Skip to main content
Figure 2 | BMC Molecular Biology

Figure 2

From: Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential

Figure 2

Sequence and structure similarities of mouse RdCVF and RdCVF2 proteins with thioredoxin superfamily members. Panel a shows the multiple sequence alignment of the thioredoxin (TXN) tryparedoxin (TRYX-I) nucleoredoxin (NXN) and the existing and predicted RdCVF and RdCVF2 proteins. The name, organism and accession number (in brackets) of each protein sequence are given (left). Identical (white text on black) small (A, D, G, P, S, T ; white text on green) hydrophobic (A, C, F, G, I, L, M, S, T, V, W, Y ; black text on yellow) polar (D, E, H, K, N, Q, R, S ; blue text) and charged (D, E, K, R ; white text on red) conserved residues are shown according to a conservation threshold of 85%. A consensus sequence is given below the multiple alignment in which s, h, p and c correspond to small, hydrophobic, polar and charged residues respectively. The secondary structures (β sheet and α helix) of the Crithidia fasciculata tryparedoxin I structure (1EWX) are given below the consensus sequence. The blue dashed rectangles indicate the three RdCVF(2) specific insertions. The green dashed rectangle shows the "cap" region absent in RdCVF(2)-S. The position of the human thioredoxin cleavage product (TRX80) is indicated (red triangle). Panel b displays the structure of the Crithidia fasciculata TRYX-I (1EWX) (left) mouse RdCVF-L (center) and mouse RdCVF2-L (right) models. Regions of TRYX-I backbone conserved in RdCVF(2)-L are colored in red. The "cap" region and the three specific insertions are depicted in green and blue respectively. The putative catalytic site (C44XXC47) is shown in yellow with a space-filling representation.

Back to article page