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Abstract
Background: Giardia intestinalis is a protist found in freshwaters worldwide, and is the most
common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still
much debated. Histones are small, highly conserved proteins that associate tightly with DNA to
form chromatin within the nucleus. There are two classes of core histone genes in higher
eukaryotes: DNA replication-independent histones and DNA replication-dependent ones.

Results: We identified two copies each of the core histone H2a, H2b and H3 genes, and three
copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of
Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of
each gene share extensive DNA sequence identities throughout their coding and 5' noncoding
regions, which suggests these copies have arisen from relatively recent gene duplications or gene
conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of
the translation start codon for each gene. We determined that a 50 bp region upstream from the
start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp
sequence called the histone motif (him) is essential for its activity. The Giardia core histone genes
are constitutively expressed at approximately equivalent levels and their mRNAs are
polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex
that binds him may also be a part of the protein complexes that bind other promoter elements
described previously in Giardia.

Conclusion: In contrast to other eukaryotes, the Giardia genome has only a single class of core
histone genes that encode replication-independent histones. Our inability to locate a gene encoding
the linker histone H1 leads us to speculate that the H1 protein may not be required for the
compaction of Giardia's small and gene-rich genome.
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Background
Giardia species are binucleated parasitic protists of the
group diplomonads [1]. Members of this group differ
extensively in their cytology and biochemistry from most
other eukaryotes. G. intestinalis is the best explored species
of this group [2], and its small genome of 12 Mb contain-
ing >9,000 ORFs has been completely sequenced recently
[3]. As an important human pathogen of the upper intes-
tinal tract, it was in the center of attention of medical par-
asitologists for many years [4]. Its peculiar cytology, most
notably the absence of typical mitochondria, made it an
important organism in studies on the evolution of eukary-
otic cells [5-8]. During the 1980s and 1990s, these appar-
ently ancestral features led to the assumption that Giardia
species were representatives of the earliest, premitochon-
drial branches of the eukaryotic phylogenetic tree. Recent
work, however, cast serious doubt on this assessment of
diplomonads and suggests that they are derived forms.
The presence of mitosomes, organelles that probably
derived from the ancestral mitochondrial endosymbiont
[9], and mitochondrial genes in its nuclear genome
[10,11] indicate that Giardia is not ancestrally amitochon-
driate. Efforts to establish the large scale phylogeny of
eukaryotes did not resolve the order of separation of the
major eukaryotic lineages and gave no support for an early
divergence of diplomonads from other eukaryotes [12].

A tight association between DNA and small, highly basic
proteins forms a highly organized arrangement called
chromatin in the nucleus. Histones are a major compo-
nent of these basic proteins, and can be categorized as
either core or linker types. In the primary "beads on a
string" structure of chromatin, DNA is wrapped around
nucleosomes, which are composed of two molecules of
each core histone protein (H2a, H2b, H3 and H4). The
linker histone H1 binds to the DNA that stretches between
adjacent nucleosomes and plays an important role in the
formation of higher order chromatin structures within the
nucleus. In addition to their role in the packaging of DNA,
the core histones can regulate transcription through mod-
ifications of their N-terminal tails, which is one of the
major mechanisms for epigenetic regulation of gene
expression [13]. There are two classes of core histone
genes in higher eukaryotes: DNA replication-independent
or basal histones, and DNA replication-dependent his-
tones. The genes for the DNA replication-independent
histones are dispersed throughout the genome, are consti-
tutively expressed, and their mRNAs are polyadenylated.
In contrast, the replication-dependent histone genes are
arranged in tandem repeats within the genome, have ele-
vated expression during the S-phase of the cell cycle, and
their mRNAs contain a conserved hairpin structure in the
3'UTR instead of a poly(A) tail [14].

In this study, we have characterized the core histone genes
of G. intestinalis. We determined the copy number, chro-
mosomal localization, and the site of transcription initia-
tion of these genes. The minimal promoter for the histone
H4 gene was defined, and the role of a 15 bp conserved
sequence within this promoter was analyzed. Further-
more, the binding of proteins from a Giardia nuclear
extract to the 15 bp motif in the histone H4 promoter was
examined. We were unable to detect a gene encoding the
linker histone H1.

Results
Two copies each of the H2a, H2b, and H3 genes, and three
copies of the H4 gene were identified in the recently com-
pleted G. intestinalis genome [3] (Table 1). Surprisingly,
no gene encoding a H1 histone was found despite exten-
sive searches. Southern hybridization of BAC clones con-
taining these genes to blots of G. intestinalis chromosomes
separated by pulsed-field gel electrophoresis showed that
the histone genes were dispersed on different chromo-
somes as follows: one copy of the H2a gene on chromo-
some 3 and the second copy on chromosome 5; both
copies of H2b genes on chromosome 5 separated by
approximately 5.8 kb; the two copies of H3 genes on chro-
mosome 4 separated by approximately 0.5 Mb; and the
three copies of the H4 genes are localized to a 8 kb frag-
ment near one end of chromosome 5. Two of the three
copies of the H4 genes are positioned tail to tail near the
end of one contig and the other is at the end of another
adjacent contig. This raises the possibility that the detec-
tion of three copies of the H4 gene is an artifact of contig
assembly and that there are only two copies of the H4
gene as is the case for other G. intestinalis core histone
genes. To investigate this possibility, we designed PCR
primers that flank the genomic DNA region containing
the copies of the H4 gene based on the sequence from the
GiardiaDB assembly. Since the DNA fragment obtained
from the PCR amplification of Giardia genomic DNA with
these primers was of the same 8 kb size as the region pre-
dicted by the GiardiaDB assembly (data not shown), the
contig assembly of this region is probably correct and
three copies of the H4 gene are present.

The DNA sequences within the coding regions were iden-
tical for all copies of each G. intestinalis core histone gene
except for 7 silent nucleotide substitutions between the
two copies of the H2a gene. Interestingly, the DNA
sequence conservation among the copies of each histone
gene continued upstream of the coding region; the length
of identical 5' noncoding sequence ranged from 50 bp for
the H3 genes to 99 bp for the H4 genes. The lengths of
identical 3' noncoding sequence between the copies of
each histone gene are much shorter, ranging from only 5
bp to 16 bp, except for the H4 genes, which have 124 bp
of identical 3' noncoding sequence. Sequences matching
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the consensus polyadenylation signal (AGT [A/G]AA [T/
C]) of G. intestinalis genes [15] were present in the 3' non-
coding sequences of all histone genes. This motif over-
lapped the translation stop codon in both copies of the
H3 and H2b genes and in the other histone genes was
located at positions from 5 to 20 bp downstream from the
stop codon. Examination of 100 bp centered on the puta-
tive polyadenylation signal of the genes did not reveal any
sequence that could form the stem-loop structure that is
conserved in the 3' UTR of mRNAs of replication-depend-
ent histones found in higher eukaryotes [16].

A number of conserved DNA elements were detected in
the upstream sequences of the four histone genes (Fig.
1A). The 15 bp conserved motif (G [G/A]GCGCATGATT-
TNGG) [17], named here as the histone motif (him), is
found in every copy of the core histone genes. Two pro-
moter elements, which were first characterized in the
glutamate dehydrogenase gene of G. intestinalis [18,19],
were also recognized in this alignment: the AT-rich
sequence was present in the upstream sequence of H4 and
H2a, and the Giardia CAT box (g-CAB) was present in the
upstream sequence of H4 and H3. The transcription initi-
ation site for all four core histone genes was established at
triplet A sites near the start of the coding region and down-
stream from him by determining the 5' ends of the histone
mRNAs with the technique of rapid amplification of 5'
cDNA ends (5' RACE) (Fig. 1A). The start of transcription
for the H4 gene was confirmed by primer extension anal-
ysis, which produced a major extension product that

mapped to the same nucleotide identified by 5' RACE
(Fig. 1B). The core histone mRNAs have very short 5'
UTRs, ranging from 27 nucleotides for H2a to just a single
nucleotide for H2b, which is consistent with reported
results for other Giardia genes [15].

To study the role of him in the expression of the core his-
tone genes, we used the upstream sequence of the H4 gene
to drive the expression of the luciferase reporter gene in
transient transfections of Giardia (Fig. 2A). An initial 99
bp of H4 upstream sequence was used because this is the
length of sequence that is identical between the two cop-
ies of the H4 gene. Only minor effects on luciferase activ-
ity were observed when the 5' flanking sequence was
deleted to within 50 bp of the translation start codon (H4/
5'Δ50). However, luciferase activity decreased five-fold if
the him sequence was removed (H4/5'Δ34 and H4/5'Δ9),
and dropped to background levels when the remainder of
the 5' flanking sequence was eliminated (H4/5'Δ0).

To further test the function of the conserved motifs in the
histone H4 promoter, we made mutations to the 50 bp
upstream sequence contained in the plasmid H4/5'Δ50
and assayed their effects on luciferase activity in Giardia
transfections (Fig. 2B). Mutations to the g-CAB element
within him (*1), as well as mutations in him outside of the
g-CAB element (*2) caused marked decreases in luciferase
activity. Combining the *1 and *2 mutations of him into
a single plasmid (**2) resulted in a further decrease in
luciferase activity. Reductions in luciferase activities were

Table 1: Copy number and genomic organization of core histone genes

Chromosome2 Poly(A) Conserved sequences5

Histone ORF ID1 # Position Dir. Sequence3 STOP4 Upstream Coding Downstream

H4-i 135001 5 0.6 R AGTAAAC -5 bp 99 bp 300 bp 124 bp
H4-ii 135002 5 0.6 F
H4-iii 135003 5 0.6 R

H3-i 135231 4 0.2 R AGTAAAC overlap 50 bp 441 bp 5 bp
H3-ii 14212 4 0.7 R

H2a-i 27521 3 0.15 F TGTAAAC -10 bp 80 bp (-2) 375 bp (-7) 12 bp (-1)
H2a-ii 14256 5 0.6 R TGTGAAC -20 bp

H2b-i 121046 5 1.2 R AGTAAAT overlap 56 bp 393 bp 16 bp
H2b-ii 121045 5 1.2 R

1 ORF ID as assigned for each gene on GiardiaDB [3].
2 The chromosome position indicates the distance in Mb from the end of the map for that chromosome. The distance from the telomere is greater, 
since the map does not extend all the way to the telomeres.
3 Sequence matching the consensus polyadenylation signal for Giardia genes (Reviewed in [15]); the DNA sequence for the stop codon is underlined 
in the polyadenylation sequence shown for the H2B and H3 genes since these sequences overlap for these two genes.
4 Location of putative polyadenylation signal relative to the translation stop codon of each gene.
5 Coding and non-coding sequences conserved among all copies of each core histone gene; number of nucleotide mismatches are indicated in 
brackets.
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also observed when mutations were introduced into the g-
CAB element overlapping the AT-rich sequence (*3) and
in the AT-rich sequence itself (*4).

The relative strengths of the core histone promoters were
tested by using the minimal upstream sequence of each
gene that contained the him sequence to drive the expres-
sion of luciferase reporter constructs (Fig. 2C). Transfec-
tions of these constructs into G. intestinalis showed that all
four core histone promoters have similar activities. The
relative expression of the four histone genes was nearly
equal as shown by similar Ct (cycle threshold) values
obtained in real-time qPCR experiments (Table 2). By
comparison, similar analysis of mRNA for 11 other pro-
tein-encoding genes in G. intestinalis gave Ct values that
differ as much as 7 to 9 cycles (J. Yee, unpublished).

We also found that the relative mRNA levels of the four
core histone genes did not differ in cells from exponential
phase or from stationary phase cultures. The RNA was
extracted from these cultures and cDNAs were synthesized
using either a poly(T)25 primer or a primer specific for

each histone gene. The cDNAs were then used as tem-
plates in PCR reactions on a real-time PCR instrument.
Table 2 shows the qPCR results from cDNA synthesized
from poly(T)25-primed RNA extracted from exponential
cultures. The average Ct numbers obtained for the four
core histone genes differ by less than 2 amplification
cycles; the numbers for the H4 and H3 genes are nearly
identical, while those for H2a and H2b genes are slightly
higher. Similar results were obtained when these analyses
were repeated with cDNA generated from exponential
phase RNA by gene specific primers, and with cDNA gen-
erated either by poly(T)25 or gene specific primers from
RNA extracted from stationary phase cultures (data not
shown).

To test whether the him sequence is a binding site for tran-
scription factors, gel-shift assays were performed with the
use of a double-stranded DNA probe containing three him
motifs in tandem (3him, Fig. 3). Several shifted complexes
were observed when this probe was incubated with pro-
teins from a Giardia nuclear extract (Fig. 3A). The DNA
sequence specificity of the binding was tested by the addi-

Determination of the transcription start sites for the G. intestinalis core histone genesFigure 1
Determination of the transcription start sites for the G. intestinalis core histone genes. A, 5'RACE analysis of the 
four core histone genes. The numbers at the top indicate the nucleotide positions in the DNA sequences relative to the trans-
lation start codon (overlined) for each gene. The him sequences are indicated in the grey boxes; the AT-rich sequences are indi-
cated in the open boxes; the g-CAB elements are underlined, and the bent arrows indicate the start of transcription for each gene. 
B, Primer extension analysis of the H4 gene. The extension products were generated from 5'end-labeled H4/PE-1b oligonucle-
otide and total Giardia RNA, and the DNA sequence ladder was generated using the same end-labeled oligonucleotide as a 
primer. The positions of the major and minor extension products are indicated by arrows in the (+)DNA strand shown on the 
left.
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Promoter analysis of the G. Intestinalis core histone genesFigure 2
Promoter analysis of the G. Intestinalis core histone genes. Luciferase activities were determined from Giardia transfec-
tions with a dual-luciferase reporter system. Each Giardia sample was co-transfected with an experimental plasmid and the con-
trol plasmid, and assayed sequentially for firefly and Renilla luciferase activities. The firefly luciferase activity was divided by the 
Renilla luciferase activity to obtain the F/R-LUC ratio. Percentages of relative luciferase activity were calculated by comparing 
the F/R-LUC ratio obtained from Giardia transfected with each construct relative to the ratio obtained upon transfection of the 
control plasmid in each experiment. A, Identification of the histone H4 promoter. Experimental plasmids contained incremen-
tal deletions of the upstream region of the H4 gene to drive the expression of the firefly luciferase (F-LUC) gene. The compo-
sition of the experimental constructs are represented by: white bar, 5' noncoding region of the H4 gene; grey bar, him sequence; 
black bar, AT-rich sequence; open box, firefly luciferase coding region. The numbers proximal to the white bars indicate the 
length of 5' noncoding region of the H4 gene remaining within each plasmid. B, Mutational analysis of the histone H4 promoter. 
Experimental plasmids contained mutations within the 50 bp promoter region of the histone H4 gene to drive the expression 
of the firefly luciferase (F-LUC) gene. In the wild-type H4 promoter sequence presented on the top line, the him is indicated by 
the grey box; the AT-rich sequence is indicated by the open box; the g-CAB elements are underlined; and the transcriptional 
start site is indicated by the bent arrow. C, Comparison of the four core histone promoters. The minimal 5' noncoding 
sequence of each core histone gene that contain the him sequence was used to drive the expression of the firefly luciferase 
gene in the experimental plasmid constructs. The him sequences are indicated by grey boxes; the AT-rich sequences are indi-
cated by open boxes; and the g-CAB elements are underlined.
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tion of unlabeled, double-stranded DNA containing dif-
ferent sequences at 100-fold molar excess to the probe.
Unlabeled DNA containing the 50 bp minimal histone
H4 promoter (H4/5'Δ50) or containing a single him
sequence (himWT) were able to compete for protein bind-
ing to the probe (lanes 3 and 5 in Fig. 3A). However, if
him**2 DNA with the mutations that cause a reduction in
luciferase activity in transfections (**2 in Fig. 2B) was
used as competitor, it had much less effect on protein
binding (lane 6 in Fig. 3A). DNA containing a sequence
from the coding region of the histone H4 gene (H4 code)
did not compete with the 3him probe, nor did DNA con-
taining the adenovirus E1B TATA-box (E1B). Unexpect-
edly, the H4 promoter with deleted him sequence (H4/
5'Δ34), and the minimal promoter of the G. intestinalis
glutamate dehydrogenase (GDH) gene that contains no
him sequence were also able to compete for protein bind-
ing (lanes 4 and 9 in Fig. 3A). To investigate the possibility
that the AT-rich element present in H4/5'Δ34 and the
GDH promoter is competing with protein binding to him,
DNA containing a single AT-rich element (AT-WT) was
used as a competitor in the gel-shift assay. The AT-WT
DNA was able to compete with the 3him probe for protein
binding (lane 7 in Fig. 3A), but an excess of AT*4 (lane 8
in Fig. 3A), which contained mutations in the AT-rich ele-
ment that caused a reduction in luciferase activity in Gia-
rdia transfections (*4 in Fig. 2B), was greatly reduced in its
ability to compete with the 3him probe.

Discussion
The sequences of the four core histones (H2a, H2b, H3
and H4) of Giardia intestinalis are similar to those of his-
tones from other eukaryotes [17]. Protein structure mod-
eling of the putative translation products indicate that
these proteins can assemble into nucleosomes that do not
differ significantly from nucleosomes from vertebrates

[17]. In the present study we extend this information to
the copy number, promoter structure, and genomic distri-
bution of the histone genes in this organism. Each of these
genes is represented in its genome by two copies only –
with the exception of the H4 gene that is present in three
copies. These copy numbers are at the low end of the scale
observed among eukaryotes, ranging from just two copies
of each gene in yeast, 10 to 20 copies in humans, and up
to several hundred copies in sea urchins [20]. The unex-
pected extensive DNA sequence identities between the
copies of each of these genes, especially since they extend
to the 5' noncoding region, suggest that these copies have
arisen from relatively recent gene duplications or gene
conversions.

All canonical replication-dependent histone genes in
higher eukaryotes lack polyadenylation signals except for
some invertebrate animals (insects [21,22], worms [23],
crustaceans [24], and mussels [25]) that have core histone
genes with both a stem-loop structure and a polyadenyla-
tion signal. These findings have led to the hypothesis that
there has been a progressive replacement of the polyade-
nylation signal by the stem-loop structure in replication-
dependent histones in defining the 3' ends of core histone
mRNAs during animal evolution [25]. The presence of
polyadenylation signals and the absence of potential
stem-loop structures in the 3' noncoding sequences of the
Giardia core histone genes suggest that studies on repre-
sentatives of other eukaryotic lineages is warranted to
determine whether a similar evolutionary trend is a more
general phenomenon.

The linker histone H1 is a ubiquitous component of
eukaryotic chromatin and is expected to be present in this
protist. An earlier report putatively identified a 21 kDa
basic protein from nuclear extracts as histone H1 [26]. The

Table 2: Relative expression of Giardia intestinalis core histone genes

Gene Accession #1 PCR primers (5' → 3')2 Avg. PCR efficiency3 Avg. Ct
4

H4 AF139876 F: AGACCCGCGAGGTCCTCAA 91 ± 9% 15.9 ± 0.8
R: TTGCGCTGGCCGTGTTCTG

H3 AF139875 F: TACCAGAAGTCCACAGACC 95 ± 10% 16.0 ± 0.6
R: TGGAAGCGGATGTCGGA

H2a AF139873 F: GTCGTGGCAGAGGTCTT 102 ± 15% 16.9 ± 1.2
R: CTCCTTGTCCTTGCGGA

H2b AF139874 F: GACAACATCCGCTCCGA 101 ± 16% 17.8 ± 1.8
R: CGAAGAGGTCGTTCACG

1 Accession number for nucleotide sequence in GenBank
2 The sequences are denoted F for the forward primer, and R for the reverse primer.
3 Average PCR amplification efficiencies and standard deviations are calculated from triplicate reactions performed in 3 to 5 independent 
experiments.
4 Average Ct values and standard deviations are calculated from triplicate reactions performed in 3 to 7 independent experiments.
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Characterization of protein binding to the him sequenceFigure 3
Characterization of protein binding to the him sequence. A,Gel-shift assays were performed with 5' biotin-labeled, 
double-stranded DNA containing three histone motifs in tandem (3him) and crude nuclear extract from Giardia. Lane 1 con-
tains the probe alone; lane 2 contains the probe plus nuclear proteins; lanes 3–11 contain unlabeled DNA used at 100X molar 
excess relative to the probe. B, The probe and competitors were generated by annealing complementary oligonucleotides 
together, although only the sequences of the plus strands are shown. DNA motifs within the sequences are indicated: grey box 
for him, open box for the AT-rich element; g-CAB elements are underlined; and the TATA-box of the E1B adenovirus is over-
lined.
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identification was based on the size of the protein and on
the sequence of one of its peptides (VAATPVSTKAAP) that
was highly similar to a sequence within the chicken his-
tone H1 protein (VAAPPTPAKAAP). Our inability to find
this peptide or any homologs of H1 sequences from other
organisms in the G. intestinalis genome database is there-
fore puzzling. More than an 11-fold coverage of the
genome has been achieved by the Giardia genome
sequencing project [3], so the possibility that the H1 gene
was missed in the assembly is unlikely although it cannot
be excluded. Furthermore, we were not able to detect spe-
cific binding to any protein in a Giardia histone extract
with an antibody that recognizes the H1 protein in
chicken, human and other mammals in Western blot
analysis (data not shown).

These observations raise the problem of the identity of the
protein isolated by Triana et al. [26]. The failure to identify
a histone H1 in the Giardia genome indicates that this
gene is either so divergent that it could not be recognized
by our database searches or that it absent from this organ-
ism. No unambiguous H1 has been reported for Apicom-
plexa [27], and the H1 gene is non-essential in the ciliate,
Tetrahymena thermophila [28]. Although TEM analysis of
Giardia chromatin by Triana et al. showed structures that
were more compact than the "beads-on-a-string" nucleo-
some filament, it is unclear whether a 30 nm fibre struc-
ture is present. Indeed, polynucleosome fibres in the
presence of physiological levels of cations can fold further
to form more compact chromatin structures in the
absence of H1 histones [29,30]. In Giardia, more than
9,000 ORFs are crammed into a genome that is only 12
Mb in size. Thus, it is tantalizing to speculate that the for-
mation of histone H1-dependent chromatin structures
may not be necessary to compact such a small and gene-
rich genome. In support of this idea, we were also unable
to identify a histone H1 in the Microsporidian, Encepha-
litozoon cuniculi, an evolutionarily distant organism with a
genome less than 3 Mb in size that contains almost 2,000
protein encoding genes [31]. Only further biochemical

studies on Giardia chromatin can clarify the conundrum
of the missing histone H1 gene. If Giardia indeed lacks a
histone H1, this finding would be consistent with the
hypothesis that H1 histones were recruited in eukaryotic
evolution after the acquisition of the core histones to fur-
ther refine the chromatin structure [32,33]. However, fur-
ther support for this hypothesis would require more
detailed analysis of representative organisms from differ-
ent lineages.

Whereas the evolutionary origin of the core histones can
be traced back to a DNA binding protein in archaebacte-
ria, such as the Hmf protein in Methanofermus fervidus
[34,35], the origin of the H1 histone is more difficult to
determine. Unlike the highly conserved core histone pro-
teins, the H1 proteins are very heterogeneous among pro-
tozoa, and exhibit great diversification and specialization
even among mammals [32]. Nevertheless, the sequence
similarity of small basic proteins found in several eubac-
teria to the lysine-rich carboxyl terminus of metazoan H1
proteins has led to speculations that these eubacterial pro-
teins are candidates for the ancestral histone H1 protein
[36]. In the dinoflagellate, Crypthecodinium cohnii, pro-
teins with similarity to the core histones are absent but
two proteins (HCC1 and HCC2) with significant similar-
ity to the small molecular weight HU bacterial protein are
present [37]. The HU protein is the most abundant DNA-
binding protein in E. coli, and one role of this multifunc-
tional protein is the organization of the bacterial chromo-
somal DNA [38,39]. Intriguingly, an HU-like DNA-
binding protein was also identified by Triana et al. [26]
based on a peptide sequence obtained from a small
molecular weight protein on a SDS-PAGE gel of fraction-
ated Giardia chromatin. However, we were unable to
locate an exact match of this peptide sequence in the Gia-
rdia genome database by BLASTp and tBLASTn searches.
The Giardia sequence with the best match to the putative
HU peptide was only 8 out of 13 amino acids. Negative
results were also obtained when the Giardia genome was
searched with the full-length HU sequence from Bacillus

Table 3: Gene specific primers for 5' RLM-RACE reactions

Primers 5' to 3' sequence

H2A/outer CCCTCTCTTCCCTCCTT
H2A/inner AGGGCAGTTAGGATGTGGTT

H2B/outer ACTTCTTCGTGGACTCCTTC
H2B/inner CGTGTTCCGCTTGCTGAT

H3/outer GAAGAGCGAGATGATGTAGTTC
H3/inner CTGGAAGCGGATGTCGGA

H4/inner ATGGCGGGCTTCGTGAT
H4/outer TCCCGAATCCATAGAGTGTGC
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subtilis. When the top five Giardia sequences from each of
the above searches were used individually in BLASTp and
tBLASTn searches against all sequences in the GenBank
database, no HU nor other histone sequences were
retrieved. Possible explanations for our lack of finding the
HU gene is that the HU-like gene was missed in sequenc-
ing of the Giardia genome, or more likely, there was a bac-
terial contamination of Triana et al.'s Giardia chromatin
preparation.

The transcription initiation site of the G. intestinalis his-
tone genes was located only a few nucleotides upstream
from the translation start codon, in agreement with previ-
ous studies showing that mRNAs of this species have unu-
sually short 5' UTRs [2]. The translation of messages with
such short 5' UTRs has been a point of debate because ear-
lier reports suggested that Giardia mRNA are uncapped
[40]. Recent studies, however, demonstrated more con-
vincingly that Giardia mRNAs are capped, and that capped
mRNAs with 5'UTRs as short as a single nucleotide can be
efficiently translated in this protist [41,42].

Our results obtained with transient transfection assays
with luciferase activity as indicator show that an about 50
bp upstream stretch has full promoter activity for G. intes-
tinalis core histone genes. This is in agreement with results
of transcriptional analysis of other Giardia genes demon-
strating promoter regions range from 40 to 60 bp in
length [18,19,43,44]. Mutational analysis of these regions
showed that the promoter elements are only weakly con-
served and usually contain triplet A's and/or triplet T's
[18,19,43,44]. The 15 bp histone motif (him) with the
consensus sequence GRGCGCAGATTNGG, was detected
in all four core histone genes, but has not been found in
other Giardia genes or in the core histone genes of other
eukaryotes [17]. Motivated by the assumption that him is
a regulatory element that controls the coordinated expres-
sion of the Giardia core histone genes, we decided to char-
acterize the promoter of the histone H4 gene by analyzing
its upstream sequence in more detail. The marked
decrease in luciferase activity observed with deletions or
mutations in him indicates the importance of this motif to
the function of the histone H4 promoter. The highly con-
served nature of the motif, and our observation that the
four histone promoters had approximately equivalent
activity, suggest that him also has an important regulatory
role in the transcription of the other Giardia core histone
genes.

We used quantitative real time PCR to compare the steady
state mRNA levels of the four histone genes and found
that they were all within a four-fold range (two amplifica-
tion cycles) of each other. We did not detect any signifi-
cant differences in the relative levels of core histone
mRNAs extracted from exponential phase cultures com-

pared to mRNAs from stationary phase cultures. Moreo-
ver, we have not observed any marked changes in core
histone mRNA levels during the cell cycle in our analysis
of gene expression in semi-synchronized Giardia cultures
(J. Yee, unpublished data). These results suggest that the
core histone genes of G. intestinalis are constitutively
expressed at approximately equivalent levels. These obser-
vations are also consistent with the absence of orthologs
in this species to the transcription factors SPT10, SPT21,
HIR1 or HIR2, which are involved in the expression of
replication-dependent histones in yeast [45,46]. There-
fore, the him sequence is likely to be a binding site for a
transcription factor that allows a relatively high and con-
stant level of histone gene expression in Giardia. The
equivalent results obtained by qRT-PCR assays using
cDNA produced from mRNA with either poly(T) or gene-
specific primers demonstrate that the histone transcripts
are polyadenylated. These observations suggest that the
single class of core histone genes in Giardia have a dual
function: they provide bulk histones for packaging of
newly synthesized DNA during S-phase in the cell cycle,
and provide replacement histones for the repair of chro-
matin during the other stages of the cell cycle.

While information on the identity and function of tran-
scription factors in G. intestinalis is scarce, a recent survey
of its genome identified only four general transcription
initiation factors among the twelve that are normally asso-
ciated with transcription in higher eukaryotes [47]. Fur-
thermore, a Giardia TBP was identified that is highly
divergent with respect to archaeal and higher eukaryotic
TBPs, and it contains substitutions in three out of four
phenylalanines required for binding of other TBPs to
TATA-sequences [47]. In this study, we showed that pro-
teins from a Giardia nuclear extract bound to a probe con-
taining three him sequences in tandem, and demonstrated
the specificity of these DNA-protein interactions by com-
petition assays with an excess of unlabeled DNA contain-
ing different sequences. Competition was observed with
unlabeled DNA containing the 50 bp minimal H4 pro-
moter or a single wild type him sequence, but not with a
region of the H4 coding sequence or with a canonical
eukaryotic TATA-box sequence. In addition, a mutated
sequence of him had greatly reduced ability to compete for
protein binding to the probe. While these results suggest
that a protein or proteins are binding specifically to him,
the competition observed with DNA containing the H4
promoter with the him deleted and the GDH promoter
lacking him appears to contradict this conclusion. How-
ever, these two sequences contain both an AT-rich and a g-
CAB element, and we showed that the wild-type AT-rich
sequence was able to compete for protein binding to the
3him probe but the mutant AT-rich sequence could not.
Taken together, these results suggest that either a common
protein is binding to him as well as to the g-CAB and AT-
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rich elements, or more likely, a common cofactor is
required for the formation of different protein complexes
at each of these promoter elements. One possible candi-
date for this common cofactor is pot, a protein that was
described in our previous characterization of the GDH
promoter [18,19]. However, the identity of the proteins
that bind him awaits the completion of our protein purifi-
cation experiments.

Conclusion
In summary, we identified a single class of core histone
genes in G. intestinalis that are constitutively expressed at
relatively high levels, and their mRNAs are polyade-
nylated. There are two copies each of the core histone
H2a, H2b and H3 genes, and three copies of the H4 gene,
at separate locations on chromosomes 3, 4 and 5 within
the genome of Giardia intestinalis. The low copy number of
each basal histone gene, and the lack of a second class of
replication-dependent genes may be further examples of
genetic downsizing in this protist. Our inability to locate
a gene encoding the linker histone H1 leads us to specu-
late that the assembly of higher ordered chromatin struc-
tures that are H1-dependent may be restricted in Giardia.
If so, chromatin remodelling in this organism would be
more dependent on histone modifications and the substi-
tutions of histone variants into the nucleosomes. We
determined that a 50 bp region upstream from the start of
the histone H4 coding region is the minimal promoter,
and a highly conserved 15 bp sequence motif called the
histone motif (him) is essential for its activity. Our gel-
shift assays showed that a common factor is shared
between the protein complex that binds to him and the
complexes that bind other promoter elements described
previously in Giardia. Given the short lengths (50 – 60 bp)
of promoters in this protist, it is likely that only a single
protein complex, composed of a core set of transcription
factors, can form on these regions. Gene-specific tran-
scription factors, such as the him-binding protein, would
interact with and modulate the activity of the core com-
plex. The implications of such genetic streamlining on the
nature of transcription initiation in Giardia are unknown.
Further study of these transcription factors and chromatin
structure in G. intestinalis would provide a clearer picture
of gene expression in this remarkable eukaryote.

Methods
Database searches
The programs of BLASTp and tBLASTn were used for
sequence search [48]. Nucleotide sequences of the four
core histone genes of G. intestinalis have been established
earlier (NCBI GenBank accession numbers AF139873–
AF139876; [16]). These sequences were used as queries to
search the public database of the G. intestinalis (= G. lam-
blia) genome project [3] for gene copy number and flank-
ing sequences. In order to identify genes encoding linker

histone H1, the genomes of G. intestinalis [49] and the
Microsporidian, Encephalitozoon cuniculi [50] were
searched using histone H1 sequences  from the NCBI pro-
tein database for Saccharomyces cerevisiae (accession
P53551), Homo sapiens (accession CAA40409),
Caenorhabditis elegans (accession CAA37372) and Gallus
gallus (accession P08285). A partial sequence (VAAT-
PVSTKAAP) from a putative H1, and a partial sequence
(TIEIPESNVPAFK) from a putative HU obtained from G.
intestinalis nuclear extract [25], and the full-length HU
sequence from Bacillus subtilis (accession P08821) were
also used as queries in searches of the G. intestinalis
genome with a E-value set at 1000 to identify short or
divergent sequences. Four Giardia sequences with the best
matches from each of these searches were retrieved and
used as queries in BLAST searches of the GenBank data-
base.

Searches for potential stem-loop structures within the 100
bp region centered on the translation stop codon of each
Giardia core histone gene were performed using the Prim-
erSelect module of the Lasergene software (DNASTAR).

Chromosomal localization of histone genes
As part of the G. intestinalis genome project [3], multiple
BAC clones containing G. intestinalis genomic DNA were
sequenced at the ends to allow localization to contigs and
supercontigs. The sizes of selected BACS were determined
by restriction digestion using rare-cutting enzymes, giving
an insert size of 50 to 240 kb. Selected BACs were also
hybridized to Giardia chromosomes separated by pulsed
field gel electrophoresis (PFGE) as described (Adam
1988) to allow chromosomal assignment. In this way, all
the larger contigs and supercontigs were assigned to spe-
cific chromosomes (Adam, unpublished), and the chro-
mosomal locations of the G. intestinalis histone genes
were determined.

5' RACE
Axenic G. intestinalis (strain WB clone 6; ATCC 30957)
was cultured in modified TYI-S-33 medium [51]. Total
RNA was extracted from trophozoite cultures by the use of
the TRIZOL Reagent (Invitrogen). A RLM-5'RACE (RNA
ligase-mediated rapid amplification of 5' cDNA ends)
reaction was carried out for each core histone gene by
using FirstChoice® RLM-RACE Kit (Ambion) with approx-
imately 11 μg of total RNA per reaction. The RNA sample
was treated with calf intestine alkaline phosphatase to
remove the 5' phosphate group from any degraded RNA
and DNA. Tobacco acid pyrophosphatase was added to
remove the cap structure from the 5' end of the mRNAs,
and an oligonucleotide adapter was ligated to the 5' end
of the treated mRNA. The mRNA samples were reverse
transcribed from random 10-nucleotide primers to pro-
duce the first strand of cDNAs, which were subsequently
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amplified in two sequential PCR reactions. In the first
reaction the outer primer complementary to the anchor
and the outer gene-specific primer were used. In the sec-
ond reaction the inner primer complementary to the
anchor and the inner gene-specific primer were used. The
outer and inner anchor primers were supplied with the
RLM-5'RACE kit. The sequences of the outer and inner
gene-specific primer are listed in Table 3. Since only
cDNAs that are extended to full-length will have the
anchor sequence at their 3' ends, truncated cDNA will not
be amplified in these PCR reactions. The amplicons were
cloned into a TA plasmid using the TOPO TA Cloning Kit
(Invitrogen). Three to five plasmid clones from each RLM-
5'RACE reaction were sequenced. The position in the
DNA sequence adjacent to the ligated adapter corre-
sponded to the transcription start site.

Primer extension analysis
The primer extension analysis was performed as described
previously [52]. An oligonucleotide, H4/PE-1b (5' GAT
GGC GGG CTT CGT GAT GCC 3') with a sequence com-
plementary to codons 25 – 31 of the G. intestinalis histone
H4 gene was 5' end-radiolabeled with 33P using T4 poly-
nucleotide kinase (New England Biolabs) and annealed to
10 μg of Giardia total RNA. The primer was extended with
SuperScript™ II reverse transcriptase (Invitrogen) and
dNTPs (0.67 mM). The RNA in the sample was degraded
by incubating it with 0.5μl of DNase-free RNase A
(Promega) for 15 minutes at 37°C. The remaining cDNAs
in the sample were electrophoresed on a denaturing 6%
PAGE. A sequence ladder was generated with the use of
the same end-labeled oligonucleotide as a primer in a
DNA sequencing reaction with a plasmid containing the
Giardia histone H4 gene as the template.

Plasmid construction
The transfection plasmids were constructed starting from
the plasmids, GDH/5'Δ5N and pRL-null. The GDH/
5'Δ5N plasmid contains the firefly luciferase gene flanked
by 44 bp of upstream sequence and 120 bp of down-
stream sequence from the G. intestinalis glutamate dehy-
drogenase gene as described previously [19]. The pRL-null
plasmid (Promega) was the source of the Renilla luciferase
gene.

The control plasmid, R-Luc, was constructed by replacing
the firefly luciferase gene in GDH/5'Δ5N with the gene for
Renilla luciferase from pRL-null.

The GDH/5'Δ5N plasmid was digested with HindIII and
NcoI to generate a 44 bp fragment containing the GDH
minimal promoter and a 4,964 bp fragment containing
the promoterless vector we called NΔ2N. The "deletion"
constructs shown in Fig. 2A were made by inserting DNA
fragments containing varying lengths of the upstream

sequence from the histone H4 gene into the linearized
NΔ2N vector. The 99 bp and 75 bp of H4 upstream
sequences, contained in H4/5'Δ99 and Δ75, respectively,
were generated by PCR amplification of G. intestinalis
genomic DNA with forward primers containing HindIII
sites at their 5' ends, and reverse primers containing NcoI
sites at their 5' ends. The 50 bp, 34 bp and 9 bp of H4
upstream sequences, contained in H4/5'Δ50, Δ34 and Δ9,
respectively, were obtained by annealing complementary
oligonucleotides that left overhanging HindIII and NcoI
sites at the 5' and 3' ends, respectively.

The mutant constructs shown in Fig. 2B were made by
replacing the 50 bp promoter of histone H4 H4/5'Δ50
with duplex oligonucleotides containing nucleotide sub-
stitutions within its sequence. The constructs shown in
Fig. 2C containing the putative promoters for the H3, H2b
and H2a genes were made by inserting duplex oligonucle-
otides containing the respective sequences into the NΔ2N
vector. All constructs were checked by DNA sequencing.

Giardia transfections and luciferase assays
The Dual-Luciferase® Reporter Assay System (Promega)
was utilized in transfections to study the core histone pro-
moters. The experimental reporter was the firefly luci-
ferase (F-Luc) gene driven by different sequences
upstream of the Giardia core histone genes, and the con-
trol reporter was the Renilla luciferase (R-Luc) gene driven
by the minimal promoter of the Giardia glutamate dehy-
drogenase (GDH) gene [18,19].

G. intestinalis was grown and prepared for electroporation
as described previously [53]. The test F-Luc plasmid DNA
(40 μg) and the control R-Luc plasmid DNA (5 μg) were
added to the cells immediately before electroporation.
The Giardia cells were placed back into culture, and col-
lected after a 6 h recovery at 37°C as previously described
[53]. The cells were lysed by resuspension in 25 or 30 μl
of passive lysis buffer (Promega) supplemented with 0.75
μg/ml leupeptin (Sigma), and one freeze/thaw cycle. For
each dual luciferase assay, 20 μl of the Giardia lysate was
mixed with 100 μl of luciferase assay reagent II
(Promega), and placed in the luminometer (Turner
Designs TD-20/20 Luminometer) to measure the firefly
luciferase (F-Luc) activity. To stop the F-Luc reaction and
provide the substrate for the Renilla luciferase (R-Luc),
100 μl of Stop & Glo reagent (Promega) was added to the
sample tube, vortexed briefly, and placed back in the
luminometer to measure the R-Luc. The F-Luc/R-Luc ratio
was calculated by dividing the F-Luc value by the R-Luc
value for each sample.

In every experiment, each electroporation was performed
in triplicate. The relative luciferase activities listed under
"Results" (as percentages of the F-Luc/R-Luc ratios
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obtained in control transfections) are averages of three to
six independent experiments and have standard devia-
tions within 10% of the presented value.

Real-time RT-PCR
The sequences of the primers used in the real time quanti-
tative RT-PCR (RT-qPCR) reactions are shown in Table 2.
StrataScript RT enzyme (Stratagene) was used to synthe-
size first strand cDNAs from either an oligo d(T)21 or a
gene-specific primer annealed to the mRNAs. For each
gene, PCR reactions with cDNAs synthesized from RNA
concentrations at 50, 25, 10, 5, 1 and 0.5 ng/μl were per-
formed. Two control reactions were also performed for
each gene: an RNA sample from a mock cDNA synthesis
reaction containing no reverse transcriptase (No-RT), and
a control sample without template (NTC). In the No-RT
sample, RNA was used at 50 ng/μl instead of cDNA; in the
NTC sample, water was added instead of the cDNA tem-
plate.

Each 25 μl PCR reaction contained: 9.13 μl of nuclease-
free water, 2.5 μl of 10X PCR buffer (200 mM Tris-HCl,
pH 8.4, 500 mM KCl), 2.5 μl of 25 mM MgCl2, 2.0 μl of
dNTP mixture (containing 5 mM of each dNTP), 0.75 μl
of DMSO, 4 μl of 50% glycerol, 0.37 μl ROX reference dye
(Stratagene), 1.25 μl of 3.3X SYBR green (Cambrex), and
0.5 μl of Taq DNA polymerase (Invitrogen). The real-time
PCR reactions were performed on the Mx3000P instru-
ment (Stratagene) as follows: one cycle at 95°C for 10
min; 40 cycles at 94°C for 30 seconds, 60°C for 1 minute,
and 72°C for 30 seconds. Fluorescence levels were meas-
ured during the 60°C annealing phase of each cycle as
well as continuously during the dissociation analysis.

A standard curve was constructed for every gene, and the
efficiency of PCR amplification was calculated from the
slope of the plot (% efficiency = [10-1/slope - 1] * 100). After
the PCR reaction, a melting curve analysis of the amplified
product was performed for each gene to detect the pres-
ence of any primer dimers. Each standard reaction was
performed in triplicate. All reactions were performed on
the same 96-well plate in each experiment, and each
experiment was performed at least three times.

Gel-shift assays
G. intestinalis nuclear extracts were prepared as described
previously [19]. The double-stranded DNA probe was pre-
pared by heating equimolar amounts of complementary
5' biotin-labeled oligonucleotides containing three him
sequences in tandem at 90°C for 10 minutes in annealing
buffer (5 mM Tris-HCl, pH 7.9, 1 mM MgCl2, 10 mM
NaCl, 0.1 mM DTT), and then allowing the oligonucle-
otides to anneal slowly as the sample cooled to room tem-
perature. Double-stranded DNA competitors were
prepared in the same manner as the probe except these

complementary oligonucleotides were unlabeled (see Fig.
3B for the sequences of the probe and competitors).

A typical binding reaction contained 1–2 pmole of probe,
7–15 μg of nuclear extract in 1X binding buffer (10 mM
Tris-HCl, pH 7.5, 50 mM NaCl, 0.5 mM DTT and 5% glyc-
erol) plus 0.2 μg poly(dI/dC) and 0.4 μg leupeptin. In
competition experiments, all components, including the
probe and competitor DNA, were pre-mixed before the
addition of protein extract. Reaction mixtures were incu-
bated for 15 minutes at room temperature and resolved
on a pre-electrophoresed 5% native polyacrylamide gel.

After electrophoresis the DNA in the gel was transferred
onto a 0.45 μM nylon membrane (MagnaProbe®) in a
semi-dry electroblotter at 200 V for 30 minutes. The DNA
was UV crosslinked onto the membrane by placing the
membrane on a transilluminator for 3 min. The mem-
brane was incubated in 20 ml of 1X blocking buffer (0.1
M Tris-HCl, pH 7.5, 0.15 M NaCl, 0.1% skim milk pow-
der) for 30–60 minutes at room temperature or overnight
at 4°C. Next, the membrane was incubated for 30 minutes
in 20 ml of 1X blocking buffer with 2 μl of streptavidin-
AP antibody (Roche) added to obtain a 1/10000 dilution
of the antibody. The membrane was incubated twice for
15 minutes in washing buffer (100 mM maleic acid, 150
mM NaCl, and 0.3% Tween-20), and then equilibrated in
detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5) for
five minutes. The membrane was removed from the detec-
tion buffer and 6–8 drops of the CDP-star chemilumines-
cent reagent (Perkin-Elmer) were applied to the
membrane. After a pre-incubation period at 37°C for 5
minutes to enhance the chemiluminescence signal, the
membrane was placed into the cabinet of a Chemigenius2

bioimaging system (Syngene) to visualize the biotin-
labeled DNA bands.

List of abbreviations
3'UTR : 3' untranslated region of the mRNA

5'RACE : Rapid PCR amplification of the 5' cDNA ends

5'UTR : 5' untranslated region of the mRNA

AT-rich sequence : A conserved AT-rich sequence contain-
ing the transcription initiation site found in many Giardia
gene promoters

BAC : Bacterial artificial chromosome

Ct : Cycle threshold; the number of PCR cycles required in
a real-time PCR reaction to reach a set fluorescent thresh-
old

F-Luc : Firefly luciferase
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g-CAB : Giardia CAT box promoter motif

GDH : Glutamate dehydrogenase

him : A 15 bp conserved motif in the promoters of the Gia-
rdia core histone genes

HIR1 and HIR2 : Transcriptional corepressors involved in
the cell cycle-regulated transcription of core histone genes
in Saccharomyces cerevisiae

No-RT : A negative control sample for real-time RT-PCR
experiments where no reverse transcriptase is added to the
cDNA synthesis step

NTC : A negative control sample for real-time PCR exper-
iments where no template (no RNA nor DNA) is added to
the PCR reaction

ORF : Open reading frame

PFGE : Pulsed field gel electrophoresis

pot : Poly(T)-binding protein

qPCR : Quantitative real-time PCR

qRT-PCR : Quantitative real-time RT-PCR

RLM-5'RACE : RNA ligase-mediated rapid amplification
of 5' cDNA ends

R-Luc : Renilla luciferase

S-phase:  DNA synthesis phase of the cell cycle

SPT10 and SPT21 : Sequence-specific activator of core his-
tone genes in Saccharomyces cerevisiae

TBP : TATA-binding protein

TEM : Transmission electron microscopy
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