNA clone BC019431 and, at least in the AT3F cell
line, that mRNA possesses a 14 bp 5’ extension as com-
pared to this clone. Once the TSS was located, our data
also suggested that the sequences in charge of control-
ling Dlk2 gene expression were probably placed in the
surroundings of exon E1b (Figure 1A).

Transcriptional analysis of the Dlk2 promoter region
We decided to analyze the basal transcriptional regula-
tion of the Dlk2 promoter region around 1 Kbp
upstream of the TSS. To do that, we cloned a 1,090 bp
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Figure 1 Characterization of the Dlk2 transcription start site. A) Schematic exon-intron distribution of Dlk2 cDNAs putatively assigned to
Dlk2. The arrows indicate the position of oligonucleotides used to specifically amplify Dlk2 transcripts. B) RT-PCR of Dlk2 transcripts with the
following templates: cDNAs from 3T3-L1, NIH3T3, C3H10T1/2, or AT3F cells; cDNAs from heart (H), spleen (S), testicles (T), brain (B) and lung (L) of
adult 129/C57BL6 mice; or genomic DNA (gDNA). Two PCR reactions were performed with each template, one to amplify variant 1 transcript
(V1) and another to amplify variant 2 (V2). The sizes of the expected amplified DNA fragments are shown on the right. C) Analysis of Dlk2 mRNA
expression levels in 3T3-L1, NIH3T3, C3H10T1/2 and AT3F cell lines by RT-qPCR. mRNA levels were referred to the expression level of
phosphoriboprotein P0, which was used as an internal control. D) Experimental determination of Dlk2 TSS by 5’ RACE. RNA from AT3F cells was
used for 5’ RACE amplification, using a specific reverse primer located within the sixth exon, at position +693 from the translation initiation
codon (ATG), indicated by an arrow in the upper pannel. The amplified PCR products were cloned into the pCR2.1 vector, and twenty individual
clones were sequenced. The 5’ region sequences of genomic DNA and cDNA clone BC091431 are shown, including the 14 additional bases of
the newly described clone FM180474.
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DNA fragment spanning from position -1,090 to +1 (+1
corresponds to the TSS) into the pGL3Basic vector. We
also made a series of constructs in the same vector, con-
taining different 5’ deletions of that fragment (Figure 2).
All the constructs were tested for their transcriptional
activity by transfecting them into NIH3T3 cells and
measuring their corresponding induced luciferase activ-
ity. All the luciferase measurements were normalized
against the Renilla activity of the pRL-TK vector. Our
results showed that the largest fragment, -1,090/+1, dis-
played a very low transcriptional activity, as it happened
also with the first three deletions studied, -910/+1, -710/
+1, and -575/+1 (Figure 2). Surprisingly, the maximum
luciferase activity of the Dlk2 promoter region was
obtained with the fragments -375/+1 and -212/+1, cor-
responding to deletions eliminating most of the 5’
region of the longest fragment, indicating that the core
promoter is located within those fragments. To confirm
the position of the core promoter, we made an internal
deletion in clone -375/+1, in the vicinity of the TSS
(positions -197 to -18), that we called -375/+1Δ. As
shown in Figure 2, the internal 179 bp deletion in the
-375/+1Δ DNA fragment caused a marked decrease in
its basal transcriptional activity. Our data allowed the
location of the minimal DNA sequence with promoter
activity in the -212 to +1 region, and showed that the

sequence located between -197 and -18 plays an impor-
tant role in the regulation of Dlk2 transcription.
The fact that longer DNA fragments showed lower

transcriptional activity than shorter fragments suggested
the existence of transcriptional inhibitory sequences
located between positions -1,091 and -375. To test that
hypothesis, we decided to use the pGL3Promoter vector,
which shows a higher basal transcriptional activity due
to the presence of the strong SV40 promoter. We gener-
ated four deletions of the fragment -1,090/-375, which
were cloned into pGL3Promoter, and we tested their
transcriptional activity in NIH3T3 cells. As shown in
Additional file 1, Figure S1, all constructs showed a sta-
tistically significant reduction of around 30% in their
luciferase activity when compared to the pGL3Promoter
control vector, thus indicating the existence of
sequences able to repressing the transcriptional activity
of the SV40 promoter. At this stage we decided to
check the publically available genomic map of chroma-
tin modifications performed in cells with different
degrees of differentiation [30]. In that map, the methyla-
tion of certain lysine residues of Histone H3 (K4, K9,
K20 and K27) is mapped, and is correlated with the
activity of the promoter. According to that map, Dlk2
presents two regions with H3 methylation correspond-
ing to repressed chromatin: one with exclusive

-1090/+1 Luc 

-910/+1 Luc 

-710/+1 Luc 

-575/+1 Luc 

-375/+1 Luc 

-212/+1 Luc 

-375/+1 Luc 

-1090 +1086 +1 

Ex 1 Ex 2 Ex 3 

TSS 

Figure 2 Characterization of an activator and a repressor sequences in the Dlk2 promoter. NIH3T3 cells were transiently transfected with
luciferase constructs encompassing different regions of the Dlk2 promoter cloned into pGL3Basic vector, along with the Renilla pRL-TK plasmid.
Luciferase activity was measured 24 hours after transfection, and each luciferase value (Relative Light Units) was normalized to its corresponding
value of Renilla activity. The average values of at least three independent experiments are shown. (*, ** and ***, significant versus control in
Student’s t-test with p-values < 0.05, < 0.01 and < 0.001, respectively).
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H3K27me3 methylation in the region -1,502/-233, and
another one with double methylation H3K27me3 (+484/
+1232) and H3K4me3 (+382/+895). Interestingly, the
inhibitory region we have mapped (-1,090/-375) is
located within the first repressor region cited. Therefore,
this first analysis of the Dlk2 promoter region allowed
us to conclude that the minimal region with transcrip-
tional activity is located between positions -212 and +1,
and that repressor sequences are located between posi-
tions -1,090 and -375.
We next performed a bioinformatics analysis of Dlk2

promoter region that showed the absence of a consensus
TATA box and the existence of a potential Initiator
sequence (Inr), YYANWYY (where Y is a pyrimidine, N
is any nucleotide, and W is adenine or thymine) [31-33]
between the bases -2 and +4 around the TSS. A Down-
stream Core Promoter Element (DPE), whose consensus
sequence is RGWYVT (where R is a purine, and V is
guanine or adenine or cytosine) [33-35], was also identi-
fied in the Dlk2 promoter between bases +28 and +33
(Figure 3A). Interestingly, a CpG island was also
detected between positions -481 and +440, which
extends from the putative core promoter to the first
intron, including the non-coding first exon (Figure 3B).
Therefore, Dlk2 appears to be a gene with a TATA-less
promoter associated to a CpG island and, as it happens
with other genes with that type of promoter, it also fea-
tures the presence of GC-boxes. Six GC boxes, potential
binding sites for the transcription factor Sp1, were
detected in the region close to the TSS, between posi-
tions -160 and +90 (Figure 3A). In the absence of a
TATA box, Sp1 appears to be involved in the formation
of the pre-initiation complex (PIC) and in the transcrip-
tional activation, in conjunction with the Inr element
[33,36-39].
The fact that there were putative Sp1 binding sites

downstream of the DPE consensus sequence made us
consider the idea that transcriptional regulatory regions
could be located downstream of the TSS. To explore
this, we cloned into pGL3Basic several DNA fragments
spanning the region located between bases -212 and
+421, from the start of the core promoter to part of the
first intron; those plasmids were transfected into
NIH3T3 cells and their transcriptional activity was ana-
lyzed (see Methods). DNA fragment -212/+177, which
contains the full core promoter region (-212/+1), the Inr
element, the DPE element, and all putative Sp1 binding
sites, caused a significant increase in luciferase activity
as compared to fragment -212/+1 (Figure 3C). This indi-
cated the presence of additional activating sequences in
that region. The transcriptional activity of fragment
-212/+427 was very similar to that of fragment -212/
+177, indicating the absence of additional activating
sequences in the part of the first intron located between

bases +177 and +427 (Figure 3C). Taken together, our
data indicate that, although the minimal promoter
sequence is located in fragment -212/+1, additional
sequences contributing to increase the level of basal
transcriptional activity of the Dlk2 promoter are present
in fragment +1/+177. According to those data, the Dlk2
core promoter comprises the Inr and DPE elements,
along with several binding sites for the Sp1 transcription
factor, located between positions -160/-100 and +52/
+92.

Sp1 activates the Dlk2 promoter
To explore whether Sp1 regulates Dlk2 transcription,
and which of the six Sp1 putative binding sites could be
involved in that process, we co-transfected into NIH3T3
cells different Dlk2 promoter-luciferase constructs con-
taining the potential Sp1 binding sites, along with a
plasmid expressing Sp1 (pCMVSport-Sp1), or the empty
vector (pCMVSport) as a control. To preserve the total
amount of DNA transfected into the cells, in these
experiments we used half the amount (0.4 μg) of repor-
ter plasmid as compared to previous experiments (see
Methods). Our results showed that all promoter frag-
ments containing Sp1 binding sites, -212/+1, -375/+1,
-212/+177, and +1/+177, induced luciferase activity
when Sp1 was overexpressed (Figure 4A); on the other
hand, the fragment -375/+1Δ, which lacks any Sp1 bind-
ing site, showed no responsiveness to Sp1.
To analyze the involvement of each GC box in the

induction of transcriptional activity, we next mutated
each one of them separately in their corresponding frag-
ments, and tested whether the mutations affected the
way they responded to Sp1. As shown in Figure 4B,
when we analyzed the activity of the mutant Sp1 bind-
ing sites located upstream of the TSS (binding sites 1, 2
and 3), we could not detect any significant variation in
the way the different mutants responded to Sp1. How-
ever, mutations of the Sp1 binding sites 4, 5 and 6,
located in the +1/+177 fragment, led to a significant
reduction of their responses to Sp1 in all cases (Figure
4B). Our results demonstrate the existence of functional
Sp1 response elements within the first exon of Dlk2,
and possibly in its proximal promoter, that might tran-
scriptionally regulate the expression of Dlk2.

Sp1 specifically binds to the Dlk2 promoter
To study whether Sp1 directly binds to the Dlk2 promo-
ter, we next performed chromatin immunoprecipitation
analyses (ChIP) in 3T3-L1 cells with the ChIP-IT
Express Kit (Active Motif). We used normal rabbit IgG
as a negative control, and antibodies against RNA-poly-
merase II as a positive immunoprecipitation control. We
also performed immunoprecipitation with an antibody
against Sp1 (PEP2, Santa Cruz Biotechnology Inc.).
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Purified DNA from the immunoprecipitated samples
was used as template for PCR, using a pair of primers
specific to Dlk2 (indicated by arrows in Figure 5A),
which amplify the region surrounding the TSS (see
Materials and Methods). The results (Figure 5B) indi-
cated that Sp1 directly binds to the Dlk2 promoter
region, and suggested that Sp1 can be directly responsi-
ble of the regulation of Dlk2 expression reported in pre-
vious studies.
To further analyze Sp1 binding to Dlk2, we next

explored by EMSA which of the six GC-boxes were
directly bound by that transcription factor. We
designed three double-stranded oligonucleotides, con-
taining one, two or three of the six GC Boxes (Figure
5A), that were radiolabeled and incubated with nuclear

protein extracts from NIH3T3 cells expressing Sp1.
Following electrophoresis and autoradiography, we
detected the formation of DNA-protein complexes
with the three oligonucleotides tested (Figure 5C and
5D). These complexes appeared to be specific in the
case of oligonucleotides Sp1-A and Sp1-C, since they
could be competed out both by a 100-fold excess of
the unlabeled oligonucleotide, and by a similar excess
of a commercial consensus Sp1 oligonucleotide. In
addition, the same commercial oligonucleotide in
which the Sp1 consensus site had been mutated was
unable to compete with the labeled oligonucleotides.
Finally, the addition of a specific antibody against the
Sp1 protein produced a supershift in both cases. We
also detected a protein-DNA complex with the Sp1-B
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oligonucleotide, but the competition and supershift
assays were negative.
As oligonucleotide Sp1-C contains three of the six

GC-boxes (4 through 6), we synthesized a series of
mutated versions of this oligonucleotide; three of them
in which each one of the Sp1 binding sites was individu-
ally mutated (oligonucleotides M4, M5 and M6); and
one in which the three sites were simultaneously
mutated (oligonucleotide MT). When these oligonucleo-
tides were used as binding competitors to Sp1 in EMSA
analyses, we found that only MT was unable to block
the formation of the Sp1-DNA complex (Figure 5C).
The fact that the single mutations did not abolish the

competing capacity of each oligonucleotide indicates
that Sp1 binds at least to two out of the three GC boxes
present in the oligonucleotide Sp1-C.
Our results point to Sp1 as an important regulator of

Dlk2 transcription, able to bind to two different regions
of the Dlk2 promoter, one located between positions
-100 and -160, and the other between positions +52 and
+92.

Downregulation of Sp1 expression by siRNA results in
direct downregulation of Dlk2
To provide additional support about the role of Sp1 on
the regulation of Dlk2 expression, we carried out two
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activity. Luciferase activities were measured 24 hours after transfection. In each transfection, luciferase values were normalized to the
corresponding Renilla values, as previously described. The average values of at least three independent experiments are shown. (*, ** and ***,
significant versus control in Student’s t-test with p-values < 0.05, < 0.01 and < 0.001, respectively).
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sets of RNA interference experiments. We first analyzed
the effect of the downregulation of Sp1 on the transcrip-
tional activity of a luciferase reporter plasmid carrying
the six putative Sp1 binding sites present in Dlk2 pro-
moter. For that, NIH3T3 cells were transiently co-trans-
fected either with pGL3basic-212/+427, with a Silencer
Select siRNA specific to Sp1 (Life Technologies), or with
the corresponding negative control, along with the Sp1
expression plasmid, pCMVSport-Sp1, or its correspond-
ing empty vector. As shown in Figure 6A, transfection
with Sp1 specific siRNA resulted in a reduction of both
basal activity, and Sp1 mediated activation of the repor-
ter plasmid, demonstrating the existence of an Sp1
responsive element in the Dlk2promoter.

To fully demonstrate the role of Sp1 in Dlk2 regula-
tion, we next performed transient transfections in
NIH3T3 cells, either with the Sp1 siRNA or with its
negative control, and analyzed the effects of Sp1 down-
regulation on Dlk2 transcription by RT-qPCR. As shown
in Figure 6B, the reduction of Sp1 expression resulted in
a 50% reduction in the amount of Dlk2 mRNA, indicat-
ing that Sp1 plays an important role in the regulation of
Dlk2 expression.

Discussion
The work presented here adds new elements to under-
standing the biology of Dlk2, providing new insights
into the molecular mechanisms that contribute to its
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expression. The mouse Dlk2 genomic locus has been
constantly revised during the last years, which has led to
frequent changes in the assignment of the correspond-
ing predicted transcripts. At present, the sequence of
the mouse Dlk2 locus appears as definite, but the num-
ber of Dlk2 putative transcripts varies among databases.
In the RefSeq database, there were three full-length
mRNAs associated to Dlk2, BC118057, BC122518, and
BC019431. In this work, we have identified, in all tissues
and cell lines tested, a unique Dlk2 transcript, only com-
patible with cDNA clone BC019431. Our directed PCR
analyses and the results of the RACE assays showed that
the TSS identified for Dlk2 is only compatible with that
transcript (Figure 1B). Our results also show a 14 bp 5’
extension of the seemingly truncated BC019431 clone.
A new entry taking into consideration our experimental
data has been established in GenBank/EMBL/DDBJ
databases, with ID FM180474. As mentioned above, the
BC019431 entry was temporarily eliminated from the
databases, and even today it is still defined as a chimeric
clone. However, in the variety of mouse tissues and cell
lines used for the characterization of Dlk2 transcripts in
this work we have reported the existence of a single
major Dlk2 mRNA species consistent with clone
BC019431. Interestingly, we have also detected a minor-
ity transcript, yet uncharacterized, that seems to be
expressed only in the brain, and that does not corre-
spond to any of de V1 transcripts previously described.

Although we cannot rule out the existence of additional
mRNA transcripts expressed in other tissues or at differ-
ent developmental stages, our data show that clone
BC019431, and its extended version, clone FM180474,
are clearly non-chimeric mRNAs.
Analysis of the Dlk2 promoter transcriptional activity

by luciferase assays revealed that the shortest fragment
with transcriptional activity is located between positions
-212 and +1, and that the deletion of 179 bp located
between positions -194 and -18 led to the complete abo-
lition of Dlk2 transcriptional activity (Figure 2). Unex-
pectedly, the largest fragment tested, -1,090/+1, showed
very low transcriptional activity, apparently due to the
presence of inhibitory sequences in the region located
between -1,090 and -375 bp, as confirmed by luciferase
assays performed with strong SV40 promoter constructs.
It seems that the Dlk2 promoter shows low level of
basal transcription, due to the mentioned repressive
sequences. We have explored the predicted state of the
chromatin at the Dlk2 promoter region, taking advan-
tage of the publically available genomic map of chroma-
tin modifications performed in cells with different
degrees of differentiation, focused on the methylation of
certain lysine residues of these proteins, such as K4, K9,
K20 and K27 of Histone H3 [30]. According to this
map, Dlk2 presents two regions with H3 methylation,
the first one with H3K27me3 methylation (region
-1,502/-233), in ES cells and in MEFs, and the second
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one with double H3K4me3, H3K27me3 methylation
(+484/+1232 and +382/+895) in ES cells (http://www.
ensembl.org). According to the authors of the map, sin-
gle methylation at residue K4 is associated with an
active chromatin state; however, methylation at residue
K27 is a mark of repressed chromatin. Some promoters
present simultaneously both H3K4 and H3K27 methyla-
tion, and in most of them the basal transcription is
repressed [30]. These ambiguous promoters have been
associated to genes of complex expression, including cell
surface molecules and key transcription factors, during
development or morphogenesis. The first H3K27me3
region coincides with the repressor region mapped in
our luciferase experiments, and could be in part respon-
sible for the basal repressed state of Dlk2, a membrane
protein involved in morphogenesis, developmental and
differentiation processes [1].
Bioinformatics analyses showed that Dlk2 is a TATA-

less promoter gene, as are about 74% of human genes
[33,39,40]. That analysis also revealed the existence of
core promoter consensus elements, such as Inr and
DPE. Those elements are common in TATA-less pro-
moters: they are required to trigger transcription in the
absence of a TATA sequence [31,41]. An important
aspect of the Dlk2 promoter structure is the presence of
a CpG island between positions -481 and +440, which
extends from the putative core promoter to the first
intron, including the non-coding first exon. CpG islands
are potentially sensitive to DNA-methylation, and could
participate in gene transcriptional regulation [42]. The
basal state of CpG islands in the promoters possessing
them is non-methylated, although methylation can
occur at certain times during development, to achieve
specific gene silencing [43-46]. So far, nothing is known
about the methylation state of the Dlk2 CpG island.
This issue is, however, of great potential importance for
the understanding of the transcriptional regulation of
Dlk2 during development, and along the differentiation
processes in which that gene participates, and is cur-
rently under study in our laboratory.
When TATA-less promoters are associated to CpG

islands generally they contain consensus GC-boxes in
the region close to the TSS that could be recognized by
the transcription factor Sp1 [33,47]. It has been reported
that, together with the Inr element, Sp1 can regulate the
transcription of those genes [37,38]. There are six GC-
boxes in the Dlk2 promoter, located between positions
-160 and +90. We have shown that the transcription
factor Sp1 could bind to the Dlk2 promoter in that
region, both by ChIP and by EMSA analyses. In addi-
tion, our luciferase assays have shown that the activity
of the Dlk2 promoter is modulated by Sp1, and that
mutation of some of the Sp1 binding sites abolished
Sp1-mediated Dlk2 transactivation. We have also

demonstrated that a reduction in the expression level of
Sp1, using siRNA technology, results in a decrease of
the transcriptional activity of the Dlk2 promoter, as well
as a reduction in the amount of Dlk2 mRNA. Our
results indicate, therefore, that Sp1 is a key regulator of
Dlk2 transcription.
Interestingly, during in vitro adipogenic assays in 3T3-

L1 cells, Sp1 expression is reduced in response to some
of the components of the adipogenic differentiation
cocktail, including IBMX, a cAMP phosphodiesterase
inhibitor, and the glucocorticoid dexamethasone. Sp1
has also been involved in the control of transcription of
several genes that are essential for the correct onset of
adipogenesis; an IBMX-dependent reduction of Sp1
expression causes a derepression of the C/ebpagene,
thus promoting adipogenesis [48]. Other authors have
recently reported that the Sp1-dependent downregula-
tion of the Tissue Inhibitor of Metalloproteinase 3
(TIMP-3) is necessary for adipogenesis [49]. On the
other hand, unpublished data from our group shows
that Dlk2 is an important factor regulating the early
stages of adipogenesis, being a transcriptional target of
the crucial transcription factor KLF4. Dlk2 expression is
tightly controlled during the first hours of the adipo-
genic differentiation, showing a peak of expression two
hours after the induction with IBMX, and maintaining a
low level of expression during the rest of the process.
The fact that the expression of both Sp1 and Dlk2 are
controlled by the same molecule during early adipogen-
esis, together with the role of Sp1 in activating the
expression of Dlk2, raise the interesting possibility that
Dlk2 could be a transcriptional target of Sp1 during the
adipogenesis process. Finally, we have recently described
that together with Dlk1, Dlk2 acts as a NOTCH signal-
ing regulator [29]. The control of Dlk2 expression,
therefore, may be a mechanism with important conse-
quences for the regulation of the numerous differentia-
tion processes in with NOTCH receptors participate.
Further studies are granted to explore these possibilities.

Conclusions
We show here the characterization of the mouse Dlk2
transcript in several preadipocitic and hepatoma cell
lines, as well as in adult brain, spleen, heart, liver, and
testis. In all the samples the transcript appears as a
unique species, with a 14 bases 5’ extension related to
the previously described clone BC019431, and it has
been entered in GenBank with the ID [GenBank:
FM180474]. Dlk2 possesses a TATA-less promoter, with
the consensus sequences Inr and DPE, and located
within a CpG island. There are sequences able to
repress transcription, located at position -1,090/-375
that may in part be responsible for the repressed basal
state of the Dlk2 promoter. The minimal sequence with
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transcriptional activity is located between positions -212
and +1. The Dlk2 core promoter contains six GC-boxes
between the position -160 and +92, consensus
sequences for the binding of the transcription factor
Sp1. We have shown, both by ChIP and by EMSA ana-
lyses that Sp1 binds to the Dlk2 promoter in that region.
Additionally, we have demonstrated that the activity of
the Dlk2 promoter is modulated by Sp1, and that muta-
tion of some of the Sp1 binding sites abolished Sp1-
mediated Dlk2 transactivation. Our results indicate,
therefore, that Sp1 could be a key regulator of Dlk2
transcription.

Methods
DNA constructs
For the analysis of Dlk2 transcriptional activity, we
cloned by PCR different fragments of its promoter
region, using DNA from BAC clone RP23-135A16
(BACPAC Resources, USA) as template, which contains
the complete sequence of the Dlk2 promoter, and the

oligonucleotides indicated in Table 1. PCR reactions
were performed under standard conditions, except
where indicated with an asterisk, in which case the reac-
tions were supplemented with 10% DMSO. The DNA
from the PCR amplification was digested with the
restriction enzymes indicated in Table 1, and inserted
into the vectors pGL3Basic or pGL3Promoter (Promega,
USA). The fragment -375/+1Δ was generated by the
amplification of the fragment -375/+1 with the oligonu-
cleotides listed in Table 1 under standard PCR condi-
tions; in the absence of 10% DMSO, the PCR reaction
generated a 196 bp fragment (-375 to +1) with a 179 bp
internal deletion between positions -197 and -18. DNA
from the PCR amplifications was digested with MluI-
HindIII, and cloned into the vector pGL3Basic. The
mutant luciferase constructs pGL3Basic(-212/+1M1),
pGL3Basic(-212/+1M2), pGL3Basic(-212/+1M3),
pGL3Basic(+1/+177M4), pGL3Basic(+1/+177M5), and
pGL3Basic(+1/+177M6), were generated with the
Quick-Change site-directed mutagenesis kit (Stratagene,

Table 1 Oligonucleotides used for the cloning of different fragments of Dkl2 promoter in pGL3Basic and
pGL3promoter vectors

DNA FRAGMENT OLIGONUCLEOTIDES SEQUENCE RESTRICTION ENZYMES

-1,090/+1* Dlk2MluI-917U 5’-ATTACGCGTTTGTCAGGTGTAGGCGGTGGG-3’ MluI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-910/+1* Dlk2MluI-722U 5’-GGCGACGCGTCAAATACACATATTGGGGTCTT-3’ MluI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-710/+1* Dlk2MluI-522U 5’-TATACGCGTGGCAGGCTACCCAAAGGTGG-3’ MluI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-575/+1* Dlk2MluI-400U 5’-TAGACGCGTAAGAAGCCCACAGAGAGCAGGC-3’ MluI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-375/+1* Dlk2MluI-205U 5’-TATACGCGTTGGGTGAGGGGCAGAGTGG-3’ MluI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-212/+1* Dlk2 Xho-212U 5’-TATCTCGAGGAAGGGAGGGGCGAAGAGC-3’ XhoI-HindIII

Dlk2HindIII-1L 5’-TATAAGCTTGCTGAGGCGACCCCGAGCG-3’

-1,090/-375 Dlk2MluI-917U 5’-ATTACGCGTTTGTCAGGTGTAGGCGGTGGG-3’ MluI-HindIII

Dlk2HindIII-184L 5’-GCTAAGCTT CCACTCTGCCCCTCACCCAC-3’

-1,090/-575 Dlk2MluI-917U 5’-ATTACGCGTTTGTCAGGTGTAGGCGGTGGG-3’ MluI-HindIII

Dlk2HindIII-379L 5’-TAGAAGCTTCGCCTGCTCTCTGTGGGCTTC-3’

-910/-375 Dlk2MluI-722U 5’-GGCGACGCGTCAAATACACATATTGGGGTCTT-3’ MluI-HindIII

Dlk2HindIII-184L 5’-GCTAAGCTT CCACTCTGCCCCTCACCCAC-3’

-710/-375 Dlk2MluI-522U 5’-TATACGCGTGGCAGGCTACCCAAAGGTGG-3’ MluI-HindIII

Dlk2HindIII-184L 5’-GCTAAGCTT CCACTCTGCCCCTCACCCAC-3’

+1/+177 Dlk2Xho I+1U 5’-ATTCTCGAGCCCAGATTCCCGAGTGCTCGGC-3’ XhoI-HindIII

Dlk2HindIII+177L 5’-ATGAAGCTTAGGGACCGCGTCCTCCTAGCTTC-3’

-212/+177* Dlk2 Xho-212U 5’-TATCTCGAGGAAGGGAGGGGCGAAGAGC-3’ XhoI-HindIII

Dlk2HindIII+177L 5’-ATGAAGCTTAGGGACCGCGTCCTCCTAGCTTC-3’

-212/-427* Dlk2 Xho-212U 5’-TATCTCGAGGAAGGGAGGGGCGAAGAGC-3 XhoI-HindIII

Dlk2HindIII+427L 5’-AATAAGCTT GTGGCCACCGCGCGGGAAC-3

PCR reactions were performed under standard conditions (see Materials and Methods), except where indicated with an asterisk, in which the reactions were
supplemented with 10% DMSO.

Rivero et al. BMC Molecular Biology 2011, 12:52
http://www.biomedcentral.com/1471-2199/12/52

Page 11 of 15



USA), using the pGL3Basic(-212/+1) or pGL3Basic(+1/
+177) constructs as templates. The primers used for
mutagenesis are indicated in Table 2. All the constructs
were sequence-verified, using 0.5 to 1.0 μg of each plas-
mid for sequencing with the ABI PRISM dRhodamine
Terminator Cycle Sequencing Ready Reaction Kit
(Applied Biosystems, Carlsbad, CA, USA). Sp1 expres-
sion plasmid (pCMVSport-Sp1) and Sp1 luciferase-
reporter plasmid were kindly provided by Dr. Marta
Casado-Pinna.

Cell Culture and RT-PCR Analysis
Mammalian cells were cultured at 37°C in a 5% (v/v)
CO2 humidified atmosphere, in Dulbecco’s modified
Eagle’s medium (DMEM) for 3T3-L1 (ATCC CCL-92.1),
C3H10T1/2 (clone 8, ATCC CCL-226) and NIH3T3
(ATCC CRL-1658) cell lines; DMEM-F12 for the AT3F
cell line [50]. In all cases, the media contained 10% (v/v)
fetal bovine serum (FBS, Biowhittaker), 2 mM L-gluta-
mine (Biowhittaker), 1 Unit/ml penicillin (Biowhittaker),
and 1.0 μg/ml streptomycin (Biowhittaker). For RT-
qPCR analysis, total RNA was isolated from cells using
an RNeasy kit (Qiagen Inc., USA), including a DNAse
treatment step to remove potential genomic DNA con-
tamination. First-strand cDNA was prepared in a 20 μl
reaction volume from 1 μg of RNA using 0.5 μg of oligo
(dT)18 and the RevertAid™ H Minus M-MuLV II
reverse transcriptase kit (Fermentas, Spain). Real-time
PCR was performed in a final volume of 10 μl contain-
ing 0.3 μM of each oligonucleotide, 1 μl of cDNA, and
the FastStart SYBR Green Master Mix (Applied Biosys-
tem). Reactions were run in triplicate on a 7500 Fast
Real-Time PCR System (Applied Biosystems, Carlsbad,
CA, USA) with the following conditions: an initial dena-
turation step at 95°C for 20 seconds, and 40 cycles of 3
seconds at 95°C, followed by 30 seconds at 60°C. Details
of the primer sets used are provided in Additional file 1,

Table S1. Controls for genomic DNA and primer con-
tamination were routinely performed with non-RT or
no template PCR reactions, respectively. Dissociation
curves were performed for each set of oligonucleotides
to check primer specificity and to confirm the presence
of a unique PCR product. Results were analyzed using
comparative Ct method using the ribosomal phospho-
protein P0 as a control for amount of cDNA [51]. To
estimate PCR efficiencies, standard curves were per-
formed based on 5 serial dilutions of a cDNA stock (a
cDNA mixture of all samples collected). Efficiencies (E)
were calculated from the slope of curves using the for-
mula E = 10(-1/slope). The efficiencies of all primer sets
were between 95 and 100%.
For siRNA downregulation of Sp1, we used the Silen-

cer Select siRNA predesigned for Sp1, and the corre-
sponding negative control (Life Technologies). siRNA
were transfected at a concentration of 10 nM into
NIH3T3 cells, using Lipofectamine 2000 (Invitrogen).
After 48 hours RNA was purified, and RT-qPCR was
performed.

Rapid Amplifications of cDNA Ends (RACE)
To map the 5’ end of Dlk2 gene transcript we used
SMART RACE cDNA Amplification Kit (Clontech,
Mountain View, CA, USA). Total RNA was isolated
from the AT3F cell line with RNeasy Kit (Qiagen Inc.
Valencia, CA, USA), which was used to synthesize
cDNA with the oligonucleotides 5 CDS: 5’-(T)25VN-3
‘(N = A, C, G or T, V = A, G or C), and SMART II A:
5’-AAG CAG TGG TAT CAA CGC AGA GTA CGC
GGG-3’. The cDNA was used as a template for PCR,
using the primers UPM (Universal Prime Mix): 5’-CTA
ATA CGA CTC ACT ATA GGG CAA GCA GTG
GTA TCA ACG CAG AGT-3’ and 5’RACEDlk2: 5’-
CTG GCA TGG GCG GCT GGC ACA GTC ATC CA-
3’. The amplified DNA fragments were cloned into the

Table 2 Oligonucleotides used for the mutations of Dlk2 GC-boxes

PLASMID OLIGONUCLEOTIDES SEQUENCE

pGL3Basic(-212/+1M1) Sp1212/1M1F 5’- GTGCGCAGCGGGGGTGGATATAAGGCGCAGTCGGTGCGGG -3’

Sp1212/1M1R 5’- CCCGCACCGACTGCGCCTTATATCCACCCCCGCTGCGCAC -3’

pGL3Basic(-212/+1M2) Sp1212/1M2F 5’- GGGCGCAGTCGGTGCGGAATAAGCCGCGGCGGCGGGAGG -3’

Sp1212/1M2R 5’- CCTCCCGCCGCCGCGGCTTATTCCGCACCGACTGCGCCC -3’

pGL3Basic(-212/+1M3) Sp1212/1M3F 5’- GGCTCCGCCGGCACACGTTATTCCTGGCAGGGGGCCGAG -3’

Sp1212/1M3R 5’- CTCGGCCCCCTGCCAGGAATAACGTGTGCCGGCGGAGCC -3’

pGL3Basic(+1/+177M4) Dlk2MluI-400U 5’- CCCGCGGCCAGCTAGGTTATTCCCCCCTCCCGCCCCC -3’

Dlk2HindIII-1L 5’- GGGGGCGGGAGGGGGGAATAACCTAGCTGGCCGCGGG -3’

pGL3Basic(+1/+177M5) Dlk2MluI-205U 5’- AGGGGCGGCCCCCCTCAATAACCCGGCCCACGTCCGTC -3’

Dlk2HindIII-1L 5’- GACGGACGTGGGCCGGGTTATTGAGGGGGGCCGCCCCT -3’

pGL3Basic(+1/+177M6) Dlk2 Xho-212U 5’-GCCCCCCTCCCGCCCCAATTAACAGTCCGTCGGATCCG-3’

Dlk2HindIII-1L 5’- CGGATCCGACGGACTGTTAATTGGGGCGGGAGGGGGGCC -3’
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vector pCR2.1 (Invitrogen, CA, USA) and 20 clones
were sequenced with the oligonucleotide 5’-TAA CCC
GGG GGA TCC ACC AGT GAC CAA GGA-3’.

Analysis of Dlk2 mRNA transcripts
To analyze the expression of Dlk2 mRNA transcripts,
total RNA was isolated from heart, spleen, testis, brain,
and lung of adult 129/C57BL6 mice, using the reagent
TRI-Reagent (Sigma, USA), according to manufacturer’s
instructions. The isolated RNA was purified with the
RNeasy Kit (Qiagen Inc. Valencia, CA, USA). Total
RNA was also isolated from 3T3-L1, NIH3T3,
C3H10T1/2 and AT3F cell lines with the RNeasy kit.
cDNA was synthesized from 1.0 μg of total RNA, using
the “Reverse H Minus First Strand cDNA Synthesis kit
(Fermentas, Spain). These cDNAs were used as tem-
plates in PCR reactions under the following conditions:
an initial denaturation step at 95°C for 5 minutes, and
45 cycles of 30 seconds at 95°C, followed by 30 seconds
at 58°C and 120 seconds at 72°C. The primers used
were: V1U: GGA GAG CCG GGA AAG GCT AAT G;
V2U: TCG GCT GGC ATG GCA GCT ACT T; and VL:
TCA CAC AGC GCT CAC AGT GCA G.

Luciferase reporter assays
NIH3T3 cells at 80-90% confluence were plated in 24-
well plates and transfected using Fu-gene HD reagent
(Roche Applied Science, USA). In the experiments per-
formed only with the luciferase reporter plasmids, 0.8
μg of DNA per well were used. However, in the

experiments where the luciferase plasmids were trans-
fected along with the Sp1 expression plasmid or the cor-
responding empty vector, 0.4 μg of each plasmid were
used. The pRL-TK (Promega, USA), carrying the Renilla
luciferase under the control of the thymidine kinase
promoter, was also co-transfected as an internal control
for transfection efficiency. Cells were harvested 24 hours
after transfection and luciferase activities were analyzed
using the Dual-Luciferase assay kit (Promega, USA) and
MLX Microtiter Plate Luminometer (Dynex Technolo-
gies, USA), as recommended by the manufacturer. Luci-
ferase activity was normalized to the Renilla activity
measured in the same lysate.

Chromatin immunoprecipitation (ChIP) assays
ChIP analysis of 3T3-L1 cells was performed using
ChIP-IT Express Kit (Active Motif, USA), following the
manufacturer’s recommendations. Twenty million 3T3-
L1 cells were formaldehyde-cross-linked, and DNA was
sheared by sonication using a Bioruptor Sonication Sys-
tem (Diagenode, Belgium) for 30 minutes. The sheared
chromatin was incubated with 3 μg of normal rabbit
IgG, or the corresponding antibodies against RNA-poly-
merase II, and Sp1 (PEP2) (Santa Cruz Biotechnology
Inc., USA). IPs were performed with the magnetic beads
included in the ChIP-IT Express kit. For PCR, 5 μl of
the 100 μl total immunoprecipitated DNA were ana-
lyzed using GC-Rich PCR system (Roche Applied
Science, USA), with the oligonucleotides Dlk2MluI-
212U, 5’-TAT ACG CGT GAA GGG AGG GGC GAA

Table 3 Oligonucleotides used for EMSA

OLIGONUCLEOTIDE SEQUENCE

Sp1-A Sp1-As 5-GCTCCGCCGGCACACGCCGCCCCTGGCAGGGGGCCGAGCGC-3

Sp1-Aas 5-GCGCTCGGCCCCCTGCCAGGGGCGGCGTGTGCCGGCGGAGC-3

Sp1-B Sp1-Bs 5-TGCGCAGCGGGGGTGGGCGCGGGGCGCAGTCGGTGCGGGGCGGGCCGCGGCGGCGGGAGG-3

Sp1-Bas 5-CCTCCCGCCGCCGCGGCCCGCCCCGCACCGACTGCGCCCCGCGCCCACCCCCGCTGCGCA-3

Sp1-C Sp1-Cs 5-GGCCAGCTAGGGGCGGCCCCCCTCCCGCCCCCCGGCCCAG-3

Sp1-Cas 5-GTGGGCCGGGGGGCGGGAGGGGGGCCGCCCCTAGCTGGCC-3

M4 M4s 5-GGCCAGCTAGTTTATTCCCCCCTCCCGCCCCCCGGCCCAG-3

M4as 5-CTGGGCCGGGGGGCGGGAGGGGGGAATAAACTAGCTGGCC-3

M5 M5s 5-GGCCAGCTAGGGGCGGCCCCCCTAAATAACCCCGGCCCAG-3

M5as 5-CTGGGCCGGGGTTATTTAGGGGGGCCGCCCCTAGCTGGCC-3

M6 M6s 5-GGCCAGCTAGGGGCGGCCCCCCTCCCGCCCCAATTAAAAG-3

M6as 5-CTTTTAATTGGGGCGGGAGGGGGGCCGCCCCTAGCTGGCC-3

MT MTs 5-GGCCAGCTAGTTTATTCCCCCCTAAATAACCAATTAAAAG-3

MTas 5-CTTTTAATTGGTTATTTAGGGGGGAATAAACTAGCTGGCC-3

Sp1 Sp1s 5-ATTCGATCGGGGCGGGGCGAGC -3

Sp1as 3-TAAGCTAGCCCCGCCCCGCTCG-5

Sp1Mut Sp1Muts 5-ATTCGATCGGTTCGGGGCGAG C-3

Sp1Mutas 3-TAA GCTAGCCAAGCCCCGCTCG-5

Sp1 consensus (Sp1) and Sp1 mutant consensus (Sp1Mut) oligonucleotides were purchased from Santa Cruz Biotechnologies.
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GAG C-3’ and Dlk2HindIII+177L, 5’- ATG AAG CTT
AGG GAC CGC GTC CTC CTA GCT TC-3’.

Nuclear extracts and electrophoretic mobility shift assay
For nuclear extracts NIH3T3 cells were washed twice
with ice-cold PBS, then scraped and homogenized for
15 min. on ice with hypotonic lysis buffer (10 mM
Hepes, pH 8.0; 10 mM KCl, and 1.0 μg/ μl protease
inhibitor cocktail from Sigma, USA). IGEPAL (0.5%)
was added and the mixture was vortexed for 30 seconds
at 4°C, followed by centrifugation at 13,500 r.p.m. for 30
seconds. The nuclear pellets were incubated and vor-
texed for 30 min. at 4°C with 20 mM HEPES, pH 8.0,
0.4 M NaCl, 20% glycerol and 1.0 μg/ μl of the protease
inhibitor cocktail. The samples were centrifuged at
13,500 r.p.m. for 10 min., and the supernatants, contain-
ing the nuclear fraction, were collected. EMSA was per-
formed by incubating 8 μg of nuclear extracts in a 20 μl
binding reaction mixture containing 10 mM HEPES pH
8.0, 80 mM KCl, 1 mM DTT, 5% glycerol, 0.1 μg/ μl
BSA, 0.4 mM MgCl2, 2 μM ZnSO4, 0.02% IGEPAL, 1 μg
poly (dI-dC), and 40,000 cpm of 32P-labeled double-
stranded DNA probe for 20 min. at room temperature.
Following incubation, reaction mixtures were loaded
and electrophoresed on a 6% polyacrylamide gel, and
subjected to autoradiography. A 100-fold molar excess
of unlabeled probe was added for competition when
indicated in the corresponding figures. Sp1 and Sp1
mutant oligonucleotides were purchased from Santa
Cruz Biotechnology. For competition and supershift
experiments, proteins were preincubated with unlabeled
probe or with the anti-Sp1 antibody (Sp1(PEP-2), Santa
Cruz Biotechnology) for 1 hour at 4°C. Labeled probe
was then added, and incubated for 20 min. at room
temperature. Gel shift assay oligonucleotide sequences
are indicated in Table 3.

Additional material

Additional file 1: Table S1. Primers used for RT-qPCR assays. Figure
S1. Characterization of a repressor sequence in the Dlk2 promoter.
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