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Abstract
Background: Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain 
social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence 
caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites 
are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates 
at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene 
expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes 
flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, 
and (iv) live soldiers.

Results: Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate 
genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories 
(chemical production/degradation, hemolymph protein, and developmental) showed significant differential 
expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number 
of genes from families known to play roles in insect development, supporting previous findings and hypotheses that 
soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads.

Conclusions: This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, 
primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-
relevant genes for investigation in subsequent caste differentiation research.

Background
Phenotypic plasticity can be described as the production
of variable phenotypes from a single genotype based on
conditions encountered throughout an organism's devel-
opment [1]. Phenotypic plasticity can be divided into
gradual or discrete polyphenisms. Reaction norms are
phenotypically graded responses to environmental fac-
tors. Polyphenisms, occur when two or more discrete
alternative phenotypes occur without intermediate forms
[2].

Social insects have evolved to produce and use multiple
alternate phenotypes (i.e., polyphenism) to accomplish a
wide range of tasks within their colonies. Castes are phe-
notypically and behaviorally discrete individuals that
cooperate to perform colony tasks [3]. Termites are
hemimetabolous social insects that utilize castes to meet
various needs within the colony. Most termite colonies
are made up of three distinct castes: workers, soldiers, and
reproductives [4]. All termite eggs, except when a rare
genetic component might be involved [5], are considered
totipotent, and most evidence supports that castes differ-
entiate based on gene expression responses to intrinsic
and extrinsic factors. The research presented here exam-* Correspondence: mescharf@ufl.edu
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ined gene expression responses in worker termites to
both intrinsic and extrinsic factors.

All castes except soldiers and reproductives retain the
ability to molt, while soldiers and reproductives are con-
sidered terminally developed [6]. Caste differentiation
can proceed along two routes; imaginal (winged) or
apterous (wingless). The first developmental branch is
the point at which larvae differentiate into apterous
workers or imaginal nymphs. Nymphs can either (i)
regress into worker-like "pseudergates", (ii) differentiate
into fully winged and eyed adult alates that disperse and
found new colonies, or (iii) differentiate into winged and
eyed non-dispersive brachypterous reproductives that
serve as supplemental reproductives within the colony.
Workers are totipotent in that they can (i) undergo status
quo worker-to-worker molts, (ii) differentiate into sol-
diers (after passing through an intermediate presoldier
stage), or (iii) differentiate into apterous and eyeless neo-
tenic reproductives that serve supplementary reproduc-
tive roles [6-8].

The entire complement of intrinsic and extrinsic fac-
tors that dictate each of the developmental switches in
termites, and how they interact, are yet to be fully under-
stood. Examples of intrinsic factors include juvenile hor-
mone (JH), storage proteins, and nutrition; whereas
examples of extrinsic factors include primer pheromones,
temperature, food quality, nestmates (soldiers and repro-
ductives), and season [9-19].

Phenotypic divergence from the worker to the soldier
caste can be mediated by multiple JH-related factors. For
example, elevated JH titers in workers are correlated with
presoldier differentiation [20-22]. Additionally, the pres-
ence of soldiers has been shown to inhibit the formation
of new soldiers, implying that soldier termites produce
inhibitory factors that cause reduced responsiveness to
JH or reduced JH biosynthesis in nestmates [15,16,23,24].
This inhibition is presumed to be caused by soldier-
derived primer pheromones [10,25,26]. Primer phero-
mones are defined as chemical messengers that are
passed among individuals and trigger physiological
responses in recipients [27]. Recently, R. flavipes soldier
head extracts (SHE), when applied in combination with
juvenile hormone III (JH III), were found to enhance pre-
soldier production compared to JH III alone [19]. Two
major components of R. flavipes SHE are γ-cadinene and
its aldehyde γ-cadinenal; they represent the first candi-
date primer pheromones to be identified from termites
[19]. Interestingly, SHE alone does not impact presoldier
formation [19]. Also, while the SHE blend is active at
influencing JH-dependent presoldier differentiation, the
individual impacts of its constituents and whether they
are being actively released or absorbed has yet to be
determined.

Functional genomics is a powerful approach for eluci-
dating the functions of genes, including genes that medi-
ate pheromone and hormone action [28]. Transcript
levels generally correlate with the physiological demand
for the product they produce; thus, changes in transcript
abundance can reveal genes that are most important in
relation to a stimulus [28]. Such an approach has been
used to elucidate the chemical ecology of the bark beetle
(Ips pini) [28-31] and the honeybee (Apis mellifera) [32].
Similarly, the use of functional genomics in studies of ter-
mite caste regulation can help to better understand
potential primer pheromone function as well as the influ-
ences of intrinsic and extrinsic factors on caste differenti-
ation.

The central goal of this research was to use a functional
genomics approach to identify candidate caste-regulatory
genes from R. flavipes workers that potentially mediate
hormonal and soldier primer pheromone signaling. Four
treatments were tested on isolated groups of worker ter-
mites: (i) JH III alone, (ii) soldier head extract (SHE)
alone, (iii) JH III + SHE, and (iv) live soldiers. These treat-
ments represent key intrinsic and extrinsic/socio-envi-
ronmental factors that are thought to impact soldier
development in totipotent workers. Our central hypothe-
sis was that these four treatments will be associated with
the differential expression of key genes through time, and
that key responsive genes will play significant roles in
meditating caste differentiation and/or caste-regulatory
signaling. Our approach involved determining the
impacts of the four treatments on both phenotypic caste
differentiation and the expression of forty-nine candidate
and reference genes during the first 10 days of differentia-
tion from worker to presoldier, with subsequent valida-
tion of reference genes and post-hoc analyses to identify
genes with significant differential expression among
treatments. Here, we identify and discuss a number of
responsive genes from three categories (chemical pro-
duction/degradation, hemolymph protein, and develop-
mental) with significant links to caste differentiation.

Results
Phenotypic responses
Phenotypic bioassays (Fig. 1A) showed that the combina-
tion of JH III + SHE significantly increased presoldier
development when compared to JH III alone. A two-way
ANOVA and adjusted LS means were used for analysis
(whole model F = 24.092, df = 14, P < 0.0001; treatment F
= 54.32, df = 4, P < 0.0001; colony F = 24.140, df = 2, P <
0.0001; treatment*colony F = 11.513, df = 8, P < 0.0001).
Variation was observed between the different colonies
tested, with Colony 1 showing the greatest presoldier
induction response to JH III (40%) and JH III+SHE (80%).
But, as seen in previous research [19], the overall trend
was the same in that JH III+SHE increased presoldier dif-
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Figure 1 Impact of semiochemical and socio-environmental treatments on soldier caste differentiation. (A) Cumulative presoldier formation 
through Day 25 of assays that compared five different treatments: untreated controls, JH III, JH III+SHE, SHE, and live soldiers for three different colonies. 
Each replicate dish (n = 5 per colony) contained 15 workers. Results for the three colonies were pooled for analysis. Adjusted LS means are shown; 
bars with the same letter are not significantly different (P < 0.05). (B) Post-hoc presoldier induction assays conducted using 100 termites per replicate 
dish (n = 5). The two treatments that were examined included starting compositions of 100 workers + 0 soldiers, or 90 workers + 10 soldiers. No pre-
soldiers formed after 30 d. in treatments that included soldiers at the beginning of assays. This finding reveals that R. flavipes soldiers indeed are capa-
ble of inhibiting worker differentiation to presoldiers.
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ferentiation compared to JH III alone and no presoldiers
formed in the acetone-treated controls, SHE-alone treat-
ments, or live soldier treatments (Fig. 1A).

Because no phenotypic effects were observed with live
soldier treatments in the small-format dish assays noted
above, we conducted post-hoc presoldier induction assays
using larger groups of workers (Fig. 1B). Our objective
was to determine if soldiers could inhibit natural presol-
dier formation in the absence of ectopic JH, using greater
numbers of workers (100 termites) over a longer period of
time (30 days). Two treatments were tested: (1) 100 work-
ers + 0 soldiers, and (2) 90 workers + 10 soldiers. Interest-
ingly, no presoldiers formed after 30 d. in treatments that
included 10% soldiers at the beginning of assays; and con-
versely, presoldiers appeared only in the treatments that

included 100% workers at the beginning of assays. This
finding verifies that R. flavipes soldiers are capable of
inhibiting worker-to-presoldier differentiation, and pro-
vides evidence that is directly supportive of the soldier
and SHE impacts on gene expression presented below.

Reference gene selection
To accurately determine relative gene expression in toti-
potent workers, we chose three reference genes that had
stable expression across all treatments and colonies
(Stero-1, LIM, and Mev-1). These reference genes were
selected by comparing the standard deviation of the raw
Ct values for all 49 genes across treatments (Additional
file 1: Table S1). This determination is important because
it allows normalization of the expression of target genes

Figure 2 Expression changes for significant genes in termite workers in response to hormonal, semiochemical and socio-environmental 
treatments after 1 day. Results shown represent the relative expression values of significant differentially expressed genes under five different treat-
ments: control, JH III, JH III+SHE, SHE, and live soldiers after one day; Blue boxes represent genes that are down-regulated while red boxes represent 
genes that are up-regulated. Boxes with the same letter within a row are not significantly different (FDR). Dendrograms at the left group genes by 
similar expression pattern.
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(n = 46) to reference genes (n = 3) that have stable expres-
sion across all treatments and colonies.

Gene expression overview
All target and reference genes investigated in this study
have been annotated based on significant translated iden-
tity to insect sequences deposited in the Genbank nr and
EST databases. Full-length gene names are provided in
Additional file 2: Table S2. All reported gene expression
data represent the average of three independently sam-
pled and replicated R. flavipes colonies. Gene expression
changes in response to all treatments were determined
via qRT-PCR. To identify genes with significant differen-
tial expression across treatments, two-way ANOVAs
were used with adjusted LS means and FDR correction
on normalized CT (ΔCT) values (Additional files 3, 4, 5,
6: Tables S3, S4, S5, S6). Additionally, gene expression at
three days (1, 5 and 10) was analyzed separately using the
ANOVA procedure noted above. For a large proportion
of the genes tested there was a significant colony effect.
This was to be expected because (i) there was also a sig-
nificant colony effect in the phenotypic bioassay and (ii)
the colonies tested each have different mitochondrial
haplotypes (see later). Colony effects were compensated
for by using adjusted LS means in the analysis.

To easily visualize gene expression responses, genes
showing significant expression changes across treatments
were organized by day into heat maps (Fig. 2, 3, 4). Genes
with similar expression profiles are horizontally clustered
together. By clustering genes in this manner we are able
to identify groups of genes that respond similarly and
putatively belong to the same gene networks (also see
Additional file 7: Table S7).

Gene expression: day 1
As shown in the Day 1 heat map (Fig. 2), 17 out of the 46
genes that were tested showed significant differences in
their expression across treatments (Additional file 4:
Table S4). Day 1 receives focus here because we presume
Day 1 responsive genes to be important immediate-early
responders. Three main clusters of genes were identified,
with sub groupings of genes in some clusters. Genes in
group IIB overall were affected by SHE and live solder
treatments, with IIB2ii genes Carbx-1, Myosin, B-actin,
β-tube, R-Pro, ATPase, and HMG all being down-regu-
lated with live soldiers. Genes in group IIB1, NADH and
nanos, were up-regulated in live soldier treatments.
Group IIB2i genes Hex-2 and 18s were down-regulated
in SHE treatments. The P450 protein coding genes in
group IIA, CYP15F1, CYP4C48, CYP6G?, and CYP4C47
were down regulated with JH III and JH III+SHE treat-
ments, while group I genes, CYP4C46 and CYP4U3, were
up-regulated with JH III. These Day 1 results reveal a
number of early response genes in totipotent workers

that are both up and down-regulated in response to the
different treatments. Perhaps most importantly, a num-
ber of P450 genes that may play roles in semiochemical or
hormone processing were differentially expressed among
treatments at this early time point.

Gene expression: day 5
Five days into assays, 23 genes showed significant differ-
ential expression among the five treatments (Fig. 3, Addi-
tional file 5: Table S5). A larger number of genes showed
significant variation in expression at this point compared
with Days 1 and 10, with the majority of the genes show-
ing down-regulated responses to most treatments. Genes
in group IIB2iib3, CYP4C44v1, broad, and APO had a
slight expression increase with JH, while being down-reg-
ulated with SHE and live soldier treatments. Group
IIB2iib2 genes, CoxIII, HSP, and Shp displayed an up-
regulation with live soldier treatments. Genes SH3,
NADH and CYP15F1, in group IIB2iib1, were down-reg-
ulated with JH+SHE and SHE treatments. Group IIB2iia
genes, Famet-2, Carbx-1, CYP4U3, Carbx-2, and To-F
were all down-regulated with live soldier treatments. Bic
and nanos, in group IIB2i, were down-regulated with JH
III, JH III+SHE and SHE treatments. Genes that clustered
into group IIB1, Hex-2, Hex-1, and CYP4C46 were up-
regulated with JH III and JH+SHE treatments. Finally,
two hemolymph protein coding genes, Vit-1 (IIA) and
Vit-2 (I) were up-regulated with JH III and JH+SHE and
down-regulated with SHE and live soldier treatments.
Five days into assays represents the middle of the worker-
to-solder differentiation process [8]. Therefore, genes
identified at this time point could be playing mid-level
signaling roles in the caste differentiation cascade. The
hemolymph protein coding genes Vit-1, Vit-2, Hex-1 and
Hex-2, have been linked to caste differentiation in past
research in termites and honey bees [17,18,33-38]. Thus,
their differential expression during the worker-to-presol-
dier differentiation process was expected, and serves to
validate our approach for determining gene expression
during differentiation.

Gene expression: day 10
On the last day investigated (Day 10) nineteen genes
showed significant variation in expression across treat-
ments (Fig. 4, Additional file 6: Table S6). Live soldier
effects were not investigated at this time point due to lim-
itations imposed by the 96-well PCR plate format and an
inability to include all treatments for individual genes on
a single plate. The group II genes Epox-1 and Vit-2 were
up-regulated with JH III and JH+SHE treatments. Genes
in group IB3iib, CYP15F1, Shp, and Tro-1 were down-
regulated with JH+SHE treatment, while Hex-1 and To-F
(IB3iia) were down regulated with JH III and JH+SHE
treatments. The putative ribosomal RNA coding 18s gene
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was down-regulated in live soldier treatments (IB3i).
Group IB2ii genes CYP4U3, 28s, and CYP4C46 were up-
regulated with JH III but down-regulated with JH+SHE
treatment, while genes in group IB2i, Lprs, Famet-1, and
NADH were down-regulated with JH III. Genes that clus-
tered in group IB1, Myosin, APO, and broad were up-reg-
ulated with JH+SHE treatment. Finally group IA genes,
Carbx-1 and SH3, were down-regulated with JH+SHE
treatment. These Day 10 results reveal a number of
potential late responding genes that are both up- and
down-regulated in response to the different treatments.
Thus, these late responding genes likely are part of multi-
ple pathways that are involved in the later stages of the
worker-to-presoldier differentiation process.

Uniformly responsive genes and hierarchical clustering
Across days 1, 5 and 10, four genes showed consistent,
significant differential expression: CYP15F1, CYP4C46,
CYP4U3, and NADH. This finding suggests that these
four genes are of broad general importance in worker-to-
soldier caste differentiation and/or caste regulation/
homeostasis.

Finally, gene expression results were hierarchically (ver-
tically) clustered by treatment across days based on the
expression patterns of all genes (Fig. 5a,b,c). Results for
Day 1 and 5 are similar with control and live soldier treat-
ments clustering together, and JH III and JH+SHE treat-
ments clustering together. Day 10 results show a different
clustering pattern in which control and SHE treatments
cluster together, and the JH and JH+SHE treatments
show a more distant relationship. These results suggest
that effects of the different treatments on genes and gene
networks are not temporally fixed, but change through
time.

Discussion
Social organisms, including hemimetabolous lower ter-
mites like R. flavipes, utilize phenotypic plasticity to
achieve caste polyphenism and division of labor. Because
all termite colony members share essentially the same
genetic background, they rely on differential gene expres-
sion for caste differentiation [3]. The development of ter-
mites along alternate caste pathways is regulated by a

Figure 3 Expression changes for significant genes in termite workers in response to hormonal, semiochemical and socio-environmental 
treatments after 5 days. See Fig. 2 caption for details.
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number of interacting intrinsic and extrinsic factors (e.g.,
[18]); however, detailed global gene expression responses
through the differentiation process have been lacking,
and no prior studies have investigated nestmate or
primer-pheromone-responsive gene expression in ter-
mites.

This study correlates clear phenotypic effects of R. fla-
vipes hormones, semiochemicals, and social treatments
with patterns of gene expression and reveals potentially
important candidate caste-regulatory genes. Changes in
expression of several genes having homology to other
well-characterized developmental and hormone/
semiochemical biotransformation genes were detected in
association with the different treatments. Several gene
networks apparently important in caste differentiation
and social interactions were also identified.

The model bioassay system used here induces changes
in phenotype, and gene/protein expression, and has been
used repeatedly to monitor and elucidate mechanisms of
caste differentiation, specifically the worker-to-soldier
transition [17-19,34,39,40]. Here, we investigated the
effects of specific hormone/semiochemical (JH III, JH
III+SHE, SHE) and socio-environmental conditions (live
soldiers) on soldier caste differentiation and gene expres-
sion by totipotent termite workers. Although there are
certainly other semiochemical and socio-environmental
conditions that could play a role in worker-to-soldier dif-

Figure 4 Expression changes for significant genes in termite workers in response to hormonal, semiochemical and socio-environmental 
treatments after 10 days. See Fig. 2 caption for details.

Figure 5 Hierarchical clustering results of gene expression pat-
tern clustered by treatment. All three days (A-Day 1, B-Day 5, and C-
Day 10) were analyzed separately using the relative expression of each 
gene by the Euclidean distance metric, with centroid squared linkage.
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ferentiation, we focused on the components listed above
because they build concisely on preceding work.

Phenotypic assay results were similar to past findings in
that JH III induced presoldier formation, JH III+SHE syn-
ergistically increased presoldier formation, and SHE
alone had no effect on presoldier development [19]. The
addition of live soldiers to the bioassay did not impact
soldier formation. Because presoldier differentiation only
occurs naturally in larger groups of workers over longer
periods of time (see Fig. 1B and [21]), our small-scale
model bioassay cannot allow for determination of any
inhibitory effects by soldiers at the whole organism level.
Nonetheless, our results provide good support to the
hypothesis that SHE, or a component of it, acts with JH as
a primer pheromone to help regulate caste proportions
within termite colonies.

This research also monitored phenotypic effects in
concert with the expression patterns of multiple genes.
This was accomplished with destructive sampling of
some assay replicates for RNA isolation, while allowing
others to proceed without disturbance. The typical
worker-to-presoldier differentiation process takes
approximately 15 days. To capture potential expression
changes up to apolysis, gene expression levels were moni-
tored at 1, 5, and 10 days post treatment, which are con-
sidered early, middle and late time points, respectively, in
the presoldier developmental transition. A total of forty-
nine genes were investigated across three replicate colo-
nies. Statistically significant genes that passed the FDR
cutoff were clustered together based on expression pat-
tern (Fig. 2, 3, 4). As discussed below, three main groups
of responsive genes were identified: (i) chemical produc-
tion/degradation, (i) hemolymph protein coding, and (iii)
developmental.

Chemical production/degradation genes
Chemical production and degradation genes code for
enzymes that are potentially responsible for the produc-
tion and/or degradation of many types of semiochemicals
in termites, including hormones such as JH and ecdy-
sone, as well as the soldier head terpenes γ-cadinene and
γ-cadinenal. The three groups of genes included in this
category are cytochrome P450, hydrolytic, and
mevalonate pathway protein-coding genes.

Cytochrome P450s are known for their role in the oxi-
dation of endogenous and xenobiotic substrates including
hormones, pheromones, insecticides, and secondary
plant compounds [41,42]. Specifically, P450s have been
shown to play a role in the biosynthesis and metabolism
of morphogenic hormones (JH, ecdysone) and terpenoids
[41]. On Day 1, two groups of P450s were differentially
expressed. In the first group (IIA), CYP15F1, CYP4C48,
CYP6G? and CYP4C47 were down-regulated with JH III
and JH III+SHE treatments, while in the second group (I),

CYP4C46 and CYP4U3 were up-regulated with JH III and
JH III+SHE treatments. This opposite expression profile
of the two P450 groups suggests they have different func-
tions, likely acting on multiple substrates.

Past research has identified P450s that play significant
roles in JH biosynthesis and degradation in insects. In the
cockroach, Diploptera punctata, CYP15A1 epoxidizes
methyl farnesoate to form JH III [43]. In the present
study, those P450s that were down-regulated with JH
treatment (CYP15F1, CYP4C48, CYP6G? and CYP4C47)
could have a similar function. Insect P450s have also been
shown to play a role in the degradation of JH III, as is the
case with CYP4C7, which converts JH III to 12-trans-
hydroxy JH III in Diploptera punctata [44,45]. The group
I P450s (CYP4C46 and CYP4U3) that were up-regulated
in the present study could be playing this role and/or the
group of genes that were down-regulated could be inacti-
vated, potentially blocking the worker-to-soldier transi-
tion.

Juvenile hormone metabolism is also potentially medi-
ated by hydrolytic enzymes, including JH esterases and
epoxide hydrolases [46]. Three genes having homology to
JH esterases and epoxide hydrolases displayed significant
expression differences among treatments. Carbx-1 has
highest homology to a JH esterase of the wood-feeding
beetle Psacothea hilaris (BAE94685) [47]. The Carbx-2
gene has highest homology to a JH esterase of the sawfly
Athalia rosae (BAD91555). Both the Carbx-1 and Carbx-
2 genes also have significant homology to honey bee JH
esterases [48] as described by Mackert et al. [49]. Both
genes are expressed in the gut, and thus could be acting
on JH acquired via trophallaxis, but also could play diges-
tive roles by hydrolyzing lignin or hemicellulose carboxyl
esters [48].

Epoxide hydrolases are known to degrade JH by hydro-
lyzing the epoxide bond that is formed by CYP15 action
as described above. The epoxide hydrolase studied here,
Epox-1, has significant homology to an Aedes aegypti
epoxide hydrolase (XP_001651935), among others. If
Epox-1 is acting as a JH epoxide hydrolase, its observed
up regulation could contribute to the degradation or
inactivation of any endogenous remaining JH prior to
apolysis or ecdysis, which is expected to occur at around
day 10 in our model presoldier induction assays [18].

The production of JH and other sesquiterpenes derived
from the mevalonate pathway is important to termite col-
ony success, not only for development and caste differen-
tiation, but also for production of defensive chemicals
and pheromones that possess a sesquiterpene backbone
[29,50]. Both up- and down-regulation of genes in the
mevalonate pathway can significantly impact the produc-
tion of JH and pheromones [30,51]. In the present study,
five mevalonate pathway genes were investigated: Famet-
1, Famet-2, Famet-3, Mev-1, and HMG. Two genes
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homologous to farnesoic acid methyl transferases
(Famet-1, Famet-2) showed differential expression.
Farnesoic acid methyl transferase methylates farnesoic
acid, producing the immediate JH precursor methyl
farnesoate [50]. RNAi-mediated knockdown of this gene
in Tribolium castaneum has led to reduced JH levels and
precocious molting [52]. R. flavipes Famet-1 shares stron-
gest homology to a FAMet protein from the
hymenopteran Melipona scutellaris (AM493719) [53].
Our results revealed that JH causes increased Famet-1
expression. Increased expression of this gene could theo-
retically increase JH biosynthesis rates and enable soldier
formation. Our results also revealed that the presence of
live soldiers down-regulates Famet-2 gene expression,
which theoretically could lead to reduced JH production
and decreased worker-to-soldier differentiation.

In general, these results suggest that JH III causes up-
regulation of mevalonate pathway genes, while live sol-
diers are suppressive. Consistent with our phenotypic
bioassay results, suppression of the mevalonate pathway
by live soldiers would likely result in reduced pathway
products, such as JH, resulting in reduced JH titers and
subsequent reductions in soldier caste differentiation.

Hemolymph protein coding genes
Four hemolymph protein coding genes, Hex-1, Hex-2,
Vit-1, and Vit-2 showed significant differential expression
through all assay days. These four genes are important in
caste differentiation and sociobiology for a number of
social insects; therefore, it was not surprising that they
showed responsiveness in our experiments. The termite
hexamerin genes have been shown to act as part of an
environmentally responsive socio-regulatory mechanism
that affects the activity of JH, possibly limiting its avail-
ability [18,33,34,54].

Two other hemolymph protein genes, Vit-1 and Vit-2,
were up-regulated with JH and JH +SHE treatments at
Day 5, but only Vit-2 was differentially expressed at Day
10. Throughout the experiment, both Vit-1 and Vit-2
genes displayed a high amount of variability among treat-
ments and replicates. One explanation for such variance
is the inclusion of both sexes of worker termites in assays.
In most insects, vitellogenin (Vg) serves as a female-spe-
cific yolk precursor protein that functions in oocyte pro-
visioning. However, Vg has also been shown to play a role
in social insect caste regulation; for example, Vg in female
honeybee workers, has been shown to interact with JH.
Specifically, higher JH levels and lower Vg levels
increased the transition from nursing to foraging behav-
ior by worker bees [35], while a reduction of JH delayed
the onset of foraging [55]. Honeybee workers with RNAi-
suppressed Vg levels performed foraging behaviors earlier
than untreated workers [36,37]. Nutrition has also been

shown to affect Vg and JH by regulating the transition
from nursing to foraging [56]. Finally, Vg has been shown
to affect queen honeybee longevity by interacting with
insulin signaling [57]. Together, these findings suggest
that honeybee Vg has been co-opted away from repro-
duction to serve as a regulator of caste behavioral poly-
ethism [38]. Results of the current study, showing that
Vit-1 and Vit-2 are up-regulated with JH and JH +SHE
treatments, but down-regulated with SHE and live soldier
treatments, suggest interesting possibilities with respect
termite vitellogenin and caste polyphenism.

Developmental genes
The dramatic morphological change that occurs as
worker termites become soldiers requires significant
body plan rearrangement [3]. The soldier termite's large
mandibles and their associated muscles represent a large
change from the smaller head and reduced muscle mass
present in worker termites [58,59]. Thus, it is likely that
multiple genes are required to coordinate and achieve
this transition [60]. Six developmental genes from two
groups, cytoskeletal/structural and body-plan, showed
significant differential expression in the current study.

The cytoskeletal/structural protein coding gene "β-
tube" was significantly differentially expressed at Day 1
among treatments. β-tubulins are also hormone-respon-
sive and have been linked to the production of ecdys-
teroids in Manduca sexta [61,62]. α- and β-tubulin genes
were also identified in Bombyx mori from several EST
libraries linked to imaginal wing disk metamorphosis and
20-hydroxyecdysone [63,64], suggesting roles in restruc-
turing during adult wing formation. Our findings suggest
potential roles for R. flavipes β-tube in either soldier head
muscle function or possibly ecdysone-linked develop-
mental-regulatory processes.

A number of developmental/body plan genes also
showed significant differential expression. One body plan
gene, broad (BTB/POZ) [8], which is homologous to
broad (br) transcription factor genes of the hemimetabo-
lous and holometabolous insects (Oncopeltus fasciatus
and T. castaneum), was up-regulated at Day 5 with JH and
JH+SHE treatment and at Day 10 with JH+SHE treat-
ment. Erezylimaz et al. [65] used RNAi to silence the br
gene in O. fasciatus, causing an additional immature
molt. Erezylimaz et al. suggested that br is required for
morphogenesis, and that its expression is regulated by JH.
RNAi silencing of br in T. castaneum caused similar
results [66]. If br is acting in the same manner in termites,
up-regulation of the gene by JH+SHE would promote the
worker-to-soldier transition, which is in agreement with
phenotypic bioassay results showing increased presoldier
formation in the JH+SHE treatment.
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Conclusions
The research presented here demonstrates for the first
time the influence that the SHE blend, live soldier caste
members, and JH together have on phenotype and gene
expression of totipotent termite workers (Fig. 6). To sum-
marize phenotypic assay results (Fig. 6A): (i) JH III
induced significant presoldier differentiation, (ii) JH +
SHE induced significantly higher levels of presoldier dif-
ferentiation, (iii) the crude SHE blend by itself did not
have any observable phenotypic effects, and (iv) live sol-
diers inhibited presoldier formation in the absence of
ectopic JH. In support of primer pheromone hypotheses
initially proposed by Lüscher [67] and further developed
by Henderson [68], our results provide the first evidence
that the soldier caste has direct impacts on caste-regula-
tory gene networks, and subsequently, worker caste dif-
ferentiation. Significant responsive gene categories
identified here include chemical production/degradation
genes, hemolymph protein coding genes, and develop-
mental genes (Fig. 6b). Past reports (e.g., [16]) and the
present research (Fig. 1B) have demonstrated that live
soldiers do indeed inhibit natural presoldier formation.
These results, in addition to the current gene expression
findings, support earlier hypotheses that live soldiers act
as part of a negative feedback loop, inhibiting new soldier

formation by regulating the expression of genes impor-
tant for caste differentiation (Fig. 6b) [16,24,68]. Recent
findings have further revealed that γ-cadinene and γ-
cadinenal levels increase in workers that are held with
soldiers (MR Tarver, unpublished results), which lends
significant strength to the results presented here that
show live soldier and SHE impacts on gene expression.
The next steps in this research will follow up on these
observations by investigating the impacts of pure γ-
cadinene and γ-cadinenal on phenotypic caste differenti-
ation and on the expression of responsive genes identified
in the current study.

This research provides important new evidence of
impacts on nestmate gene expression by live termite sol-
diers and crude soldier head extracts. While further
research is needed to resolve the roles of soldiers and
SHE blend components in termite caste regulation (via
RNA interference, gene expression localization, further
analysis of SHE constituents, investigating impacts of
SHE constituents on gene expression, or using whole-
genome micro-arrays or next-generation transcriptome
sequencing) the findings of this study provide a solid
foundation on which to conduct further translational
studies.

Methods
Termites
R. flavipes colonies were collected from different loca-
tions near Gainesville, Florida USA. Termites were held
in the laboratory for at least two months before use in
bioassays. Colonies were maintained in darkness within
sealed plastic boxes, at 22°C. All colonies contained male
and female neotenic reproductives. Termites were con-
sidered true workers if they did not possess any sign of
wing buds or distended abdomens. Termites were identi-
fied as R. flavipes by a combination of soldier morphol-
ogy [69], and 16S mitochondrial-ribosomal RNA gene
sequencing [70]. The partial mitochondrial 16S
sequences of the four colonies used were deposited,
respectively, in Genbank under accession numbers:
FJ265704 (colony-1 "GB1"), FJ627943 (colony-2 "K2"),
FJ265705 (colony-3 "A8") and GQ403073 (colony-4 "K5").
Using the 16S mitochondrial sequences, colony 1 was
99% identical to mitochondrial haplotypes F22 and F1
(EU259755, EU259734), colony 2 was 98% identical to
haplotype F20 (EU259753), colony 3 was 96% identical to
haplotypes F34, 28, and 21 (EU259767, EU259761,
EU259754) and colony 4 was 98% identical to haplotype
F20 (EU259753).

Phenotypic bioassays
Small-scale dish bioassays were conducted at 27°C as
described previously [19,39]. Paired paper towel sand-
wiches were treated with acetone (controls), JH III, or

Figure 6 Diagrams summarizing the influence of socio-environ-
mental and semiochemical factors on caste differentiation. A) 
Semiochemical and socio-environmental factors tested and their ef-
fects on worker-to-soldier differentiation. JH III and JH+SHE caused an 
increase in soldier formation, while SHE had no effect on presoldier/
soldier formation. Past research [[15,16], personal observations] indi-
cates that soldiers inhibit worker differentiation. B) Diagram represent-
ing how socio-environmental and semiochemicals factors might 
modulate the expression patterns of multiple genes and caste differ-
entiation. Networks including the following gene categories showed 
significant changes among treatments: chemical production/degra-
dation, hemolymph protein coding, and developmental genes. Dot-
ted lines represent the possible feedback loop when colony worker 
termites molt into soldiers, the increase in the soldier number conse-
quently inhibits the formation of additional soldiers.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ265704
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ627943
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ265705
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ403073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259755
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259734
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259753
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259767
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259761
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259754
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU259753
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SHE treatments delivered in acetone. JH III (75% purity;
Sigma; St. Louis, MO) was provided at a rate of 112.5 μg
per dish in a volume of 200 μl acetone. The JH III rate was
chosen based on maximal efficacy with minimal mortal-
ity observed in previous concentration range studies [39].
After solvent evaporation, paper towel sandwiches were
placed in 5 cm plastic Petri dishes and moistened with
150 μl of reverse osmosis water. Fifteen worker termites
were placed in each assay dish. Live solider treatments
consisted of holding two live soldiers with 15 workers
from the same colony. Every five days, termites were
counted, presoldier formation was noted, and water was
added if needed. Each treatment was monitored for 25
days.

For larger-scale soldier inhibition assays, two treat-
ments were examined to assess the influence of live sol-
ders on presoldier formation in large group format of 100
termites per dish. Control treatments included 100 work-
ers only; whereas, soldier treatments included 90 workers
+ 10 soldiers. Termites from a single colony (K5) were
used, and assays were run in large Petri dishes (9 cm
diam.). Caste composition and survival were monitored
every ten days for a total of 30 days. Each treatment was
replicated five times and results pooled (avg ± SEM) for
reporting.

Preparation of solider head extracts
Soldier head extracts were prepared as described in
Tarver et al. [19]. Soldiers (80-150 total) were isolated
from lab colonies, and their heads removed and homoge-
nized in 5 mL acetone using a Tenbroeck glass homoge-
nizer. To remove particulate matter, the homogenate was
fractionated by passing it through a glass Pasteur pipette
filled with approximately 250 mg of silica gel (60-200
mesh) on top of a glass wool plug. The SHE was eluted
with 10 column volumes of acetone and brought to 50 ml
with acetone in a volumetric flask.

Gene expression bioassays
A total of five different treatments were tested including
acetone controls (300 μl), JH III (200 μl acetone contain-
ing 112.5 μg JH III), JH III+SHE (112.5 μg JH III in ace-
tone + 1.5 soldier head equivalents in acetone), SHE (1.5
head equivalents extracted in acetone), and live soldiers
(two per assay replicate). Each treatment was replicated
five times for colony-1 and six times for colonies-2 and 3
(GB1, K2, and A8 respectively). Three biological repli-
cates were used per treatment for colony 1 and four for
colonies 2 and 3. Additional replicates for colonies 2 and
3 were added to improve statistical power. Samples of 15
termites were collected for destructive sampling at days 0,
1, 5, and 10. Collected samples were immediately frozen
at -80°C.

RNA isolation and cDNA synthesis
Total RNA was isolated from frozen samples using the SV
total RNA Isolation System (Promega; Madison, WI)
according to the manufacturer's protocol. Whole body
RNA extracts were isolated from all 15 worker termites
included in each bioassay dish. The amount of RNA was
quantified by spectrophotometry and equal amounts of
RNA were used in cDNA synthesis reactions. First-strand
cDNA was synthesized using the iScript cDNA synthesis
Kit (Bio-Rad; Hercules, CA) according to the manufac-
turer's protocol.

Gene expression
The 49 candidate and reference genes were identified in
recent R. flavipes sequencing projects and were chosen
based on their homology to developmental or JH biosyn-
thesis/metabolism genes [8,17,34,40,54,71]. The identity
of all 49 PCR products was verified by direct sequencing.
Quantitative real-time PCR (qRT-PCR) was performed
using the iCycler iQ real-time PCR detection system
(Bio-Rad) with SYBR-green product tagging (similar to
[8,34]). cDNA, obtained as described above, was used as
the qRT-PCR template. Gene specific primers are listed
in Additional file 2: Table S2. Eleven total biological repli-
cates were conducted for qRT-PCR (three from colony-1,
and four each from colonies 2 and 3). Average Ct values
of three technical replicates were pooled for analysis to
represent each biological replicate.

Reference gene selection
To select appropriate reference genes, all of the Ct values
across all colonies, treatments, biological replicates, and
technical replicates for each gene were analyzed to iden-
tify genes with the least amount of variation in expression
(see [17,34]). Three genes with the lowest standard devia-
tion were chosen for use as reference genes: Stero-1, LIM,
and Mev-1 (Additional file 1: Table S1).

Data and statistical analyses
Relative expression of target genes was calculated by
comparing the average of the three technical replications
first normalized to the reference genes and then normal-
ized to the control treatment using the 2-ΔCtΔCt method
[72]. Normalized expression values (2-ΔCtΔCt) from all col-
ony replicates were initially analyzed using the microar-
ray visualization software ArrayStar (DNASTAR, Inc,
Madison, Wisconsin, USA). To identify potential gene
networks, genes with significant differential expression
were clustered hierarchically using Euclidean distance
metrics and centroid linkage for each day (1, 5 and 10)
using ArrayStar.

To identify similarities between treatments, all genes
were clustered hierarchically using Euclidean distance
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metrics and centroid linkage for each day (1, 5 and 10)
using Array Star™ software.

To determine significantly differentially expressed
genes, CT expression values for target genes were nor-
malized to the CT values from the reference genes (ΔCT).
A two-way ANOVA, with adjusted least squares (LS)
means and false discovery rate (FDR) correction was used
to distinguish significantly differentially expressed genes
among treatments using JMP statistical software (SAS
Institute, Cary, NC, USA) (Additional file 3: Table S3).
Tukey's HSD test was used for separating means by treat-
ment for each gene.
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