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Abstract
Background:  Translation termination is mediated through an interaction between the release
factors eRF1 and eRF3 and the stop codon within its nucleotide context. Although it is well known
that the nucleotide contexts both upstream and downstream of the stop codon, can modulate
readthrough, little is known about the mechanisms involved.

Results:  We have performed an in vivo analysis of translational readthrough in mouse cells in
culture using a reporter system that allows the measurement of readthrough levels as low as 10-4.
We first quantified readthrough frequencies obtained with constructs carrying different codons
(two Gln, two His and four Gly) immediately upstream of the stop codon. There was no effect of
amino acid identity or codon frequency. However, an adenine in the -1 position was always
associated with the highest readthrough levels while an uracil was always associated with the lowest
readthrough levels. This could be due to an effect mediated either by the nucleotide itself or by the
P-site tRNA. We then examined the importance of the downstream context using eight other
constructs. No direct correlation between the +6 nucleotide and readthrough efficiency was
observed.

Conclusions:  We conclude that, in mouse cells, the upstream and downstream stop codon
contexts affect readthrough via different mechanisms, suggesting that complex interactions take
place between the mRNA and the various components of the translation termination machinery.
Comparison of our results with those previously obtained in plant cells and in yeast, strongly
suggests that the mechanisms involved in stop codon recognition are conserved among eukaryotes.

Background
Translation termination is a crucial step in the process of

information decoding. Its accuracy reaches about 10-4

and ensures that only very few abnormal products are

synthesised under normal conditions [1]. Conversely,

translation termination is widely used by both animal

and plant viruses as a mean of controling expression,

through recoding events [2, 3]. Readthrough is the proc-

ess by which a stop codon is misread as sense by the

translational apparatus, allowing the synthesis of an ex-

tended polypeptide which carries novel activities [2]. Up

to now, no specific gene products have been implicated

in the control of translational readthrough, strongly sug-

gesting that only normal interactions between the mRNA

and components of the translational machinery are in-

volved. This differs from the mechanism of seleno-

cysteine incorporation, which requires a whole set of

specific partners, including a specific tRNA and a partic-
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ular elongation factor [4]. Readthrough can therefore be

seen as "programmed translational errors" occurring at

specific sequences on the mRNA.

Several studies, either in vivo or "in silico", have analyzed

the termination context in mammalian cells [5,6,7]. In

particular, it has been demonstrated that the nucleotide

following the stop codon (defined as +4) is non random,

with purines over-represented for the three stop codons.

This + 4 nucleotide in fact plays a key role in termination

efficiency, leading to the proposition that termination is

directed by a "four base signal" [8]. Clearly, some pro-

grammed readthrough events are based on alteration of

these interactions. This is the case in Sindbis virus where

the UGAC sequence, which is a very poorly used stop

context in mammals, is sufficient to drive an efficient

readthrough (2-5%) [5]. More generally, it has been

demonstrated in numerous experimental systems that

the nucleotide at position +4 plays an important role in

suppression efficiency [5, 6, 9,10,11,12,13,14]. Other nu-

cleotide biases are found around stop signals, non-ran-

domness being observed at up to eight positions

downstream of the stop codon and three positions up-

stream [15]. Such biases possibly reflect the existence of

interactions between the mRNA and other components

of the ribosomal machinery, which are important for ter-

mination efficiency.

Elucidating the mechanisms at play during readthrough
may help understand normal translation termination. To

achieve this goal, we have analyzed the rules governing

readthrough in mouse cells in culture. We focused our

studies on the sequence CAA UAG CAA UUA, derived

from the plant Tobbaco Mosaic Virus (TMV) [16]. This

sequence was previously shown to drive a high level

readthrough both in in vitro systems [12] and in vivo in

plant cells [9, 17] and yeast [10, 18]. This sequence is also

functional in mammalian cells in culture [19]. We used a

highly sensitive luciferase reporter to study the role of

amino acid identity, codon frequency and nucleotide

context, at the 5' and 3' triplets flanking the stop codon.

Results
To study the effect of the context on readthrough effi-

ciency, we used a leaky termination signal derived from

the TMV: CAA UAG CAA UUA. Different mutations were

introduced into the triplets immediately preceeding or

following the stop codon (Figure 1). The constructs were

transfected in mouse cells and the readthrough level was

evaluated by quantifying the luciferase activity obtained

(see Materials and Methods). The results are summa-

rized in the Tables and represented as histograms in the

Figures.

Effect of upstream mutations
An important methodological problem is that changing a

nucleotide could modify several parameters in addition

to nucleotide identity: mRNA secondary structure, co-
don frequency, amino acid identity and luciferase molec-

ular specific activity. To overcome the problem of

possible changes in molecular specific activity of the

modified luciferase, control constructs were designed in

which the stop codon has been replaced by a CAG

glutamine codon. As shown in Table 1, the activities of

the modified luciferase proteins vary from 10% to 40%

compared to the wild type pRSVL reporter, emphasizing

the importance of this type of control. To differentiate at

least some of the various structural parameters that may

be involved in termination efficiency, we generated se-

ries of comparable constructs, harboring synonymous

codons. One can thus analyze the effect of amino acid

identity on readthrough and assess the effect of codon

frequency for a given amino acid; finally, the effect of nu-

cleotide identity at a given position can be studied in dif-

ferent contexts. This last point is crucial, since the

occurrence of complex interactions between nucleotides

located at different positions, would prevent a consensus

sequence to emerge when analysing the stop codon con-

text at a genomic level. A series of mutations were intro-

duced in the CAA codon preceeding the stop. CAA was

changed for the other glutamine codon CAG, for the two

histidine codons CAU and CAC and for the four glycine

(GGN) codons. Results are shown in Figure 2A-B. We
first examined whether amino acid identity could inter-

fere with readthrough. In this case, one would expect to

see only a weak variation between constructs harboring

the same amino acid. Conversely, variation should be

higher for different amino acids. Comparing the results

within a series and between different series, showed that

variation between synonymous codons of the GLY family

was greater than variation from one amino acid to anoth-

er. These observations ruled out that the identity of the

last amino acid was the main determinant of

readthrough level.

Another parameter that might affect readthrough is the

availability of the tRNA decoding the last sense codon,

for example through a different ribosome pausing kinet-

ics. Since rare tRNAs generally correspond to rare co-

dons, we checked whether a bias in codon frequency was

correlated with readthrough efficiency. Results shown in

Table 2 demonstrate that codon frequency and

readthrough efficiency were not correlated, either in the

whole set of data or within a given set of synonymous co-

dons [20].

As shown by Tate and coworkers, nucleotides surround-

ing the stop codons are not randomly distributed [8, 21,
22]. In particular, a strong bias is observed at the -1 posi-
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tion (see Figure 2C). Comparing Figure 2A-B to Figure

2C shows that, although the infrequent A was associated

with the highest readthrough, no correlation was ob-

served with the other nucleotides.

Finally, the only parameter that could be correlated with

the readthrough efficiency was the nucleotide identity at

the -1 position. Adenine was associated with the highest

readthrough and uracil with the lowest. Guanine and cy-

tosine gave intermediate values, guanine being in both

cases higher than cytosine, although this difference is

only significant in the CAN series.

Effect of dowstream mutations
The same two series of constructs were analyzed for the

CAA following the stop: CAN and GGN. Figure 3A-B il-

lustrates that, in this case, the pattern was strikingly dif-

ferent between the two series. For the CAN series the

readthrough efficiency followed the hierarchy:

A>G>U=C, with A showing a 30 fold higher readthrough

Figure 1
Description of the pRSVL74 vector and of the cloning strategy. The sequence of the 5' end of the luc gene coding
sequence is shown with the common sequence of the inserted oligonucleotide containing the stop with its surrounding con-
text. This sequence is inserted in place of the boxed "T" in the luc gene sequence. For each test construct, a control with the
same sequence where a CAG replaced the TAG stop codon was used to evaluate the luciferase specific molecular activity.
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level than C. By contrast, for the GGN series, the hierar-

chy was C>U≥A≥G with C showing a 2.5 fold higher

readthrough than G. As above, we examined the correla-

tion between nucleotide usage at the variable position

and readthrough efficiency. The histogram shown in Fig-

ure 3C demonstrates no correlation between these two
values.

Are these results related to readthrough efficiency ?
In this last set of results, the readthrough activities meas-

ured for many constructs were very low (around 10-4).

This raised the general point of whether the measured

enzymatic activities might reflect other translational

events such as sliding, internal ribosome entry or reiniti-

ation. To determine whether the observed patterns were
relevant to leaky translation termination, we repeated

the GGN upstream and downstream series of experi-

ments, which gave the lowest readthrough values, in the

presence of an amber suppressor tRNA [23]. The exper-

imental scheme was exactly the same, except that a con-

struct allowing expression of the suppressor tRNA was

Figure 2
Readthrough efficiencies of upstream mutants. The
different stop codon context mutations were inserted at the
beginning of the luc gene, as illustrated in Figure 1. Each con-
struct was used to transfect NIH3T3 mouse cells and luci-
ferase activity was determined. Each value is the mean of at
least 3 independent experiments. Readthrough is expressed
as percentage of the corresponding control where the stop
codon has been replaced by a sense CAG glutamine codon.
A: CAN UAG CAA mutants B: GGN UAG CAA mutants C:
Nucleotide usage at the -1 position relative to the stop.

Figure 3
Readthrough efficiencies of downstream mutants
Same legend as Figure 2. A: CAA UAG CAN mutants B:
CAA UAG GGN mutants C: Nucleotide usage at the +6
position relative to the stop.
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cotransfected along with the test constructs. The results
are shown in Table 3. A 50 to 100 fold increase in

readthrough activities was observed, demonstrating that

very high levels of suppression were reached. Strikingly,

Figure 4 illustrates that the same pattern was obtained

either in the presence or in the absence of UAG suppres-

sor tRNA. This indicates that the results observed under

basal conditions actually corresponded to bona fide

translational readthrough.

Discussion
The mechanisms involved in translation termination are

still not completely understood, partly because more in-

teractions than those required for codon-anticodon rec-

ognition are involved. In particular, protein-RNA and

protein-protein interactions are other potential targets

of translation termination control. Since in vitro transla-

tion may not always accurately reflect the in vivo condi-

tions, we chosed to perform such analyses in living

mouse cells. This requires the use of a system that allows

the detection of very low readthrough levels. Thus, we

used a reporter system bearing: i) the highly sensitive lu-
ciferase reporter gene; ii) the powerful RSV LTR promot-

er [24, 25].

We used the sequence CAA UAG CAA UUA, that drives a

high level of translational readthrough in mouse cells in

culture [19], and introduced targeted mutations in the

sequences surrounding the stop codon. We found that

single changes in this sequence were sufficient to de-

crease readthrough by up to 30 fold in vivo. We con-

structed a set of mutants where changes corresponded to

synonymous codons. In this case, one can analyze sepa-

rately at least some of the different parameters - amino

acid identity, codon frequency, nucleotide identity - that

may be involved in termination efficiency. We were also

able to analyze nucleotide effects in different contexts,

i.e. determine whether a given change would give the

same effect in different sequence environments. This last

point is crucial to assess the physiological significance of

nucleotide usage found in stop signal regions.

Figure 4
Readthrough efficiencies in the presence of a suppressor tRNA. Readthrough efficiencies were determined as
described in Figure 1. To compare the values that differed by several orders of magnitude between the two sets of experi-
ments, results are given as percentage of the highest readthrough obtained in each condition.
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We focused our analysis on two positions which have al-

ready been shown to be involved in termination or

readthrough in eukaryotes, but which have not been

studied in mammalian cells so far: the nucleotide pre-

ceeding the stop (-1) and the third nucleotide following

the stop (+6) [15].

Two sets of modifications were introduced in the CAA

triplet preceeding the stop: CAN and GGN. We found

that the same amino acid can drive very different

readthrough efficiencies (5 fold differences between

GGA and GGU), suggesting that the amino acid itself

does not play a major role in readthrough efficiency.

Availability of the tRNA preceeding the stop is another

parameter that could modulate ribosome pausing [26]

and thus may affect readthrough. Since rare tRNAs gen-
erally correspond to rare codons [27], we checked wheth-

er a bias in codon usage was correlated with readthrough

efficiency. This seemed to be the case for some of the mu-

tants presented here. For example, the rare CAA

glutamine codon gave a higher readthrough than the fre-

quent CAG codon. However, when we systematically ex-

amined codon frequency in parallel with readthrough

efficiency, no correlation could be found (see Table 2).

Although we cannot rule out a marginal effect of codon

frequency, it is unlikely that it represents the main deter-

minant of readthrough efficiency.

Readthrough efficiency is clearly correlated with the nu-

cleotide immediately preceeding the stop codon. Hence,

an adenine in the -1 position is associated with a high

readthrough while a pyrimidine is associated with a low

readthrough. Taken together, these results show that

there is a gradation in the observed effect on

readthrough efficiency by which A>G>Y. The fact that a

rule could be drawn suggests that relatively simple inter-

actions are involved, possibly between the tRNA in the P

site, the incomming potential suppressor tRNA and the

message, as it has been shown in yeast [28]. However,

since the information on the Glycine-, Histidine- or

Glutamine-isoacceptor tRNAs in mouse is not yet availa-
ble (see M. Sprinzl, K.S. Vassilenko, J. Emmerich, F.

Bauer "Compilation of tRNA sequences and sequences of

tRNA genes". http://www.uni-bayreuth.de/depart-

ments/biochemie/trna/), this possibility cannot be ex-

plored further for the time being.

In a second series of experiments, two sets of mutations

were introduced in the triplet following the stop codon:

CAA was changed for CAN and for GGN. A drastic effect

on readthrough, up to 100 fold, was observed. In this

case however, no uniform rule emerged, the hierarchy

being A>G>U=C in the CAN series, but C>U≥A≥G for the

GGN series. These contrasted results imply that complex

interactions are taking place downstream of the stop co-

don. Although the nature of these interactions cannot be

deduced from our results, one possibility would be that

mRNA structure is involved in this phenomenon, as it is

in numerous translational events [29]. Another obvious

candidate potentially interacting with the stop context is

the release factor eRF1 [30]. If this is the case, one would

predict to be able to obtain mutant forms of eRF1 show-

ing a better recognition of poor codon context. The three

dimensional structure of eRF1 has been published re-

cently and could help to design mutants affected in stop

codon context interaction [31].

Table 1: Luciferase activity from in frame controls

Control Activity compared to Standard
Sequences wild type construct Deviation

CAA CAG CAA 13,8% 6,4%
CAU CAG CAA 31,8% 6,0%
GGC CAG CAA 38,2% 13,4%
CAA CAG CAU 27,5% 3,8%
CAA CAG GGC 11,1% 4,1%

Table 2: Readthrough efficiencies from the mutant constructs

Test Codon Readthrough Standard
Sequnces Frequency Efficiency Deviation

CAGGLN UAG CAA 3.41% 0.77% 0.08%
CAAGLN UAG CAA 1.18% 2.01% 0.80%
CAUHIS UAG CAA 0.97% 0.06% 0.03%
CACHIS UAG CAA 1.50% 0.30% 0.18%
GGGGLY UAG CAA 1.59% 0.18% 0.08%
GGAGLY UAG CAA 1.80% 0.49% 0.23%
GGUGLY UAG CAA 1.21% 0.10% 0.04%
GGCGLY UAG CAA 2.31% 0.16% 0.08%

CAA UAG CAG 0.43% 0.05%
CAA UAG CAA 2.01% 0.80%
CAA UAG CAU 0.07% 0.04%
CAA UAG CAC 0.066% 0.05%
CAA UAG GGG 0.022% 0.01%
CAA UAG GGA 0.028% 0.01%
CAA UAG GGU 0.033% 0.01%
CAA UAG GGC 0.053% 0.03%

(a) The last amino acid inserted before the stop is indicated together 
with the codon frequency compiled from Mus musculus [20]).
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It is striking that the CAA UAG CAA UUA sequence di-

rects a high readthrough in several very different eukary-

otes. In plants, the readthrough efficiency reaches 4-5%

[9], a level similar to what is observed in mouse cells

(2%). In the yeast S. cerevisiae, it is even more efficient,

driving a readthrough of 15-25% in a [psi-] strain [18]

and up to 55% in a [PSI+] strain (Olivier Namy and Jean-

Pierre Rousset, unpublished results). Furthermore,

when our results are compared with those obtained in

plant cells and yeast, a similar effect of the nucleotide

context is observed [9, 10, 28]. By contrast, this sequence

is unable to drive a significant readthrough activity (4,5

10-4) in E. coli (JPR, MC, unpublished results, see also

[9]).

Conclusions
Altogether, our results indicate that different signals are

involved in the interaction between the translational ma-

chinery and the upstream and downstream stop codon
contexts. In addition, they also suggest that the mecha-

nisms involved in readthrough are common to eukaryo-

tes, pointing to either an ancient origin of the translation

termination machinery, or to very strong structural con-

straints at the level of the eukaryotic ribosome. Another

implication of these observations is that the readthrough

sequence analyzed here, although first described in a

plant virus, might be used as a recoding signal also in

mammals and yeast. Analyzing DNA sequence data bas-

es should help in identifying such putative physiological

recoding events.

Materials and Methods
Plasmids
The pRSVL74 cloning vector is shown in Figure 1 and the

procedures used to construct the mutant derivatives

have been described previously [25]. Briefly, 25 nt syn

thetic double stranded oligonucleotides were inserted in

the oriented NheI-BclI cloning site of the vector. In the

pRSVL74 derived plasmids, the luc gene encoding the

very sensitive luciferase reporter is under the control of
the strong Rous Sarcoma Virus promoter [24]. Muta-

tions were introduced in the sequence GCA GGA ACA

CAA TAG CAA TTA CAG A. All constructs were verified

by sequencing 200 nt around the mutation. pCH110 car-

ries a lacZ gene under the control of the SV40 promoter-

enhancer region [32].

ptRNAam is a gift of Olivier Jean-Jean; it carries the en-

tire coding sequence and promoter region of a human

tRNASer gene, in which the anticodon has been replaced

by CUA, therefore recognizing the UAG stop codon [23].

Cells
NIH 3T3 cells were cultured in Ham's F12 or DMEM me-

dium supplemented with 5 % fetal calf serum, at 37°C in

humidity saturated 7% CO2 in air.

Transfection
One million cells were transfected with 10 µg of each test

vector and 5 µg of the pCH110 vector, using DNA/phos-

phate coprecipitation. Cells were rinsed after overnight

incubation with the DNA, and the medium was changed

the next day. Cells were harvested on day 3 and crude ex-

tracts were prepared as described [25]. To check the ef-

fect of suppression, the same protocol was used except
that 5 µg of the ptRNAam vector was added just before

the step of DNA/phosphate coprecipitation.

Enzyme assays
β-galactosidase and luciferase were assayed using stand-

ard methods [33, 34].

Readthrough efficiency quantification
To evaluate readthrough efficiency, the luciferase activi-

ty obtained from a test construct was compared to the ac-

tivity of the wild type pRSVL vector, which was used as

an internal control of each individual transfection exper-

iment. The β-galactosidase activities driven by the

cotransfected pCH110 plasmid reflected transfection ef-

ficiencies and were used to standardized luciferase activ-

ities. The readthrough level was expressed as the ratio of

standardized activity from the test construct to the

standardized activity from the wild type pRSVL con-

struct. Since luciferase molecular specific activity may

vary depending on the amino acid sequence of the pro-

tein, control vectors in which the UAG stop codon has

been replaced by a CAG glutamine codon were similarly

transfected and their activities standardized for transfec-

tion efficiency.

Table 3: Effect of an amber supressor tRNA

Readthrough Efficiency

Basal + Sup

GGG UAG CAA 0.18% 16.2%
GGA UAG CAA 0.49% 33.9%
GGU UAG CAA 0.10% 11.9%
GGC UAG CAA 0.16% 13.0%
CAA UAG GGG 0.022% 12.1%
CAA UAG GGA 0.028% 16.3%
CAA UAG GGU 0.033% 30.6%
CAA UAG GGC 0.053% 34.4%
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