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Abstract

Background: Gene expression studies related to cancer diagnosis and treatment are becoming
more important. Housekeeping genes that are absolutely reliable are essential for these studies to
normalize gene expression. An incorrect choice of housekeeping genes leads to interpretation
errors of experimental results including evaluation and quantification of pathological gene
expression. Here, we examined (a) the degree of regulation of GAPDH expression in human
glioblastoma cells under hypoxic conditions in vitro in comparison to other housekeeping genes like
[-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for
tumor therapeutic approaches and (c) differences in GAPDH expression between low-grade
astrocytomas and glioblastomas, for which modest and severe hypoxia, respectively, have been
previously demonstrated. GAPDH and B-actin expression was comparatively examined in vivo in
human low-grade astrocytoma and glioblastoma on both protein and mRNA level, by Western blot
and semiquantitative RT-PCR, respectively. Furthermore, the same proteins were determined in
vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1a protein
regulation under hypoxia was also determined on mRNA level in vitro in GaMG and on protein level
in U251, U373 and GaMG cells.

Results: We observed no hypoxia-induced regulatory effect on GAPDH expression in the three
glioblastoma cell lines studied in vitro. In addition, GAPDH expression was similar in patient tumor
samples of low-grade astrocytoma and glioblastoma, suggesting a lack of hypoxic regulation in vivo.

Conclusion: GAPDH represents an optimal choice of a housekeeping gene and/or loading control
to determine the expression of hypoxia induced genes at least in glioblastoma. Because of the lack
of GAPDH regulation under hypoxia, this gene is not an attractive target for tumor therapeutic
approaches in human glioblastoma.
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Background

The appropriate choice of an internal standard is critical
for quantitative protein and RNA analyses. Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) is a glyco-
lytic enzyme that possesses diverse functions that are
independent of its role in glycolysis [1]. GAPDH is a mul-
tifunctional enzyme overexpressed in many tumors and
induced by hypoxia in normal and malignant cells. The
degree to which hypoxia transcriptionally activates
GAPDH is cell- type specific [2].

GAPDH is considered to be a "housekeeping gene". Previ-
ous contributions showed that GAPDH expression is reg-
ulated by a variety of factors like calcium [3], insulin [4],
and hypoxia [5], although the transcription factor
hypoxia-inducible factor-1 (HIF-1) regulates the expres-
sion of genes which are involved in glucose supply,
growth, metabolism, redox reactions and blood supply.
The HIF family comprises the HIF-1a, HIF-1B, HIF-2a,
and HIF-3a subunits [6]. Under normoxic conditions, the
HIF-1a subunit is undetectable because it undergoes rapid
ubiquitination and proteosomal degradation [7,8].

Hypoxia is characterized by inadequate oxygen delivery to
the tissue with a resulting imbalance between oxygen
demand and energy supply [9]. As a consequence, HIF-1-
regulated hypoxia-induced genes are transcribed [10-15].
Many of the proteins encoded by these genes are involved
in adaptive responses counteracting a detrimental impact
of hypoxia, including erythropoiesis, angiogenesis, iron
homeostasis, glucose and energy metabolism, as well as
cell proliferation and survival decisions [10].

There are two types of hypoxia: transient and chronic
hypoxia. Transient hypoxia is a temporary reduction in
oxygen availability. The inadequate vascular geometry rel-
ative to the volume of oxygen-consuming tumor cells cre-
ates diffusion-limited O, delivery, which results in
chronic hypoxia [16,17]. Cells in the hypoxic environ-
ment shift from aerobic citric acid cycle (TCA cycle) to
anaerobic metabolism (glycolysis, also known as Warburg
effect), as a consequence to chronic hypoxic conditions.
The response to low O, levels is given by up-regulating the
synthesis of HIF [6]. Tumors typically contain hypoxic
regions, since tumor vasculature is dysfunctional and una-
ble to meet the metabolic needs of rapidly proliferating
cancer cells [18]. Tumor cells are resistant to therapeutic
approaches, like ionizing radiation and chemotherapy.
For ionizing radiation the dose required to produce the
same amount of cell killing is up to three times higher for
hypoxic cells than for well-oxygenated cells [19]. In gliob-
lastoma, the modification of tumor oxygenation and thus
radiosensitivity is an attractive approach to improve the
prognosis of glioblastoma patients currently tested in clin-
ical trials [20].
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In previous work, it has been shown that GAPDH expres-
sion increases as a repose to the hypoxic development in
endothelial cells [5,21-23]. Regulation of GAPDH by
hypoxia appears to be cell- type specific. For instance,
GAPDH expression is induced to a much lesser extent in
fibroblasts and smooth muscle cells than it is in endothe-
lial cells [24].

In the present study we addressed the question whether
GAPDH expression is regulated by hypoxia in human
glioblastoma cells in vitro and in human glioma tumor
samples. The answer of this question will provide insight
into practical applications of GAPDH as an internal stand-
ard in investigations of hypoxia-inducible gene expression
or as a target for tumor therapeutic approaches in human
glioblastoma. We also aimed to determine the validity of
two further housekeeping genes for their use as internal
standards in experimental cancer research.

Results

GAPDH mRNA expression is not regulated by hypoxia,
neither in vivo in human glioma tissue, nor in vitro in
human glioblastoma cell lines

Both GAPDH and B-actin mRNA was expressed in 22/22
brain tumor samples (11 low-grade astrocytoma and 11
glioblastoma) and in 3/3 normal brain tissue samples, as
shown by semiquantitative RT-PCR (Fig. 1A). Densito-
metric analysis did not show any differences in GAPDH
mRNA expression between the two tumor types with dif-
ferent levels of tumor oxygenation (Fig. 1B). Each value
was normalized to the corresponding expression of the
housekeeping gene B-actin.

To investigate the effect of controlled hypoxic conditions
on GAPDH mRNA expression, we performed in-vitro cell
culture assays with 5%, 1% and 0.1% O, with and without
reoxygenation. No regulatory effect of these different oxy-
genation conditions on GAPDH expression was detecta-
ble by semiquantitative RT-PCR in the human
glioblastoma cell lines U251, U373 and GaMG (Fig. 24,
3A, 4A). The densitometric evaluation confirmed these
results (Fig. 2B, 3B, 4B). Together, these data suggest that
the known formation of hypoxic regions within gliobas-
toma tumor tissue is not accompanied by an upregulation
of GAPDH mRNA.

Hypoxic conditions do not influence GAPDH protein
expression in vivo in human brain tumor samples or in
vitro in glioblastoma cell lines

To exclude translational regulation of GAPDH protein
expression by hypoxic conditions, Western-blot analysis
was performed using lysates from the same tumor sam-
ples described above. Again, GAPDH, f-actin and as an
additional housekeeping gene y-tubulin was detected in
all samples analyzed (Fig. 5A). Expression of all three pro-
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In vivo mRNA expression of human housekeeping
genes GAPDH and B-actin in biopsies of normal brain
(NB), low-grade astrocytoma and glioblastoma. (A).
Semiquantitative RT-PCR screening of tissue lysates from
three normal brain, | | astrocytoma and | | glioblastoma sam-
ples. GAPDH and f-actin mRNA is homogenously expressed
in all analysed samples. + = positive control, - = negative con-
trol using water as template. (B) Expression intensities of the
PCR-bands were densitometrically evaluated. The bar graphs
show GAPDH expression after normalization to the corre-
sponding expression of 3-actin. GAPDH was not regulated
by the severely hypoxic tumor environment typical of gliob-
lastoma.

teins was very homogenously distributed among the two
tumor entities, low-grade astrocytoma with known mod-
est tumor hypoxia and glioblastoma with known severe
hypoxia (densitometric analysis, Fig. 5B and 5C).

Glioblastoma cell lines GaMG, U373 and U251, which
were cultured under different hypoxic conditions as
described above, did not show any regulation of GAPDH
protein expression (Fig. 6A and 6B, respectively). There-
fore, GAPDH mRNA and protein expression is not modi-
fied in response to different oxygenation, hypoxia or
reoxygenation conditions in vitro in the tested cell lines
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and not differently expressed in human tumor glioma
samples with known different levels of hypoxia.

HIF-1c regulation in response to hypoxia

Semiquantitative RT-PCR revealed that HIF-1a is evenly
expressed in normal brain and astrocytic tumor tissues
and that there is no upregulation of HIF-lao mRNA in
glioblastoma samples in comparison to low-grade astro-

cytomas (Fig. 7).

In a representative in-vitro example in GaMG cells cultured
under different oxygenation conditions, HIF-1a. mRNA
expression was not influenced by hypoxic conditions (Fig.
8). In contrast, HIF-1a nuclear protein clearly responded
with upregulation under hypoxic and downregulation
under reoxygenation or normoxic conditions in U373,
U251 and GaMG (Fig. 9). HIF-1a was strongly expressed
after 1 h at 0.1% O,, still increased after 24 h hypoxia and
showed stable reduced expression upon reoxygenation up
to 48 h (Fig. 9).

These results confirm oxygen-dependent regulation of
HIF-1a at the protein level in the experimental models of
the present study and reassure that the experimental set-
tings for expression analysis of GAPDH were suitable to
evaluate regulatory events by hypoxic conditions.

Discussion

It has been postulated that GAPDH protein expression is
regulated as a consequence of the hypoxic development of
the cellular environment in wvitro [5,21-26]. Several
authors showed in their models that GAPDH mRNA
expression was regulated during hypoxic events. Some
also presented that the application of 18S-, 28S-RNA or B-
actin instead as a loading control for experiments involv-
ing reduced oxygen concentration is more suitable for this
purpose than GAPDH. Housekeeping genes are normally
present in all cells and their expression levels should
remain relatively constant under different experimental
conditions. It is logic that no single housekeeping gene
always possesses stable expression levels under all experi-
mental conditions. Therefore, it is necessary to character-
ize the suitability of various housekeeping genes to serve
as internal RNA controls under particular experimental
conditions where transcription effects are being tested.

To exclude a potential influence of oxygen concentrations
on GAPDH expression as a confounding factor we have
previously employed an additional control, 18S RNA, in
experiments of hypoxia-inducible gene expression [21]. In
these experiments, expression of GAPDH under different
oxygen concentrations (severe hypoxia, normoxia and
reoxygenation), was compared to the 18S RNA detected.
They showed that GAPDH was not significantly regulated
under hypoxic conditions in a panel of human tumor cell
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Figure 2

Effect of different hypoxic conditions on GAPDH mRNA expression in U251 cells. Cells were cultured 24 h under
normoxic conditions or for | h, 6 h or 24 h under hypoxic (0.1%, 1%, 5% O,) conditions. Reoxygenation experiments were
performed for 24 h and 48 h after 24 h hypoxia. DFO served as hypoxia-positive control. (A) Semiquantitative RT-PCR analy-
sis of GAPDH and f3-actin mRNA expression. Shown is one representative experiment out of three. (B) Bar graphs showing
GAPDH expression strength after densitometric evaluation of the PCR bands and normalization to the corresponding expres-
sion of B-actin. GAPDH mRNA expression was not regulated by hypoxic conditions.
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Figure 3
Effect of different hypoxic conditions on GAPDH mRNA expression in U373 cells. For experimental settings refer
to Fig. 2. (A) Semiquantitative RT-PCR analysis (B) densitometric evaluation of GAPDH and (-actin mRNA expression.
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Figure 4
Effect of different hypoxic conditions on GAPDH mRNA expression in GaMG cells. For experimental settings refer
to Fig. 2. (A) Semiquantitative RT-PCR analysis (B) densitometric evaluation of GAPDH and B-actin mRNA expression.
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Figure 5

In-vivo protein expression of human housekeeping
genes GAPDH, -actin and y-tubulin in biopsies of
normal brain (NB), low-grade astrocytoma and gliob-
lastoma. (A) Western-blot analysis of tissue lysates.
GAPDH, B-actin and y-tubulin are homogenously expressed
by all analysed samples. (B) Expression intensities of the
bands in the Western blot were densitometrically evaluated.
The bar graphs show GAPDH expression after normalization
to the corresponding expression of [3-actin. No GAPDH
upregulation in the more hypoxic glioblastoma samples in
comparison to low-grade astrocytoma was detectable. (C)
Densitometric evaluation of y-tubulin expression in the
human brain tumor tissues. Band intensities are shown as bar
graphs. No regulatory effect of hypoxic conditions in vivo on
housekeeping gene expression could be detected.

lines in vitro, and the expression of the gene examined was
not altered after substitution of the GAPDH by the 18S
RNA band with subsequent densitometric evaluation
[21].

GAPDH induction by hypoxia in endothelial cells occurs
via mechanisms other than those involved in other
hypoxia-responsive systems [24]. A lack of regulation of
GAPDH mRNA in response towards hypoxic events has

http://www.biomedcentral.com/1471-2199/8/55

also previously been demonstrated in the case of articular
chondrocytes [28]. Table 1 summarizes literature data
about GAPDH expression in response to the hypoxic
development of the cellular environment by several
tumor and non-tumor cells.

Our data did not reveal any correlation between hypoxia
induced HIF-1a protein overexpression and GAPDH reg-
ulation on mRNA and protein level in vitro in human
glioblastoma cell lines. Although we did not measure oxy-
genation levels directly in the human tumors, samples of
which were analyzed regarding GAPDH expression, we
considered low-grade astrocytoma and glioblastoma as
tumor entities characterized by modest hypoxia and
severe hypoxia, respectively. This has been suggested by
experimental findings of needle electrode measurements
of human glioma [29] and by immunohistochemical
studies using HIF-1a or carbonic anhydrase IX (CA IX) as
an endogenous hypoxia marker [30,31] or EF5 as an
injectable hypoxia marker [32]. Furthermore, our own
recent studies showed significant mRNA overexpression
of known hypoxia-regulated genes in glioblastoma, as
compared to low-grade astrocytoma [33]. Based on these
findings from other studies, our present results suggest
that there is also no hypoxia-dependent regulation of
GAPDH in astrocytic tumors in vivo.

Conclusion

Therefore, we can conclude that the regulation of GAPDH
mRNA and protein expression as a response to the
hypoxic development in the tumor cell enviroment in vitro
and in vivo is not an absolute phenomenon, but occurs as
a cell-specific post-transcriptionally regulated event.
Expression of GAPDH represents one of the alternatives of
a housekeeping gene and can be used as a loading control
in experiments with glioma cells. Therapeutic strategies
for treatment of human astrocytic tumors involving
GAPDH as target molecule do not represent a valid
approach in conjunction with tumor hypoxia in the
human brain.

Methods

Cell and culture and hypoxia treatment

Early-passage human malignant glioma cell lines U251
and U373 from the American Type Culture Collection
(ATCC, Rockville, MD) and GaMG, a cell line that was
established from a patient with glioblastoma multiforme
(Gade Institut of the University Bergen, Norway) [34],
were grown on glass Petri dishes in Dulbecco's modified
Eagle's medium, supplemented with 10% fetal bovine
serum (FBS) and non-essential amino acids. Additionally,
all culture media were supplemented with penicillin (100
IU/ml)/streptomycin (100 pg/ml) and 2 mM L-
glutamine. Cells were treated with in-vitro hypoxia for 1, 6
or 24 hours at 0.1%, 1% and 5% O,, respectively, in a
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Effect of different hypoxic conditions on GAPDH protein expression in GaMG, U373 and U251 cells. For experi-
mental settings refer to Fig. 2. (A) Western-blot analysis of B-actin and GAPDH protein expression. Shown is a representative
experiment out of three. (B) Bar graphs showing expression strength of GAPDH after densitometric evaluation of signal
strengths and normalization to the corresponding 3-actin expression. Hypoxia did not regulate GAPDH expression in any

direction.

Ruskinn (Cincinnatti, OH, USA) Invivo, hypoxic worksta-
tion as previously described [29]. For reoxygenation
experiments, dishes were returned to the incubator after
24-hour hypoxia treatment.

Acquisition of human tumor tissues

Tissue biopsies were obtained surgically from two groups
of patients: 11 patients with glioblastoma multiforme and
11 patients with low-grade astrocytoma. Samples were
immediately frozen at -80°C and then stored in liquid
nitrogen before further analysis. Three samples of tempo-

ral brain tissue (normal brain, NB) were a kind gift of Tho-
mas Freiman (University Hospital Freiburg im Breisgau,
Germany) and derived from patients with epilepsy. The
experimental protocols were approved by the Human Eth-
ics Committee of Wiirzburg University and were per-
formed according to the Declaration of Helsinki.

Intracellular f-actin, GAPDH and HIF-1 o levels in
response to in vitro hypoxia

Intracellular B-actin, GAPDH and HIf-1a levels were
detected via immunoblotting of protein lysates and
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HIF-1oo mRNA expression in vivo in different human
brain tissues, detected by semi-quantitative RT- PCR.
HIF-1oc mRNA expression was comparable in normal brain
(NB), low-grade astrocytoma and glioblastoma. + = positive
control using genomic DNA as template, - = negative control
with water as template. The bar graphs show band intensities
after densitometric evaluation and normalization of HIF-1a
expression to the corresponding -actin expression.

nuclear extracts, or by semiquantitative RT-PCR where (-
actin and y-tubulin served as loading controls, respec-
tively.

Preparation of nuclear extracts

According to the protocol, 1 x 10° cells/ml were seeded
and at the end of the respective treatment, subconfluent
cells were scratched from petri dishes with 10 ml PBS. A
pellet was obtained by centrifugation (Beckman CS-6R, 4
min, 800 rpm). After two PBS washes, cells were resus-
pended in 1 ml PBS and centrifuged at 14,000 rpm for 45
sec. The cell pellet was resuspended in 400 pl ice-cold
buffer A (10 mM Hepes, pH 7.9, 10 mM KCI, 0.1 mM
EDTA, 0.1 mM EGTA, 1 mM PMSF, 10 ul complete pro-
tease inhibitor cocktail (Roche), 1 mM DTT and incu-
bated on ice for 15 minutes. For cell lysis 25 pl of 10% NP-
40 was added and cells were homogenized with 10 strokes
in a Dounce homogenizer at 4°C, followed by centrifuga-
tion for 1 min at 14,000 rpm for nuclei sedimentation.
Supernatants were carefully removed and regarded as
cytoplasmic fractions. Extraction of nuclear proteins was
achieved by adding 50 pl of buffer C (20 mM HEPES [pH
7.9], 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM PMSF,
0.1 pl complete protease inhibitor cocktail).

Preparation of lysates from cells and human tumor tissues
and immunoblotting

Whole-cell lysates were prepared with 0.1 ml RIPA buffer
(1 x TBS, 1% Nonidet P-40 (Amresco, Vienna, Austria),
0.5% sodium deoxycholate, 0.1% SDS; protease inhibi-
tors pepstatin A 1.4 uM, aprotinin 0.15 uM and leupeptin
2.3 uM and 100 uM PMSEF (all from Sigma, St. Louis, MO,

http://www.biomedcentral.com/1471-2199/8/55

USA). To inhibit protein dephosphorylation, phosphatase
inhibitor mix (Sigma) was added. Using a syringe fitted
with a 21 gauge needle to shear DNA, lysates were trans-
ferred to a microcentrifuge tube, followed by 30 min incu-
bation on ice. Subsequently, cell lysates were cleared by
centrifugation at 15.000 x g for 12 min at 4°C. 20 ug of
protein lysates were separated by 8% SDS polyacrylamide
gel electrophoresis and transferred to a 0.45 um nitrocel-
lulose membrane (Protran BA 85; Schleicher & Schuell,
Dassel, Germany). Nonspecific binding was blocked by
5% non-fat milk powder in TBS overnight at 4°C fol-
lowed by incubation with the HIF-1a antibody (BD Bio-
sciences, dilution 1:500) with nuclear extracts in 2.5%
nonfat milk powder in TBS for 1 h at room temperature.
Blots were washed two times in TBS/0.05% Tween-20
(Bio-Rad, Munich, Germany) and subsequently three
times in TBS for 5-10 min each. The secondary antibody,
in all cases a goat anti-mouse Immunoglobulin/HRP,
dilution 1:2000 (P0447 stock solution: 400 pg/ml; Dako-
Cytomation, Denmark), was incubated for one additional
hour at room temperature followed by five washes as
described above. Bound antibodies were detected by
developing the membrane with ECL Plus Western Blotting
detection system (Amersham Biosciences, Cambridge,
UK) for 5 min with subsequent development of the
Hyperfilm ECL (Amersham). Membranes were also
probed with anti-B-actin antibody (A 5316, 1:10000,
Sigma-Aldrich, Germany), anti GAPDH antibody
(Abcam, Ab8245, 1:2000) or anti-B-tubulin mouse mon-
oclonal antibody (Sigma, 1:2000). For reprobing, mem-
branes were stripped with stripping buffer (100 mM B-
mercaptoethanol, 2% sodium dodecyl sulfate, 62.5 mM
Tris HCI pH 6.7) at 60°C for 30 min.

Isolation of total RNA from tumor cell lines and tumor
tissues

Total RNA was isolated from cultured tumor cells as
reported previously [6] and described in [3], including the
digestion of contaminating DNA with the provided
DNase. Total RNA from tumor tissues was isolated with
the nucleospin RNA II kit (Macherey & Nagel, Dueren,
Germany) following the manufacturer's instructions.

Comparison of HIF-1 ¢, f-actin and GAPDH mRNA
expression levels in human glioma tissue and human
glioblastoma cell lines by semiquantitative reverse
transcription-polymerase chain reaction (RT-PCR)

To compare the expression of the individual genes exam-
ined, RT-PCR was performed using primers designed
using published information on GAPDH, f-actin and
HIF-1o. mRNA sequences in GenBank (accession numbers
NM 002046 for GAPDH, NM 001101 for B-actin and
NM_001530.2 for HIF-1a, respectively). An aliquot of 1-
5 ug of total mRNA from human gliblastoma and astrocy-
toma tissue or glioblastoma cell lines was transcribed at
42°C for 1 h in a 20 pl reaction mixture using 200 U
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HIF-1oo mRNA expression in human GaMG glioblastoma cell line after in vitro application of different hypoxic
conditions. For experimental settings refer to Fig. 2. Semiquantitative RT-PCR did not reveal any regulatory event under dif-
ferent oxygenation, hypoxia and reoxygenation conditions. Bar graphs show band intensities after densitometric evaluation and

normalisation to -actin expression as it is known from previous experiments. Representative experiment out of three.

RevertAid™ M-MuLV Reverse Transcriptase (RT),
oligo(dT)18 primer and 40 U Ribonuclease inhibitor (all
from Fermentas, Ontario, Canada).

For PCR-reactions primers were designed in flanking
exons with Primer3 software (available online http://
frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi): to
produce an 566 bp amplification product of GAPDH, the
forward primer (F1) was 5'-GCAG-
GGGGGAGCCAAAAGGG-3' (nucleotides 393 - 412) and
the reverse primer (R1) 5-TGCCAGCCCCAGCGT-
CAAAG-3' (nucleotides 939 - 958). To produce an 668 bp
amplification product of B-actin, the forward primer (F1)
was 5'-CGTGCGTGACATTAAGGAGA-3' (nucleotides 697
- 716) and the reverse primer (R1) 5'-CACCITCACCGT-
TCCAGTTT-3' (nucleotides 1345 - 1364) and to produce
an 233 bp amplification product of HIF-1q, the forward
primer (F1) was 5'-TTACAGCAGCCAGACGATCA -3'
(nucleotides 2516 - 2535) and the reverse primer (R1) 5'-
CCCTGCAGTAGGTITCTGCT -3' (nucleotides 2729 -

2748). The PCR was performed with 25 to 32 cycles with
increments of 5 cycles using PCR systems and reagents
acquired from Promega™ (Promega GmbH, Mannheim,
Germany) and applied according to the manufacturer's
instructions. The PCR products were separated on 1% aga-
rose gels (Sigma-Aldrich, Steinheim, Germany) and visu-
alized by ethidium bromide staining (0.07 pg/ml
ethidium-bromide; Biorad, Munich, Germany).

Densitometric evaluation

Densitometric evaluation of signal strengths in Western
blots or in semiquatitative RT-PCR was performed with
1D Kodak Image Analysis Software. The amount of DNA
or proteins gave signals that were measured in Kodak light
units (KLU) and divided by the corresponding signals of
the loading control (y-tubulin, B-tubulin and B-actin for
Western blots and semiquatitative RT-PCR) as previously
described [11,21].
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Figure 9

Nuclear protein expression of HIF-1o in human U373, U251 and GaMG glioblastoma cells after in vitro applica-
tion of different hypoxic conditions. For experimental settings refer to Fig. 2. (A) Western-blots. 3-tubulin served as load-
ing control. (B) HIF-1a protein expression strength shown as bar graphs after densitometric evaluation and normalization to

the corresponding B-tubulin expression. HIF-1a was strongly expressed after | h at 0.1% O,, and still increased for up to 24 h
hypoxia. It showed stable reduced expression after up to 48 h reoxygenation. Similar data were obtained in three independent

experiments.

Abbreviations

tumor hypoxia, GAPDH, glyceraldehyde-3-phosphate
dehydrogenase, B-actin, oxygen, glioblastoma multi-
forme, astrocytoma, HIF-1a, 18S RNA

Authors' contributions

HMS was the primary author of the manuscript, per-
formed the in-vitro hypoxia experiments, supplied the in-
vitro mRNA, protein lysates and nuclear extracts, per-
formed the Western blots, densitometric analysis of the

results and participated in the study design. CH co-
authored the manuscript and supplied the brain tumor
samples and their mRNA and protein and participated in
the study design. Both HMS and CH also coordinated the
group and contributed to the development of the experi-
mental strategy. JS designed the primers used for RT-PCR
and participated with BS in the experimental procedures.
GHV, MF, KR and DV also participated in the study
design. All authors read and approved the final manu-
script.

Page 11 of 13

(page number not for citation purposes)



BMC Molecular Biology 2007, 8:55

http://www.biomedcentral.com/1471-2199/8/55

Table I: Overview of GAPDH expression by different tumor and non-tumor cell lines as a consequence of the development of a
hypoxic cellular microenvironment

Cell line or type Origin

Genetic mutations (-/+)

GAPDH
overexpression
under hypoxia

Ref. GAPDH Ref. mutations

LNCap - Human prostate - No mutations + [35] [27]
adenocarcinoma cells
ATII -Rat alveolar epithelial cells - No mutations + [26] [26]
SiHA -Human spontaneous cervical - No mutations + [36] [37]
cancer cells Wild type p53
MBEC4 -Mouse brain capillary - No mutations + [38] [38]
endothelial cells
EC - Human endothelial cells - Not determined Mutated + [51, [22], [23], [40]
epithelial cells are present [24] [39], [40]
Skeletal muscles - Rabitts skeletal muscle cells - Not determined + [41] -
from hindlimbs of
newborn white New
Zealand rabbits
Bovine articular -Bovine chondrocytes - Not determined - [38] -
chondrocytes

U373 - MG -Human malignant glioma cells -Apoptosis resistant - - [42], [43],

mutant P53 [44],

- Peroxisome proliferator
activated receptor —y
- PTEN mutation
GaMG -Human malignant glioma cells - No mutations - - [34], [44]
U251 -Human malignant glioma cells -Mutated p53 — PI4ARF/ - - [43], [46]
P16 deletion
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