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Abstract

Background: Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired
by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs) can be repaired through direct
joining of broken ends (non homologous end joining, NHEJ) or through recombination with the non broken sister
chromosome (homologous recombination, HR). Rad50 protein plays an important role in repair of DNA damage in
eukaryotic cells, and forms a complex with the Mrel | nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a
complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can
arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells.

Results: A deletion of the sbcC gene rendered Bacillus subtilis cells sensitive to DNA damage caused by Mitomycin C
(MMC) or by gamma irradiation. The deletion of the sbcC gene in a recN mutant background increased the sensitivity of
the single recN mutant strain. SbcC was also non-epistatic with AddAB (analog of Escherichia coli RecBCD), but epistatic
with RecA. A deletion of the ykoV gene encoding the B. subtilis Ku protein in a sbcC mutant strain did not resulted in an
increase in sensitivity towards MMC and gamma irradiation, but exacerbated the phenotype of a recN or a recA mutant
strain. In exponentially growing cells, SbcC-GFP was present throughout the cells, or as a central focus in rare cases.
Upon induction of DNA damage, SbcC formed I, rarely 2, foci on the nucleoids. Different to RecN protein, which forms
repair centers at any location on the nucleoids, SbcC foci mostly co-localized with the DNA polymerase complex. In
contrast to this, AddA-GFP or AddB-GFP did not form detectable foci upon addition of MMC.

Conclusion: Our experiments show that SbcC plays an important role in the repair of DNA inter-strand cross-links
(induced by MMC), most likely through HR, and suggest that NHE] via Ku serves as a backup DNA repair system. The
cell biological experiments show that SbcC functions in close proximity to the replication machinery, suggesting that
SbcC may act on stalled or collapsed replication forks. Our results show that different patterns of localization exist for
DNA repair proteins, and that the B. subtilis SMC proteins RecN and SbcC play distinct roles in the repair of DNA
damage.
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Background

All organisms need to ensure the integrity of their
genome. A major threat are inter-strand cross-links and
double strand breaks (DSBs) in the DNA that can cause
cell death or cellular transformation. The repair of inter-
strand cross-links appears to be achieved via two path-
ways, including proteins involved in nucleotide excision
repair, and DNA polymerase II or proteins mediating
homologous recombination (HR) [1]. At least two path-
ways also exist for the repair of DSBs. These can be
repaired through direct end joining (non homologous
end joining, NHEJ), but this process creates the danger of
connecting the wrong ends, and of losing genetic informa-
tion. In eukaryotic and in some prokaryotic cells, Ku pro-
tein binds to broken DNA ends, protects them from
exonucleolytic degradation and specifically recruits a ded-
icated DNA ligase that seals the ends [2,3]. In Bacillus sub-
tilis, deletion of the genes encoding for Ku and DNA ligase
(ykoV and ykoU) leads to sensitivity to DSBs during sta-
tionary phase [4], showing that this pathway has an
important function in non-growing cells. A much less
error prone pathway is DNA repair through HR, in which
a variety of proteins uses the intact sister chromosome to
fix a DSB [5-7]. Central to this pathway is strand exchange
protein RecA (Rad51 in eukaryotes) that promotes the
annealing of the 3'-single-stranded (ss) DNA from the
broken chromosome with the homologous sister copy
and thereby catalyzes HR. In B. subtilis, the AAdAB (nucle-
ase/helicase) complex (RecBCD in Escherichia coli) or
alternatively, RecQ/RecS/RecJ act upstream of RecA. These
enzymes generate a sSDNA region at the DSB, which is
used for strand exchange [8]. AAdAB or RecO/RecR load or
help to load RecA onto the 3' ssDNA end [9]. In eukaryo-
tes, the Rad50/Mrel11/Xrs2 (Nbsl in human cells) com-
plex is thought to perform the degradation of one DNA
strand to generate a 3' ssDNA overhang. Downstream of
RecA, different DNA helicases, such as RecG, and the Ruv-
ABC complex are involved in the formation of Holliday
junctions and in the resolution of crossovers [6], while
DNA polymerase I is required to fill ssDNA gaps.

The eukaryotic Rad50 complex plays an important role in
DNA repair in eukaryotes through HR [10,11], and is
apparently also involved in NHE]J through bridging of the
broken DNA ends [12,13]. Mrel1 has endo- and exonu-
clease activity in the presence of Rad50 [14]. Rad50 has
been shown to bind to DNA in an ATP-dependent manner
[15], although the Rad50 complex was found to be able to
bind to DNA in the absence of ATP [16]; DNA end-bridg-
ing is ATP independent [17]. Rad50 belongs to the family
of SMC proteins that share a similar modular structure.
These proteins are composed of conserved N- and C- ter-
minal domains that are separated by two long coiled coil
domains and a central hinge domain. Two monomers
invariably form a dimer through specific interaction of the
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hinge domains, creating a symmetrical dimer with a cen-
tral hinge, two long coiled coil arms and two ATPase head
domains [18,19]. In Rad50, the coiled coil arms lack a
hinge domain. Instead, the coiled coils can connect in a
dynamic manner via a Zn bridge formed by an invariable
CxxC motif, which may mediate end bridging [20]. SMC
proteins are central components of several essential pro-
tein complexes in pro- and eukaryotes, and mediate a
wide range of chromosome dynamics [21]. In bacteria,
the SMC complex localizes as two foci, one within each
cell half, and actively compacts and organises chromo-
somes from these sites [22]. The chromosome is repli-
cated in and moves through the centrally located DNA
polymerase complex [23]. Thus, bacterial chromosomes
are segregated during ongoing replication, while both
processes occur at different times during the cell cycle in
eukaryotic cells.

In E. coli, the Rad50 ortholog, SbcC, forms a complex with
the Mrel1l-homologous SbcD nuclease [24], which has
been shown to be involved in cleavage of DNA hairpins
that can occur during replication [25]. Many other bacte-
ria possess sbcC homologous genes, but no reports on
SbcC in other bacteria are available, and it is unclear if
SbcC plays a similar role in DNA repair as Rad50 in
eukaryotes.

In recent years, repair of DNA DSBs has been visualized in
live eukaryotic cells, giving vital insight into the function
of proteins. The Rad50 complex, Rad51, Rad52 and other
repair proteins have been shown to form discrete foci on
damaged chromosomes, and to dynamically interact
within the repair structures, or to form distinct repair foci
[26-30]. In bacteria, RecA, RecN, RecO and RecF have
been shown to co-localize to discrete centres on the nucle-
oids after induction of DNA damage, showing that bacte-
ria also form DNA repair centres after DNA damage
[31,32]. RecN is also a member of the SMC protein family,
plays an important function in DNA repair via HR, and
has ssDNA-binding activity in vitro [8,33].

In this work, we have investigated the role of prokaryotic
SbcC in DNA repair, and show it has an important func-
tion in this process, which is different from that of RecN.
We have visualized the dynamic formation of defined
SbcC foci on the DNA in response to DNA damage. The
foci were generally coincident with the position of the rep-
lication machinery, and therefore most likely represent
stalled replication forks, whose restart may be facilitated
by the action of SbcC.

Results

B. subtilis SbcC is involved in DNA repair

BLAST searches showed that the yirY gene in the B. subtilis
genome encodes a typical SbcC protein, with a central
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A) Analysis of the probability of coiled coil regions within B. subtilis SbcC, using programs from http://npsa-pbil.ibcp.fr. The posi-
tion of the corresponding CXXC motif forming a Zn bridge in Rad50 [20] is indicated. B) Analysis of the formation of a.-helices
in SbcC. C) Putative structure of SbcC, and putative binding of SbcD, according to data obtained for Rad50 protein [18, 56].
SbcC has the potential to form a dimer with another SbcC monomer via the Zn-bridge. It is interesting to note that in spite of
their similarity, the SbcCD and Rad50/Mrel | complexes have a different arrangement in vitro [57].

CXXC motif (residues 537-540), N- and C-terminal
ATPase cassette domains and two long coiled coil
domains (Fig. 1). The yirY gene product is a 128.7 kDa
protein with a pl of 5.3, and is most similar to E. coli SbcC,
and significantly homologous to eukaryotic Rad50 pro-
teins (C-terminal domain: 30% identity/49% similarity to
SbcC, 18% identity/26% similarity to S. cerevisiae Rad50).
SbcC is in a putative operon with and downstream of
addB, addA and sbcD genes [E. coli SbcC forms a complex
with SbcD [24]], and upstream of yisB. Therefore, we pro-
pose to name the yirY gene product SbcC of B. subtilis, and
the gene sbcC. To test the function of SbcC, we constructed
a gene disruption of sbcC. Because the gene downstream

of sbcC, yisB, performs an important function during
growth in B. subtilis (our unpublished data), we cloned an
internal fragment of sbcC into an integration vector that
contains a xylose inducible promoter (P,;) for transcrip-
tion of downstream genes. Integration of the vector into
the sbcC gene resulted in the disruption of the gene, while
transcription of yisB continued through the P,,, promoter.
Disruption of sbcC did not show any effect on normal
growth of B. subtilis cells, but markedly affected DNA
repair. When strain JM42 (sbcC::cm) was challenged with
50 or 100 ng/ml of Mitomycin C {MMC forms base
adducts and DNA inter-strand cross-links (in a ~4:1 ratio),
which can lead to single strand gaps and to DSBs [34-
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Figure 2

Survival of Bacillus subtilis wild type or of mutant cells after addition of different doses of MMC for 20 min. The strains used are
indicated by the relevant genotype. At least three independent experiments were performed, bars denote standard deviations.

37]}, for 20 min, followed by plating on normal LB
plates, the survival rate was strongly reduced compared to
wild type cells (Fig. 2, 13.1% or 5.6% survival compared
with 50% or 28%, respectively). Microscopic analysis of
MMC-treated cells did not show any different morpholo-
gies between wild type and mutant strains, like exponen-
tially growing cells, MMC-treated cells were still present as
chains of cells, in which individual cells were elongated
compared to the non-treated cells. To avoid any complica-
tion with the induction of prophages after DNA damage,
the sbcC deletion was moved into strain YB886 that is
cured of all inducible prophages [38]. The sbcC deletion
strain formed fewer and smaller colonies on 125 ng/ml of
MMC than wild type cells (rect) growing at 150 ng/ml
(Fig. 3, compare panel "150" with "125" ng/ml). Thus,

SbcC is involved in DNA repair. However, cells carrying a
deletion of the recA gene are much more severely affected
in this aspect (the latter cells were unable to survive a chal-
lenge with 50 ng/ml, and could not efficiently grow on 3
ng/ml, Fig. 3). To test whether the loss of SbcC affects DSB
repair, cells were exposed to y-irradiation. As shown in Fig.
4A, the sbcC deletion strain was marginally, but signifi-
cantly, impaired in the survival of 50 to 150 Gy (note the
log scale-plotting of Fig. 4). However, the true importance
of SbcC in DNA repair is masked by the action of other
proteins, as will become apparent below.

Genetic interactions of sbcC
To gain further insight into the involvement of SbcC in
DNA repair, double mutant strains were constructed in
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+MMC

125 ng/ml

DNA repair sensitivity of exponential-phase AsbcC and AykoV mutants to the killing action of MMC. The strains used are indi-
cated by the relevant genotype. Serial dilutions of a culture of each strain were plated in selective medium containing the indi-
cated concentration of MMC. Wild type cells were exposed to 150 ng/ml, AsbcC, AykoV or AsbcC AykoV to 125 ng/ml, ArecN,
AsbcC ArecN or AykoV ArecN to 40 ng/ml and ArecA, AykoV ArecA or AsbcC ArecA were exposed to 3 ng/ml of MMC. At least
three independent experiments were performed and one of them is presented.

the prophage-free YB886 background, and their survival
rates were compared with those of wild type cells, of a
recN deletion (ArecN) strain, of a ykoV (encodes the B. sub-
tilis Ku protein) deletion strain or of ArecA cells. The dele-
tion of sbcC, ykoV or sbcC and ykoV did not alter the growth
rate of the culture compared with wild type cells, similar
to sbcC recN or ykoV recN mutant cells. Contrarily, recA
mutant cells show a strong reduction in growth and plat-
ing efficiency [39]. When exponentially growing wild type
or mutant cells were exposed to MMC, the strains could be
grouped into three different classes, moderately/very/
extremely sensitive to MMC.

Figure 3 shows the concentrations of MMC that affected
the plating efficiency of sbcC, recN, or recA mutant cells,
respectively. SbcC or ykoV mutant cells and the double
sbcC ykoV mutant strain were moderately sensitive to
MMC, with a growth defect at 150 ng/ml and a moderate
sensitivity in the presence of 125 ng/ml of MMC. In con-
trast, the growth of the wild type was unaffected by the
presence of 150 ng/ml of MMC (Fig. 3), but survival was
impaired in the presence of 175 ng/ml (data not shown,
[8]). The ArecN strain was sensitive to 40 ng/ml of MMC,
and the double AsbcC ArecN or AykoV ArecN strains were
considerably more sensitive than the single ArecN mutant
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Figure 4

DNA repair sensitivity to y-radiation of wild type (rec*) or of mutant cells grown to stationary-phase. Wild type cells and their
isogenic derivatives (AsbcC, AykoV, AsbcC AykoV, ArecN, AsbcC ArecN, AykoV ArecN, ArecA, AykoV ArecA or AsbcC ArecA) were
exposed to different doses of y-radiation. At least three independent experiments were performed, bars denote standard devi-
ations.
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(Fig. 3). The ArecN strain showed confluent growth at the
10-2 dilution (2nd row) and about 50 microcolonies at the
10-3 dilution (314 row), whereas the double AsbcC ArecN or
AykoV ArecN strains neither showed confluent growth at
the 102 dilution, nor microcolonies at the higher dilu-
tion. The higher sensitivity of the double mutant strains
can be considered a non-epistatic interaction, suggesting
that SbcC acts on a DNA repair pathway different from
RecN.

One pathway of DNA repair via HR in E. coli involves the
RecBCD complex, whose analog in B. subtilis is the AAdAB
complex [40,41]. The survival rate after MMC treatment
was reduced in addAB mutant cells (29% or 12%, 50 or
100 ng/ml of MMC), compared to wild type cells (Fig. 2).
However, addAB sbcC mutant cells were more severely
affected in the survival test compared with the single
mutants (Fig. 2). Therefore, SbcC is also not epistatic with
AddAB. We also performed similar experiments using ble-
omycin that induces DSBs, which yielded similar results
(data not shown).

To substantiate these interactions, and to test for sensitiv-
ity to DNA damage using another method, stationary
phase cultures of wild type or of mutant cells were
exposed to ionizing radiation. Wild type, AsbcC, AykoV, or
AsbcC AykoV cells exhibited significant resistance to irradi-
ation up to a dose of 100 Gy (Fig. 4A). At higher doses, the
lethal dose leaving 50% survivors (LDs,) was ~147 Gy for
wild type cells, ~140 Gy for AykoV cells, ~128 Gy for AsbcC
cells, and ~130 Gy for AsbcC AykoV double mutant cells.
This finding differs from previous work reporting that the
LD, is ~180 Gy for wild type and ~73 Gy for the AykoV
strain [4]. It is possible and even likely that this discrep-
ancy is due to different strain backgrounds, i.e. the pres-
ence of naturally inducible prophages in the strains used
in the cited work. Additionally, differing numbers of
spores formed by the two different parent strains could
account for the discrepancy, because Bs-Ku plays an
important role in DNA repair in spores [42].

The ArecN strain was very sensitive to y-radiation, with a
LD, of ~92 Gy. However, the LD;, was ~61 Gy for the
AsbcC ArecN strain, and ~40 Gy for the AykoV ArecN strain
(Fig. 4B), representing a 1.5-fold and 2.3-fold increase in
the sensitivity of the double mutant strains compared to
the ArecN strain. These results confirm that scbC and recN
or ykoV and recN show a non-epistatic interaction.

The ArecA strain was highly sensitive to y-radiation, with a
LDs, of ~20 Gy (Fig. 4B), however, the LD, of the double
AykoV ArecA mutant strain was ~16 Gy. The sensitivity of
the double mutant strain was clearly higher than that of
the already sensitive single mutant and can be considered
a non-epistatic interaction, consistent with a previous
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report [4]. In contrast, the AsbcC ArecA double mutant
strain was as sensitive to gamma irradiation as the recA
mutant strain (data not shown, see ArecA in Fig. 4).

The data show that SbcC plays an important role in DNA
inter-strand cross-link repair, and acts in a different path-
way than AddAB or RecN, while it is epistatic with RecA.
Its importance becomes clearer in the ArecN background,
which is also true for the function of Bs-Ku protein. The
data also suggest that HR is the main repair system for
DNA inter-strand cross-links and DSBs in B. subtilis, while
NHEJ constitutes a backup system that is required in the
absence of HR repair.

SbcC forms defined foci on the nucleoids upon induction of
DNA DSBs

To visualize the subcellular localization of B. subtilis SbcC,
we created a C-terminal fusions of sbcC to gfp or to yfp,
ensuring transcription of the downstream genes by an
internal xylose-inducible promoter. The SbcC-GFP and
SbcC-YFP fusions were fully functional as judged by their
ability to survive a challenge with MMC like wild type
cells (Fig. 2, and data not shown). 30 min after the addi-
tion of MMC, nucleoids adopted a somewhat more con-
densed morphology and appeared to fuse, because only
4% of MMC treated cells contained two nucleoids, in spite
of their increased cell length (compare Fig. 5A with 5C),
whereas 21% of exponentially growing cells contain two
nucleoids rather than one. 2 hours after induction of DNA
damage, cells were highly elongated, and frequently con-
tained nucleoids with abnormal morphology (Fig. 5D
and 5E). Exponential growth resumed about 3 hours after
addition of 50 to 100 ng/ml of MMC.

In exponentially growing cells, extremely faint fluores-
cence above background was detectable for SbcC-YFP,
which appeared to be present throughout the cells (Fig.
5A). However, in 2% of the cells, discrete SbcC-YFP foci
were visible (Fig. 5B). Interestingly, the number of SbcC-
YFP foci increased as soon as 30 min after addition of
MMC (Fig. 5C, in 5% of the cells, >250 cells analyzed),
and was highest 2 hours after addition of MMC (40% of
the cells containing foci, >300 cells counted, Fig. 5D).
Exposure times of 3 s were necessary to visualize SbcC-YFP
foci because signal intensity was very weak (exposure of
more than 3 s did not increase signal intensity, as is the
case for any GFP fusion analyzed so far with our technical
setup). About 90% of the SbcC-YFP foci were located on
the nucleoids, showing that the foci were generally associ-
ated with DNA. To investigate if SbcC-YFP foci are only
induced through inter-strand cross links, or also through
DSBs, exponentially growing cells were irradiated with 12
Gy of hard X-rays, which is a dose that induces DSBs but
does not reduce viability of B. subtilis cells. Similar to the
addition of MMC, hard X-rays induced fluorescent foci in
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Figure 5
Fluorescence microscopy of Bacillus subtilis cells. A-B) Strain N6 (sbcC-yfp) growing exponentially, or C) 30 min or D) 120 min
after addition of 50 ng/ml of MMC, or E) 120 min after addition of 200 ng/ml of MMC. F-G) Strain JMé1 (dnaX-cfp, sbcC-yfp) 120

min after addition of MMC. White arrowheads indicate the localization of SbcC-YFP and co-localization of the protein fusions.
White lines indicate septa between cells. White bars 2 um.
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Western blot analysis of B. subtilis cells using anti-GFP antiserum. Lane |: PY79, exponential growth, lanes 2 and 3: N4 (sbcD-
gfp), lane 2 exponential growth, lane 3 one hour after addition of MMC (100 ng/ml), lanes 4 and 5: JN7 (addA-gfp), lane 4 expo-
nential growth, lane 5 one hour after addition of MMC, lanes 6 and 7: JM41| (addB-yfp), lane 6 exponential growth, lane 7 one
hour after addition of MMC, lane 8: PY79, lane 9: DK39 (gfp-recA), lanes 10 and | I: JN6 (sbcC-yfp), lane 10 exponential growth,
lane | | one hour after addition of MMC. The same amount of protein was loaded in each lane. Arrows indicate the position of
fusion proteins and of free GFP. AddA-GFP: 169 kDA, AddB-YFP: 162 kDa, SbcC-YFP: 153 kDa, SbcD-GFP: 71 kDa, GFP-
RecA: 66 kDa, GFP: 28 kDa. Note that the antiserum strongly cross reacts with a protein of about 48 kDa.

30 to 35% of the cells (data not shown), showing that
SbcC foci are also formed after generation of radiation-
induced DSBs.

To rule out that the formation of SbcC foci is caused by an
artefact, we performed Western Blot analysis of cells grow-
ing in the absence or presence of MMC. Fig. 6 shows that
the synthesis of full length SbcC-YFP is induced after
administration of DNA damage (lane 11), while it is
undetectable in cells growing in the absence of damage
(lane 10) or in cells lacking the YFP fusion (lane 8), in
agreement with the cell biological data. Similar experi-
ments with the same anti GFP serum showed much
stronger signals for GFP-RecA (lane 9), or for various
other GFP fusions (e.g. BsSMC-GFP or Spo0J-GFP, data
not shown) that are not highly expressed in growing cells
[43,44], suggesting that SbcC is a poorly expressed protein
in growing cells.

After addition of 50 ng/ml of MMC, only one SbcC-YFP
focus was detectable in 34% of the cells, while 6% of the
cells contained 2 foci, and 60% no visible focus. Interest-
ingly, the number of cells containing foci and the number

of foci per cell did not vary significantly between sublethal
and lethal doses of MMC (50 to 200 ng/ml, compare Fig.
5D and 5E).

SbcC centers mostly co-localize with the replication
machinery

Inter-strand cross-links block the progression of the repli-
cation fork. Also, DSBs can arise at the replication fork,
when DNA lesions hinder the progression of the replica-
tive polymerase complex. To test whether SbcC acts at the
replication fork, or also at other sites within the cell, we
created a dually labelled strain, expressing DnaX-CFP (the
tau subunit of DNA polymerase III) and SbcC-YFP. It was
technically challenging to obtain clear CFP and YFP sig-
nals within the same cell, mostly due to low SbcC-YFP sig-
nal intensity. However, we were able to obtain clear
signals in both channels for 32 cells (out of 300 cells ana-
lyzed). Interestingly, when inter strand cross links were
induced, 22 of the SbcC-YFP foci co-localized with DnaX-
CFP (Fig. 5F-G), and 4 foci were in close proximity (< 0.3
pum), while 6 of the foci were clearly separate (> 0.3 pm).
Thus, SbcC foci mostly co-localize with the replication
machinery.
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Fluorescence microscopy of Bacillus subtilis cells. A-C) Strain [N7 (addA-gfp) growing exponentially (A), or B) 30 min or C) 120
min after addition of 50 ng/ml MMC, D-E) strain JN4 (sbcD-gfp) growing exponentially (D), or 60 min after addition of MMC

(E). White bars 2 um.

It is interesting to note that the pattern of localization of
the replication machinery was altered upon induction of
DNA damage. 85% of exponentially growing cells con-
tained one single or two bipolar DnaX-CFP foci (and 15%
no signal), whereas after addition of MMC, only 62% of
the cells contained this proper localization of the repli-
some, and 23% of the cells contained signals at various
places in the cell (15% did not show any signal, data not
shown). Additionally, 66% of exponentially growing cells
contained one central DnaX-CFP focus, and 19% two
bipolar foci (15% did not contain a signal), whereas after
induction of damage, a higher proportion of the cells
(40%) contained two or more foci, rather than one (45%,
15% did not contain any focus). Thus, the specific locali-
zation of the replication factory becomes more random
during DNA repair, and, apparently, replication forks sep-
arate (and/or replication reinitiates in the absence of cell
division) in a considerable fraction of the cells. Our find-
ing that SbcC forms no more than 1 or 2 foci after induc-

tion of DNA damage agrees with the finding that SbcC
generally colocalizes with the replication machinery.

The AddAB complex localizes throughout the cells

To visualize the other repair proteins from the add operon,
we generated C-terminal fusions of addA, of addB or of
sbeD to GFP, or to YFP, such that addA-gfp, or addB-yfp, or
sbecD-gfp were integrated at the corresponding original
locus within the addAB operon. AddA-GFP or AddB-YFP
fusion proteins were fully functional, as judged by their
ability to survive MMC treatment like wild type cells (data
not shown). In exponentially growing cells, weak back-
ground fluorescence was detectable throughout the cells
for AddA-GFP or for AddB-YFP (Fig. 7A, and data not
shown). Between 30 min and 2 hours after addition of
MMC, fluorescence increased throughout the cells for
both fusions, without any apparent accumulation within
the cell (Fig. 7B and 7C). Fig. 6 shows that only full-length
fusion proteins were produced (lanes 4-7) at a very low
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level, and at least AddB-YFP clearly accumulated after
addition of MMC (compare lane 7 with lane 6). Thus, the
AddAB complex does not appear to be specifically associ-
ated with the nucleoid, and does not accumulate as dis-
crete foci after induction of DNA damage. Possibly, only
few AddAB molecules are recruited to sites of DNA repair.
In cells expressing SbcD-GFP, fluorescence was detected
throughout the cells, and increased in level after addition
of MMC (Fig. 7D and 7E), however, much more free GFP
than SbcD-GFP fusion protein was apparent in the cells
(Fig. 6, lane 3). These results show that the SbcD-GFP
fusion is proteolytically cleaved (the first such event we
have found so far), such that freely diffusing GFP is mask-
ing the localization of SbcD-GFP. Like SbcC-YFP, the sig-
nal of SbcD-GFP/GFP increased after addition of MMC
(Fig. 6, compare lane 3 with lane 2).

Discussion

Our work shows that the bacterial counterpart of the
eukaryotic Rad50 protein, SbcC, confers an important
function in the repair of inter strand cross links in DNA
caused by MMC, and plays a role in the repair of DSBs
(caused by gamma irradiation), most likely in the context
of repair of collapsed replication forks. The deletion of
sbcC led to a considerable sensitivity to DNA damage.
However, the loss of SbcC in a recN or in an addAB mutant
background increased the sensitivity to DNA damage of
the very sensitive recN or addAB single mutant strains.
Contrarily, the loss of SbcC in recA mutant cells did not
increase the extreme sensitivity of the single recA mutant
strain, showing that SbcC is epistatic with RecA, but not
with RecN or with AddAB. These experiments suggest that
SbcC acts on DNA repair via homologous recombination
(HR), and show that it confers a function distinct from
RecN or from AddAB.

Interestingly, like SbcC, Bs-Ku protein was non-epistatic
with RecN or AddAB, and the loss of BS-Ku in recN mutant
cells led to a similar increase in sensitivity towards DNA
damage than the loss of SbcC in this mutant background.
Because the loss of Bs-Ku protein in a sbcC mutant strain
did not increase the mild sensitivity of the sbcC single
mutant strain, and vice versa, it is possible that SbcC may
also play a role in NHE]. Possibly, upon encountering
DNA ends, the SbcC alone, or in concert with the Bs-Ku
protein, might tether DNA ends together, which are
finally joint by a DNA ligase [45]. Indeed, several reports
have supported a dual function of the eukaryotic Rad50
complex in DNA repair via HR as well as in NHE]. How-
ever, many more experiments are required to establish a
connection between SbcC and NHE]J, and the finding that
Bs-Ku is non epistatic with RecA, in contrast to SbcC,
shows that the main function of SbcC does not lie in
NHE]J, but rather in HR.

http://www.biomedcentral.com/1471-2199/7/20

It is clear from our work that repair of DSBs and of inter-
strand cross-links via HR plays a major role in B. subtilis
cells, because the loss of proteins participating in HR [e.g.
RecN, AddAB] caused severe sensitivity to radiation-
induced DNA damage, while the loss of Bs-Ku led to mod-
erate sensitivity. The activity of Bs-Ku became important
in cells defective in repair via HR, indicating that NHE]
serves as a back up system to repair DSBs that can not be
fixed via HR, e.g. non-duplicated chromosome regions,
for which no sister chromosome is present to set up HR.
Interestingly, it has recently been shown that Bs-Ku and
DNA ligase encoded by ykoU play an important role in
resistance of spores to killing through dry heat, a treat-
ment that introduces breaks into DNA [42]. Because the
spore contains only a single chromosome, DSBs can not
be repaired via HR, but only through NHE]J, which is also
important for DSB repair during cell cycle exit in all other
types of cells. However, our results show that Bs-Ku also
performs a function in DNA repair in exponentially grow-
ing cells, because the absence of Bs-Ku leads to mild but
noticeable sensitivity towards MMC.

A further major finding of this work that provides a clue
as to the function of SbcC is the observation that SbcC
transiently assembles into discrete subcellular centers on
the nucleoids after the induction of inter-strand cross-
links and of DSBs. In growing cells, SbcC was mostly dis-
persed throughout the cells, while the accumulation of
SbcC was observed as early as 30 min after induction of
DNA damage, its main accumulation occurring between 1
and 2 hours post induction. Thereafter, the SbcC-GFP foci
dissipated, concomitant with the resumption of growth.
Intriguingly, SbcC assembled most frequently at the repli-
cation machinery, suggesting that SbcC acts on DNA dam-
age occurring at the replication forks, which can block
replication (e.g. cross links or base adducts), or lead to
fork collapse (e.g. when forks run into ssDNA gaps) [46].
However, at low frequency, replication forks collapse in
non-stressed exponentially growing cells [47]. Consistent
with this, we also observed SbcC foci at low frequency in
exponentially growing cells in the absence of externally
induced damage. The E. coli SbcCD complex, which shows
some similar in vitro activities than the Rad50 complex
[48], has been shown to be involved in the cleavage of
DNA hairpins that can occur at the replication forks [24].
Possibly, this is one of the specific roles SbcC confers dur-
ing replication, and at stalled or collapsed replication
forks, SbcC could be involved in replication restart
through HR, and/or removal of inter-strand cross-links.

Recently, we have shown that RecN assembles at defined
DSBs or at random DNA lesions as early as 15 min, while
RecO and RecA are recruited 30-60 min after induction of
DSBs [31,32]. DSB repair appears to last for about 3
hours, and RecF protein is recruited to DSBs after 90 min,
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Table I: Strains used in this work

Strain genotype reference
PY79 [58]

JN4 sbeD-gfp this work
JN6 sbcCyfp this work
JN7 addA-gfp this work
M4l addB-yfp this work
JM42 sbcCi:em this work
JHI ykoV::em this work
JMé1 dnaX-cfp, sbcC-yfp this work
YB886 trpC2 metB5 amyE sigB37 xin-1 attSPP [38]

BGI189  addA5 addB72 [54]

BG277 recN:cm [59]

BGI90  recA:cm [55]

BG809  ykoV:cm this work
BG8I | sbcCi:em this work
BG843 ykoV::tet, recN::cm this work
BG849 ykoV::tet, recA::cm this work
BG847  ykoV:cm, sbcC::tet this work
BG845 sbcC::tet, recN::cm this work
DK39 gfp-recA [32]

Note that BG strains are isogenic with the YB886 wild type strain
(used for survival studies in Fig. 2 and 3), while the other strains are
isogenic with the PY79 wild type strain (used for Fig. | and localization
studies).

thus representing a late-recruited protein. RecN binds to
ssDNA at an internal site, and gathers the 3'-hydroxyl
ssDNA ends in vitro [8]. These finding are consistent with
the idea that RecN, like eukaryotic Rad50 [49], might be
an early sensor of sites of DNA damage on replicating and
non-replicating chromosomes [50]. The cytological data
presented here provide a clear distinction between the
functions of SbcC and of RecN, because RecN is generally
not associated with the replication machinery [32], and
appears to act as a nucleation factor of DNA repair centers
away from the replication machinery, while SbcC appears
to assemble at DNA damage occurring at the replication
factory. A different function for SbcC and RecN - depend-
ent on whether DNA damage occurs at the replication fork
or elsewhere on the nucleoid - can explain why SbcC-YFP
foci are only observed in about 40% of the cells after
induction of random DNA damage (this work), while
RecN-YFP foci occur in about 70% of the cells (but not in
all cells) under these conditions [31].

SbcC and RecN belong to the SMC protein family, whose
members are key players in various chromosome dynam-
ics. Our report establishes that these two B. subtilis pro-
teins SMC like proteins confer important yet distinct
functions in the repair of DNA base modifications, of
DNA inter-strand cross-links and of DSBs. It will be inter-
esting to elucidate the molecular basis of their different
modes of action.
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Methods

Bacterial strains and media

E. coli XL1-Blue (Stratagene) harbouring plasmids were
grown in Luria-Bertani (LB) rich medium supplemented
with 50 pg/ml ampicillin. B. subtilis strains were grown in
LB rich medium, and when necessary with appropriate
antibiotics. For microscopy, cells were grown in S7;,
defined medium [51]. All B. subtilis strains used in this
study are listed in Table 1.

Construction of plasmids and strains

All CFP, GFP or YFP fusions were done by PCR amplifica-
tion of the 3' regions of each gene, and cloning into a vec-
tor containing a C-terminal cfp, gfp or yfp gene. All fusion
vectors contained inducible promoters ensuring transcrip-
tion of downstream genes. To create a C-terminal fusions
of AddA and of SbcD to GFP, the corresponding 3' regions
(about 500 bp) were PCR amplified (AddA-GFP 5'-
ATTCGGGCCCAGCTGAGCTGGACCTAC-3' and 5'-TCG-
GAATTCACCACCGCCT-AATGTCAGAATGTGCCC-3',
SbcD-GFP  5'-TCGGAATTCACCGCCITTCGCA-TCCTC-
CTCTTCAAC-3' and 5'-ATTCGGGCCCTTT-
GCATCGCCCGCAAACG-3") and were cloned into Apal
and EcoRI sites of pSG1164 [52], giving rise to plasmids
PA1164 and pD1164, respectively. The 3' region of yirY
(sbcC) (primers 5'-ATTCAAGCTITGCAAA-CTITGAAAAC-
GAG-3' and 5'- TCGGAATTCACCACCGCCCATCAACT-
CAAGTGATAC-CCG- 3') was cloned into pSG1187 (C-
terminal yfp) using HindlIl and EcoRI sites, giving rise to
plasmid pC87. This plasmid could not be integrated into
the B. subtilis chromosome because of the downstream
yisB gene. An EcoRI Spel fragment from pC87 containing
the 3'yirY-yfp fusion was cloned into pSG1164, giving rise
to pC87xyl. The 3' region of addB (primers 5'-CCATCGA-
TACCGCCTCCGGAATGTITCATTGCCATC -3' and 5'-
TTGATTTATCGATTACACATTC -3') was cloned into
pMutinYFP (containing an IPTG inducible promoter for
downstream genes) using Clal, giving rise to plasmid pBy.
All plasmids were transformed into wild type (PY79) B.
subtilis cells selecting for chloramphenicol (Cm) resist-
ance (5 pg/ml). All fluorescent tag vectors were integrated
into the B. subtilis chromosome via single crossover inte-
gration, which was verified by PCR and Western Blot anal-
ysis.

For disruption of sbcC, a 1000 bp internal fragment of

sbcC was PCR amplified (primers 5'-ACATGCAT-
GCAATCTGCCCTTCGCCTCITG-3' and 5'-TCAT-
AAGCTT-CAAACAGGAACAGCITTCACG-3') and was

cloned into Hindlll and Sphl sites of pJQ43 (containing a
constitutive promoter for downstream genes) [53], giving
rise to plasmid pSbcKO. Single crossover integration of
pSbcKO lead to disruption of the sbcC gene (sbcC::cm) and
to the synthesis of a C-terminal truncated SbcC. For the
disruption of ykoV, a 480 bp internal fragment from ykoV
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was cloned into pSG1164, and the resulting plasmid pyk-
oVKO was transformed into PY79, generating strain JH1
(ykoV::cm).

The addAB sbcC triple mutant strain was generated by
transforming addA5 addB72 (collectively termed addAB
mutant cells) mutant cells [54] with chromosomal DNA
from strain JM42, selecting for Cm resistance. The inacti-
vation of the recN and recA genes by a double crossover
event was previously described [41,55]. To study genetic
interactions in a strain freed of inducible prophages
(which complicate analysis of DSBs), all deletions were
moved into strain YB886 (rec* control) [38]. The AsbcC
and AykoV strains were generated by transferring the
sbcC::cm or ykoV::cm allele onto the YB886 strain by a sin-
gle crossover event. To generate double mutants, the Cm
resistance cassette in AsbcC or ArecN cells was replaced by
tetracycline resistance in vivo by transformation with plas-
mid pCm::tet (BGSC, Wisconsin, USA). Double mutants
were produced by transformation of ArecN, ArecA, AsbcC
and AykoV mutant strains with the appropriate chromo-
somal DNA from other mutant strains.

DNA repair sensitivity studies

DNA modifications generated by Mitomycin C (MMC)
result in the formation of base adducts and inter-strand
cross-links, which generate single-strand breaks and DSBs
[35-37]. Ionizing radiation (y-rays) leads to the formation
of apurinic/apyrimidinic sites and generates nicks and
DSB. All survival studies were performed at least 3 times,
and were performed in the absence of antibiotics. For sen-
sitivity to MMC assays (Fig. 3), exponentially growing B.
subtilis cells were obtained by inoculating overnight cul-
tures in fresh LB media and by growing to an Ay, of 0.4
at 37°C. Appropriate dilutions (10 pl of serial 10-fold
dilutions, 1 x 10-2to 1 x 10-5) were spotted onto LB plates
supplemented with the indicated concentration of MMC,
and were incubated overnight at 37°C. MMC and all
plates used for survival tests were kept in the dark at all
times, in order to avoid complications generated by pho-
toadducts.

For ionizing radiation assays (Fig. 4), stationary phase cul-
tures of B. subtilis cells were obtained by inoculating over-
night cultures in fresh LB media and by growing to an
Asconm Of 2 at 37°C. Irradiation was carried out with 137Cs
y-rays using a Mark I irradiator (JL Shepard & Associates)
at a dose-rate of 3.7 Gy/min, without shaking at room
temperature, using 50 pl of cells from a 100-fold dilution.
Appropriate dilutions of irradiated cells were plated, incu-
bated overnight at 37°C and colonies were counted from
at least three independent experiments.

http://www.biomedcentral.com/1471-2199/7/20

Western blot analysis

Western blotting was performed using same amounts of
cell extracts, as determined by Bradford tests, using antise-
rum generated against purified GFP-6-his protein (kind
gift from David Rudner, Harvard Medical School).

Image acquisition

Fluorescence microscopy was performed on an Olympus
AX70 microscope. Cells were mounted on agarose pads
containing S750 growth medium on object slides. Images
were acquired with a digital MircoMax CCD camera; sig-
nal intensities and cell length were measured using the
Metamorph 4.6 program. DNA was stained with 4',6-dia-
midino-2-phenylindole (DAPI; final concentration 0.2
ng/ml) and membranes were stained with FM4-64
(Molecular Probes, USA, final concentration 1 nM).
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