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Abstract
Background: The Male Specific Lethal (MSL) complex is enriched on the single X chromosome in
male Drosophila cells and functions to upregulate X-linked gene expression and equalize X-linked
gene dosage with XX females. The zinc finger protein Zn72D is required for productive splicing of
the maleless (mle) transcript, which encodes an essential subunit of the MSL complex. In the absence
of Zn72D, MLE levels are decreased, and as a result, the MSL complex no longer localizes to the
X chromosome and dosage compensation is disrupted. To understand the molecular basis of
Zn72D function, we identified proteins that interact with Zn72D.

Results: Among several proteins that associate with Zn72D, we found the DEAD box helicase
Belle (Bel). Simultaneous knockdown of Zn72D and bel restored MSL complex localization to the
X chromosome and dosage compensation. MLE protein was restored to 70% of wild-type levels,
although the level of productively spliced mle transcript was still four-fold lower than in wild-type
cells. The increase in production of MLE protein relative to the amount of correctly spliced mle
mRNA could not be attributed to an alteration in MLE stability.

Conclusion: These data indicate that Zn72D and Bel work together to control mle splicing and
protein levels. Thus Zn72D and Bel may be factors that coordinate splicing and translational
regulation.

Background
There is increasing evidence linking the processes
involved in gene expression, such as transcription, splic-
ing, mRNA localization, and translation. For example,
splicing factors, such as hnRNP proteins and the serine/
arginine-rich (SR) protein SF2/ASF, can remain associated
with mature transcripts, shuttle to the cytoplasm, and reg-
ulate translation [1-4]. For the Drosophila oskar transcript,
splicing of the first intron is required for proper localiza-
tion of the transcript to the posterior end of the oocyte,

where it is locally translated [5]. Correct localization of
this transcript also depends on the exon junction complex
components Y14 and Mago nashi [6-8]. Despite evidence
for coordination of splicing, mRNA localization, and
translation, the mechanisms underlying this coordination
remain poorly characterized.

We previously demonstrated that the Drosophila zinc fin-
ger protein Zn72D is required for proper splicing of the
maleless (mle) transcript. The MLE protein is an essential
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component of the Male Specific Lethal (MSL) complex
(also known as the Dosage Compensation Complex). The
MSL complex is enriched on the sole X chromosome in
male cells, where it upregulates gene expression two-fold
to equalize gene dosage between XY males and XX females
[9]. Zn72D is necessary for productive splicing of mle
mRNA. Without Zn72D, the majority of mle transcripts
preferentially retain part of the second intron, which con-
tains in-frame stop codons, and therefore MLE protein is
not produced at normal levels [10]. As a result, the MSL
complex does not localize to the X chromosome and dos-
age compensation does not occur.

To further explore the role of Zn72D, we used mass spec-
trometry to identify proteins that interact with HA-tagged
Zn72D. The majority of proteins that co-immunoprecipi-
tate (co-IP) with Zn72D are involved in some aspect of
RNA metabolism. One Zn72D-associated protein is the
DEAD box helicase Bel, which is implicated in transla-
tional regulation [11]. Since Bel associated with Zn72D,
we asked whether Bel played a role in regulating mle gene
expression. Depletion of bel alone did not significantly
affect the level of MLE or localization of the MSL complex.
However, simultaneous knockdown of Zn72D and bel res-
cued X chromosome localization of the MSL complex. The
level of MLE protein was restored to ~70% of wild-type in
the double knockdown, even though the level of produc-
tively spliced mle transcripts was still four-fold lower than
in wild-type cells. These data indicate that Zn72D and Bel
work together to control mle splicing and protein levels

and suggest that Zn72D and Bel may target spliced
mRNAs for localized, regulated translation in the cyto-
plasm.

Results and discussion
Identification of proteins that interact with Zn72D
To gain additional insight into the molecular functions of
Zn72D, we carried out tandem mass spectrometric analy-
sis to identify proteins that physically interact with HA-
tagged Zn72D in Drosophila S2 cells. Proteins that co-IP
with anti-HA antibody in S2 cells expressing HA-Zn72D
but not in wild-type S2 cells include: Bel, Elongation fac-
tor 1α48D (EF1α48D), Fragile × Mental Retardation pro-
tein (FMR1), Hrp59, insulin growth factor II mRNA-
binding protein (IMP), Argonaute 2 (Ago2), Poly A Bind-
ing Protein (PABP), Heat shock cognate proteins 3 and 4
(Hsc70-3 and -4), several ribosomal proteins, and three
proteins of unknown function, CG5787, CG14648, and
CG5641 (Figure 1A and Table 1). Zn72D was previously
shown to interact with eight proteins in a large-scale two-
hybrid protein-protein interaction analysis [12]. Among
these proteins, the only one identified as a Zn72D-inter-
acting protein in our assay was CG5641, which has a 2'5'-
oligoadenylate synthase motif and a DZF domain of
unknown function also found in Zn72D. We confirmed
that CG5641 and two additional proteins, FMR1 and Bel,
co-IP with HA-Zn72D by western blotting (Figure 1B and
1C). Zn72D and four of the Zn72D-interacting proteins,
Bel, FMR1, CG5641, and Hrp59, display a common pat-
tern of localization during stages 13–16 of embryonic

Table 1: Identification of Zn72D-interacting proteins by mass spectrometry

Annotation Symbol Name Number of Peptides % Coverage

CG7349 Argonaute 2 6 7
CG5215 HA-Zn72D 44 43
CG5787 CG5787 6 5
CG9748 Belle 4 5
CG6203 FMR1 2 3
CG4147 Hsc70-3 28 41
CG4264 Hsc70-4 16 26
CG14648 CG14648 8 14
CG9393 Hrp59 2 3
CG5119 PABP 11 25
CG1691 IMP 2 3
CG5641 CG5641 21 49
CG8280 EF1α48D 6 12
CG5641 CG5641 25 55
CG5502 RpL4 3 6
CG7434 RpL22 3 16
CG6779 RpS3 7 23
CG2168 RpS3A 6 20
CG17489 RpL5 4 18
CG11276 RpS4 18 64
CG1263 RpL8 4 17
CG10944 RpS6 3 10
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development [13-15], suggesting the possibility that the
interaction of these proteins may play a role in regulation
of central nervous system development.

While Zn72D is implicated regulating splicing of mle
mRNA [10], the only Zn72D-interacting protein with a
known role in splicing is Hrp59 [16,17]. Hrp59 depletion
did not phenocopy Zn72D knockdown (data not shown),
suggesting that Zn72D is unlikely to regulate mle splicing
solely through Hrp59. The majority of the Zn72D-inter-
acting proteins are involved or implicated in other aspects
of RNA metabolism, including transport/nucleocytoplas-

mic shuttling of RNAs, RNA binding, RNA localization,
translation, and RNA interference [18-23,11,24-26].
These data suggest that the mle mRNA splicing regulation
by Zn72D may be indirect.

Simultaneous knockdown of Zn72D and bel restored MSL 
complex localization to the X chromosome and X-linked 
gene expression
We previously showed that Zn72D is necessary for gener-
ating productively spliced mle mRNA and assembly of the
MSL complex on the X chromosome [10]. We tested
whether knockdown of any protein that co-IPed with

Identification of proteins that co-immunoprecipitate with Zn72DFigure 1
Identification of proteins that co-immunoprecipitate with Zn72D. (A) IPs were performed with an anti-HA antibody 
in wild-type (wt) S2 cells and in S2 cells expressing HA-Zn72D. Proteins that co-IP with HA-Zn72D were identified by mass 
spectrometry. (B) (Top) HA-Zn72D co-IPs with Myc-CG5641 when cells expressing HA-Zn72D were transiently transfected 
with a vector expressing Myc-CG5641 (left 2 lanes). IPs were performed using an anti-Myc antibody, and immunoblotting was 
performed with an HA antibody. Right 2 lanes are controls in which no Myc-CG5641 was transfected. (Bottom left) HA-
Zn72D co-IPs with FMR1. IPs were performed using an anti-FMR1 antibody and immunoblotting was performed to detect HA. 
IPs were performed in cells that did (2 left lanes) and did not (2 right lanes) express HA-Zn72D. (Bottom right) The FMR1 anti-
body specifically recognizes FMR1 protein. S2 cell extracts from untreated and FMR1 knockdown cells were probed with anti-
FMR1 and anti-γ-tubulin. (C) The interaction between Zn72D and Bel is RNA-independent. IPs using anti-HA antibody were 
performed on S2 cells expressing HA-Zn72D, in the absence (lane 3) or presence (lane 6) of RNase A. Lane 9 is a control IP 
performed with an anti-HA antibody using S2 cells not expressing HA-Zn72D. HA and Bel were detected using immunoblot-
ting. The ethidium bromide stained gel to the right shows equivalent amounts of input extract loaded per lane, either untreated 
or treated with RNase A. For parts B and C, "in" indicates 2% of the input into each IP and "FT" indicates 2% of flow-through 
from each IP.
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Zn72D would phenocopy Zn72D knockdown. None of
these proteins were necessary for MSL complex localiza-
tion, as assayed by accumulation of GFP-MSL2 on the X
chromosome in S2 cells (Figure 2A and data not shown).
Depletion of pAbp, RpL4, RpS3, RpS3A, RpS4, and RpS6
resulted in cell death, consistent with an essential role for
these proteins. Argonaute 2 knockdown caused upregula-
tion of GFP-MSL2, as did knockdown of another protein
that regulates RNAi, Dicer-2 (data not shown). Upregula-
tion of endogenous MSL2 was not observed when either
Argonaute 2 or Dicer-2 was knocked down (data not
shown), suggesting that upregulation of GFP-MSL2 was
due to disruption of the Argonaute 2/Dicer-2 RNAi path-
way. We also knocked down each protein that co-IPed
with Zn72D in combination with Zn72D knockdown. We
found that for one co-knockdown, Zn72D and bel, MSL
complex localization to the X chromosome was restored
(Figure 2A). Zn72D knockdown was equally effective
alone or in combination with bel knockdown, as assayed
by western blotting (Figure 2B). This suggests that knock-
down of bel in cells depleted of Zn72D allows for produc-
tion of sufficient MLE protein for assembly of the MSL
complex.

Zn72D is required for proper X-linked gene expression in
males [10]. We asked whether, in addition to restoring
MSL complex localization to the X chromosome, com-
bined knockdown of Zn72D and Bel returned X-linked
gene expression to normal. S2 cells were either untreated
or treated with dsRNAs against mle, Zn72D, bel, or
Zn72D+bel, and levels of three X-linked transcripts and
one control autosomal transcript were assayed by quanti-
tative reverse transcription PCR (qRT-PCR). Expression of
the autosomal gene RpII140 was unaffected by any of the
knockdowns. The levels of the X-linked transcripts arm,
CG14804, and mRpL16 were decreased by approximately
twofold upon knockdown of mle or Zn72D (Figure 2C),
consistent with a defect in dosage compensation. Knock-
down of bel had little to no affect on X-linked gene expres-
sion (Figure 2C). Co-knockdown of Zn72D and bel
restored X-linked gene expression of CG14804 and RpL16
and partially restored expression of arm (Figure 2C).
Therefore, in addition to restoring MSL complex localiza-
tion to the X chromosome, depletion of both Zn72D and
bel either completely or partially restored proper X-linked
gene expression.

Since our data suggest that Bel and Zn72D physically
interact and both function in regulation of mle expression,
we examined whether these proteins co-localize. While
Zn72D is predominantly nuclear, it can also be detected
in the cytoplasm, and Bel is detected in both the nucleus
and cytoplasm (Figure 2D and 2E). Thus, Zn72D and Bel
may interact in the nucleus, cytoplasm, or both.

Since both Bel, a DEAD box helicase, and Zn72D are
potential RNA binding proteins, we examined whether
their interaction was RNA-dependent. We assayed co-IP of
these proteins in the presence or absence of RNase A (Fig-
ure 1C). Bel and HA-Zn72D co-IPed whether or not
RNase A was added to the extract, indicating that the inter-
action between Zn72D and Bel is independent of RNA.
More HA-Zn72D was immunoprecipitated from RNase A
treated extracts than from untreated extracts, suggesting
that a fraction of Zn72D may be present in RNA contain-
ing complexes and released upon RNase A treatment.
Because these co-immunoprecipitations are not quantita-
tive, it is possible that a fraction of the Zn72D that inter-
acts with Bel is in an RNA containing complex.

Co-knockdown of Zn72D and bel partially rescues mle 
mRNA splicing
We next examined whether depletion of bel rescues the
mle mRNA splicing defect that occurs upon Zn72D knock-
down. Northern blot analysis of wild-type whole cell RNA
with a cDNA probe showed three bands, which represent
the two spliced forms (I1 and I2, with I1 indicating the
productively spliced transcripts and I2 indicating the aber-
rantly spliced transcripts) combined with two polyade-
nylation sites (P1 and P2) (Figure 3A and 3B). Because the
two splice sites are approximately the same distance apart
as the two polyadenylation sites, the middle band repre-
sents a mixture of two isoforms (I1, P2 and I2, P1), while
the upper and lower bands each represent a single isoform
(I2, P2 and I1, P1 respectively). The Zn72D knockdown
cells showed a considerable decrease in the intensity of
the lower and middle bands (Figure 3B). Northern blot
analysis using a 3'UTR probe, which detects only the P2
isoforms, showed that the decrease in intensity of the
middle band was due to altered spliced site usage and not
altered polyadenylation (Figure 3C). qRT-PCR, employ-
ing a primer set that specifically amplifies productively
spliced mle transcripts [10], showed a 16-fold decrease in
correctly spliced mle mRNA in Zn72D knockdown cells
relative to wild-type cells (Figure 3D). Thus, there is a sub-
stantial decrease in levels of productively spliced mle tran-
scripts upon Zn72D depletion, as previously reported
[10].

Cells depleted for bel showed a similar distribution of mle
mRNA isoforms as wild type cells (Figure 3B and 3C). Lev-
els of productively spliced mle mRNA were slightly
decreased upon knockdown of bel (Figure 3D). Thus bel
knockdown alone does not significantly affect production
of productively spliced mle mRNA. The combined knock-
down of Zn72D+bel showed a four-fold decrease in the
abundance of productively spliced mle mRNA isoforms
(Figure 3B and 3C), a decrease that was not as great as that
observed upon depletion of Zn72D alone (Fig. 3D). A
similar result was observed when Zn72D and bel were
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Co-knockdown of Zn72D and bel restores MSL localization and X-linked gene expressionFigure 2
Co-knockdown of Zn72D and bel restores MSL localization and X-linked gene expression. (A) GFP-MSL2 express-
ing S2 cells were either untreated or treated with Zn72D, bel, or Zn72D+bel dsRNAs. The left panels show GFP fluorescence 
(green), the middle panels show DAPI staining to highlight the nucleus (blue), and right panels show the merged image. (B) 
Western blots with anti-Zn72D (top), anti-Bel (middle), or anti-γ-tubulin (bottom) as a loading control, in knockdowns indi-
cated above. (C) qRT-PCR for the X-linked genes arm, CG14804, and mRpL16 and the autosomal gene RpII140 was done after 
S2 cells were untreated (gray bars), or treated with dsRNAs to knockdown mle (white), Zn72D (black), bel (blue), or 
Zn72D+bel (red). Samples were normalized first to rp49 and then to the untreated sample, setting untreated to 1. The error 
bars represent the average of three independent experiments, with qPCR performed in triplicate, and error was determined 
using standard error propagation methods. (D) Zn72D and Bel are both present in the cytoplasm. Cells were stained with anti-
bodies to HA (red), Bel (green), and DAPI (blue) to delineate the nucleus. The nucleolar staining in the anti-Bel image was the 
result of antibody cross-reactivity, as when bel is knocked down, the nucleolar staining remained while the Bel staining 
decreased (data not shown). (E) Zn72D and Bel are present in both nuclear and cytoplasmic extracts. The cytoplasmic extract 
is enriched for β-tubulin and depleted for H3K4me3, whereas the nuclear extract is depleted for β-tubulin and enriched for 
H3K4me3.
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knocked down in the female Drosophila Kc cell line, indi-
cating that the effect on spliced mle transcript levels was
not the result of improper dosage compensation in males
(data not shown). Thus, there is some recovery of splicing
of the mle transcript when Zn72D and bel are co-depleted,
compared to knockdown of Zn72D alone, suggesting that
bel may inhibit productive splicing of mle mRNA. How-
ever, bel knockdown alone does not increase the amount
of productively spliced mle mRNA, indicating that bel
depletion must be combined with Zn72D depletion for
bel depletion to effect mle splicing. These data suggest that
Bel and Zn72D may function together in regulation of mle
mRNA processing.

Zn72D and Bel regulate MLE protein levels
Since co-knockdown of Zn72D and bel resulted in restora-
tion of MSL complex localization to the X chromosome,
we expected that more MLE protein would be produced
than when only Zn72D was knocked down. Quantitative
western blots for MLE protein were performed on S2 cell
extracts in which mle, Zn72D, bel or Zn72D+bel had been
knocked down (Figure 4A and 4B). In the absence of
Zn72D, the level of MLE protein decreased. Upon knock-
down of bel, MLE protein levels were unaffected. When
Zn72D and bel were knocked down together, MLE protein
levels were restored to 70% of wild-type levels. This 70%
of MLE protein is produced from 4-fold less productively
spliced mle mRNA than is present in wild-type cells.

As high levels of protein are produced from a comparably
small amount of mle transcript in the absence of Zn72D
and bel, this suggests that perhaps the mle transcript is
translated more efficiently or that MLE protein stability is
increased in double knockdown cells. MLE protein levels
did not change appreciably after treating cells for 8 hours
with cycloheximide, suggesting that MLE is not an unsta-
ble protein (Additional File 1). In addition, MLE half-life
was not affected by co-knockdown of Zn72D and bel, pro-
viding further evidence that the combined knockdown of
Zn72D and bel does not affect the abundance of MLE pro-
tein by increasing its stability (data not shown). There-
fore, these results suggest that co-knockdown of Zn72D
and bel may release mle mRNA from translational inhibi-
tion, such that high levels of MLE protein are produced in
spite of the decreased levels of productively spliced mle
transcripts. This effect on translation could be through
direct translational regulation or through regulation of
cytoplasmic localization of mle transcripts, thus influenc-
ing translation efficiency.

The combined knockdown of Zn72D and bel resulted in
increased levels of MLE protein from decreased amounts
of productively spliced mle mRNA. Knockdown of bel
alone did not have an appreciable affect on mle expression
at either the mRNA or protein level. Together these data

suggest that Bel may function, via its interaction with
Zn72D, to regulate translation or transport of mle mRNA.
There is considerable evidence implicating Bel in transla-
tional regulation: 1) Bel colocalizes at the oocyte posterior
with the translational regulator and DEAD box helicase
Vasa, and Vasa is required for the proper localization of
Bel, thus implicating Bel as having a role in regulating
local translation [11]. 2) bel knockdown in S2 cells
reduced the amount of β-gal produced from an inducible
LacZ transgene, without altering the abundance of LacZ
mRNA [27]. 3) Bel is homologous to and can functionally
substitute for the DEAD box helicase Ded1p protein in
yeast, which is required for translation [28,11]. Biochem-
ical and genetic evidence suggest that Ded1p plays a role,
not only in translation, but also in splicing [29-31]. 4)
Like Ded1p, the human Bel homologue, the DEAD box
helicase DDX3, is a translational regulator that is also
associated with the spliceosome [27,32-34]. DDX3 acts
either as a translational repressor or activator, depending
on the target mRNA [35,27,33]. These data have led to a
model in which DDX3/Ded1p is loaded onto mRNA in
the nucleus and then functions in translation in the cyto-
plasm [36]. This is particularly interesting, since Bel inter-
acts with Zn72D, which regulates mle mRNA splicing. By
associating with factors that regulate splicing, DDX3 and
Bel may be recruited to specific transcripts to regulate their
translation.

In addition to its role as a translational regulator, DDX3 is
also implicated as a factor important for mRNA export
and in localizing mRNAs for translation [37,38,35,39].
Recently, it was demonstrated that knockdown of bel does
not affect nuclear export of bulk mRNA [27]. We found
that Bel does not regulate nuclear export of mle transcripts,
as we found that mle transcripts accumulated in the cyto-
plasm when bel was knocked down and when Zn72D and
bel were knocked down together (Additional File 2). How-
ever, it is possible that Bel affects localization of mle
mRNA within the cytoplasm to regulate translation. This
would be consistent with Bel being specifically localized
with Vasa at the posterior of the oocyte, where transcripts
are deposited for localized translation.

The aforementioned data implicate Bel and its homo-
logues in regulating gene expression at the level of mRNA
localization and translation. Knockdown of bel by itself
had no significant effect on MLE protein levels (Figure 4).
Only when Bel depletion was combined with Zn72D
depletion was an effect on MLE protein evident. This sug-
gests two possibilities. First, that Bel is a weak suppressor
of mle mRNA translation (either directly or via regulating
cytoplasmic localization), such that when mle mRNA lev-
els are high, Bel's effect on MLE protein levels is not signif-
icant. Alternatively, it may be that Zn72D blocks Bel
Page 6 of 11
(page number not for citation purposes)



BMC Molecular Biology 2009, 10:33 http://www.biomedcentral.com/1471-2199/10/33

Page 7 of 11
(page number not for citation purposes)

Co-knockdown of Zn72D and bel partially restores productively spliced mle mRNA levelsFigure 3
Co-knockdown of Zn72D and bel partially restores productively spliced mle mRNA levels. (A) Depicted is the mle 
gene, which contains 5 exons (white boxes) and 4 introns (black horizontal lines). Poly(A)-1 and -2 are depicted as gray vertical 
lines within the fifth exon. (Bottom) Four mle transcript isoforms differ in retention of part of intron 2 (Isoforms I1 and I2) and 
usage of the upstream or downstream poly(A) sites (P1 and P2). The partially retained intron is shown as a thicker horizontal 
black line. (B) Northern analysis with RNA collected from S2 cells untreated or treated with dsRNAs to Zn72D, bel, or 
Zn72D+bel. The blot was probed with a probe antisense to mle cDNA. The top band corresponds to isoform I2, P2; the middle 
band corresponds to both isoforms I1, P2 and I2, P1; and lower band corresponds to isoform I1, P1. In the absence of Zn72D, 
only I2 isoforms remain. Upon Zn72D+bel knockdown, there are predominantly I2 isoforms but a subtle increase in I1 isoforms 
compared to Zn72D knockdown. (C) The blot on the left was stripped and reprobed with a probe located between the two 
poly(A) sites. This probe only recognizes the P2 isoforms. There are similar slight increases in the level of correctly spliced I1 
isoforms when comparing the left and right blots, indicating no difference in recovery of the two isoforms of mle mRNA that 
use alternative poly(A) sites. (D) S2 cells were untreated or treated with mle, Zn72D, bel, or Zn72D+bel dsRNAs and qRT-PCR 
was performed with primers to the mle transcript that specifically amplify isoform 1. Samples were normalized first to rp49 and 
then to the untreated sample, setting untreated to 1. The error bars represent the average of four independent experiments, 
with qPCR performed in triplicate, and error was determined using standard error propagation methods.
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activity on mle transcripts, and that these two proteins
work together to finely tune production of MLE protein.

Why is it important to regulate MLE protein levels? MLE
localizes to all chromosomes and throughout the nucleus
when overexpressed [40,10]. Incorrect MLE expression is
detrimental to the development of the fly, because heat
shock over-expression of transgenic MLE protein results in
male and female lethality [40]. It is possible that transla-
tional repression by Zn72D and Bel is one mechanism by
which levels of MLE protein are tightly controlled. Expres-
sion of a transgenic mle cDNA in S2 cells resulted in over-
production of MLE protein; however, inclusion of the first
two introns in the same transgene reduced the amount of
MLE protein produced from the transgene [10]. This sug-
gests that perhaps recruitment of Zn72D to the mle tran-
script has the effect of not only productively splicing the
transcript but also targeting it for translational regulation.

Like Zn72D, its human homologue ZFR is also found
mainly in the nucleus, with a subset in the cytoplasm.
Cytoplasmic ZFR colocalizes in neuronal granules with
Staufen2, a protein involved in mRNA transport and
localization. ZFR interacts with and is required for cyto-
plasmic localization of the Staufen262 isoform [41]. As
neuronal granules are involved in translational regulation

and localization of mRNAs, these data suggest that ZFR
may have a role regulating cytoplasmic localization of
mRNAs. If Zn72D has a similar function in flies, it has the
potential to regulate gene expression at two steps. Zn72D
may first promote productive splicing of mRNAs and then
later affect their cytoplasmic localization, which in turn
may impact translation.

Conclusion
We identified several proteins that interact with Zn72D,
including the DEAD box helicase Bel. Co-knockdown of
both bel and Zn72D restores the MSL complex localization
to the X chromosome and dosage compensation of X-
linked genes that was lost in the absence of Zn72D. In
addition, we found that co-knockdown of Zn72D and bel
resulted in restoration of MLE protein levels to 70% of
wild-type levels, despite a four-fold reduction in properly
spliced mle mRNA. These data implicate Zn72D and bel as
being factors that target spliced mRNAs for localized, reg-
ulated translation in the cytoplasm.

Methods
Cell Culture and Generation of Stable Cell Lines
S2 cells were grown in Schneider's media plus 10% fetal
bovine serum, penicillin and streptomycin. Cells were
maintained according to the Invitrogen Drosophila Expres-

Co-knockdown of Zn72D and bel restored MLE protein levels to 70% of normal levelsFigure 4
Co-knockdown of Zn72D and bel restored MLE protein levels to 70% of normal levels. (A) One representative 
quantitative western blot for MLE protein upon knockdown of mle, zn72d, bel, or zn72d+bel. (B) MLE levels were quantitated 
by first normalizing to the amount of γ-tubulin and then averaging the numbers obtained from the 3 experiments with 2 techni-
cal replicates per experiment. Standard deviation was found for the average of each experiment.
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sion System Protocol. S2 cell lines expressing GFP-MSL2
and HA-Zn72D were described previously [10]. pAM-
CG5641 (Myc-CG5641) was cloned using the Invitrogen
Gateway system. 20 μg of the plasmid plus 1 μg pCoBlast
(Invitrogen) was transfected into S2 cells using the proto-
col described in the Invitrogen Drosophila Expression Sys-
tem Protocol and selected with 15 μg/mL Blasticidin S
HCl.

Co-immunoprecipitation
S2 cells from a 10 cm dish were washed with 1×PBS and
lysed in lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1
mM EDTA, 0.1% TritonX-100, supplemented with pro-
tease inhibitors and RNasin [Promega]). For Co-IPs that
were performed in the presence of RNase A, RNAsin was
left out of the buffer and RNAse A was added at a concen-
tration of 0.1 mg/mL after sonication. The lysate was son-
icated three times, 10 seconds each (on ice for one minute
in between pulses) on setting 3, constant duty cycle on a
Branson sonicator. The extract was clarified by centrifuga-
tion at 14,000 rpm for 15 min. at 4 degrees C. At least 600
ug extract was added to the 10 μL of Dynal Dynabeads
(Invitrogen), precaptured with the appropriate antibody.
Beads and extracts were rotated overnight at 4 degrees C
and then washed 3 times with lysis buffer. Proteins were
boiled off the beads in 1× sample buffer. (2× sample
buffer: 8.3% glycerol, 1.25% SDS, 0.1 M Tris-HCl pH 6.7,
0.083 mg/mL bromophenol blue, 50 μL/mL 2-mercap-
toethanol.) For large scale IPs for mass spectrometry, 45
mg of clarified S2 cell extract was added to 250 μL protein
G Dynal Dynabeads preincubated with 25 μL HA.11 anti-
body (Covance). The proteins boiled off the beads were
loaded on a 7.8% SDS-PAGE gel and which was later
stained with G-250 coomassie blue.

Cellular fractionation
Nuclear and cytoplasmic extracts were prepared as
described in [42] (nuclear) and in [43] (cytoplasmic).

On-line Capillary LC-MS and LC-MS-MS Analysis
Affinity-purified Zn72D-containing samples were sepa-
rated by SDS-PAGE gel, in-gel digested and analyzed by
LC-MS and LC-MS-MS as described previously [44].
Briefly, 1 μl aliquot of the digestion mixture was injected
into an Ultimate capillary LC system via a FAMOS
Autosampler (LC Packings, Sunnyvale, CA), and sepa-
rated by a 75 μm × 15 cm reverse-phase capillary column
at a flow rate of ~330 nL/min. The HPLC eluent was con-
nected directly to the micro-ion electrospray source of a
QSTAR Pulsar QqTOF mass spectrometer (Applied Biosys-
tem/MDS Sciex, Foster City, CA). Typical performance
characteristics were > 8000 resolution with 30 ppm mass
measurement accuracy in both MS and CID mode. LC-MS
data were acquired in an information-dependent acquisi-
tion mode, cycling between 1-s MS acquisition followed
by 3-s low energy CID data acquisition. The centroided

peak lists of the CID spectra were searched against the
National Center for Biotechnology Information (NCBI)
Drosophila melanogaster protein database using Batch-Tag,
a program in the in-house version of the University of Cal-
ifornia San Francisco ProteinProspector package. The CID
spectra were further inspected manually. Protein hits with
more than two confident MSMS spectra are reported in
the table.

Quantitative western blotting
S2 cells +/- dsRNA treatment for 6 days were counted,
spun down, and lysed in 1× Sample buffer (2× sample
buffer: 8.3% glycerol, 1.25% SDS, 0.1 M Tris-HCl pH 6.7,
0.083 mg/mL bromophenol blue, 50 μL/mL 2-mercap-
toethanol) at 5 × 104 cells/μL. Samples were boiled for 5
minutes and spun down at 14,000 rpm at 4 degrees C for
20 minutes. 15 μL lysate was loaded per lane of a 7.8%
gel. Gels were transferred to nitrocellulose, blocked with
1% nonfat dry milk/0.05% Tween/1×PBS and probed
overnight at 4 degrees with mouse anti-HA antibody at a
1:2000 dilution (HA.11, Covance), guinea pig anti-MLE
antibody at 1:500 (gift from John Lucchesi), mouse anti γ-
tubulin at 1:1000 (GTU-88, Sigma), mouse anti β-tubulin
at 1:1000 (Developmental Studies Hybridoma Bank),
rabbit anti-Bel at 1:2500 (gift from Paul Lasko), and
chicken anti-Zn72D serum at 1:200 [10]. Donkey anti-
guinea pig Cy3 (1:1000), anti-mouse Cy3 (1:500), anti-
rabbit (1:1000), and anti-chicken (1:500) (Jackson
ImmunoResearch), were used as a secondary antibodies,
detected using a Typhoon 9400 instrument and quanti-
tated using Quantity One software (Bio-Rad). MLE levels
were normalized to γ-tubulin.

RNAi
dsRNAs were added to S2 cells (~15 μg/mL) in 50% con-
ditioned/50% fresh Schneider's media. The following
primers were used to produce PCR products, which were
used in T7 in-vitro transcription reactions to produce
dsRNA:

mle(s): GGGCGGGTTTATGGCTTCGTACTCTAGCACC,

mle(as): GGGCGGGTAAGTTAAGCCAGTTGTCAACGC,

bel(s): GGGCGGGTGTCTGGACTTGAATGGCGGC,

bel(as): GGGCGGGTCGTTGTAGTTGTCCTCGAAACGTC,

Zn72D(s): GGGCGGGTGTTGAACTTACAATCGCACAGC,

Zn72D(as): GGGCGGGTACTGGTATCAGCGTAAGATG G
G   ,

Zn72D3'UTR(s): GGGCGGGTGCGGCGAGAATAGGT-
TATATAC,
Page 9 of 11
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Zn72D3'UTR(as): GGGCGGGTCCGCTTCGTTCTAG-
TATTTGTG.

qRT-PCR
qRT-PCR on whole cell RNA was performed as described
previously[10]. The primers used are described below:

mle QF1: CGGAACACGCTAGGAGCTTT, QR1: TGA GC
GCCG GCACAT;

rp49 QF3: GCCGTAATTGTCGTTTTTGG, QR3: CGAA CA
GCGCACGGACTA;

mRpL16 QF2: TCAACACAGCCGGTCTTAAGTAT, QR2:
GGCTGCTCCACATTCTGGTA; arm-F GCTGCTGAAC-
GATGAGGATCA, arm-R: CCAAAGCGGCTACCATCTGA;
CG14804-F: CTGAGCACAAGACGGCAGAG, CG14804-
R:GAGGGTCACGTTCACCTTGC;

RpII140-F: CACAATGGCGGCGGTT, RpII140-R: ACGCA-
GATGTTCAGGCAGAGT [45].

Northern blotting
Northern blots were performed with a NorthernMax Kit
(Ambion) and BrightStar-Plus membrane (Ambion). 10
μg of RNA of whole cell extracts from S2 cells treated +/-
Zn72D dsRNA for 6 days was loaded per lane. Blots were
probed with a labeled DNA probe antisense to the full-
length mle cDNA or to the 3'UTR of mle between the poly-
adenlyation sites, and exposed to a phosphor screen over-
night.
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