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Abstract

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix
preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of
secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during
replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances,
single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In
order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-
stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we
discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular
process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central
roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of
stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.

Keywords: Single-stranded DNA binding proteins (SSBs), Oligonucleotide/oligosaccharide binding (OB)-fold,
Double-strand DNA break (DSB) repair, Homology-directed repair (HDR), Translesion synthesis, Nucleotide excision
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Introduction

DNA exists primarily as a duplex to stabilise and protect
our genome. However, as a result of many cellular pro-
cesses, such as replication and transcription, single-
stranded DNA (ssDNA) is exposed. While a necessary
metabolic intermediate, these exposed stretches are
vulnerable to both chemical and enzymatic degradation,
and as such must be sequestered. In this process, the
single-stranded DNA binding protein family (SSBs) are
essential cellular components [1-4]. In addition to this
role, SSBs function in the correct processing of ssDNA,
including the recruitment of appropriate functional
enzymes. In the current review, we discuss the roles of a
subset of human SSBs in the maintenance of genomic
stability, an essential consideration in the prevention of
malignant transformation and loss of cellular viability.
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The characteristic functional unit of the SSBs is
the oligonucleotide/oligosaccharide-binding (OB)-fold,
a protein domain that facilitates binding to ssDNA, as
well as various protein-protein interactions (Figure 1).
As we have described previously [1], the SSB family
consists of two core sub-groups; the simple SSBs,
which contain one OB-fold per polypeptide, and the
higher order SSBs, which contain multiple OB-folds
(which may be on different polypeptides). The human
genome encodes both simple and higher order SSBs:
the simple SSBs are represented by human single-
stranded DNA binding proteins 1 and 2 (hSSB1 and 2) and
the mitochondrial SSB (mtSSB), while higher order SSBs
are represented by heterotrimeric RPA. In addition, other
proteins have also adopted the ssDNA-binding-OB-fold
structure within their polypeptides and may be con-
sidered members of the SSB family. For instance the
serine/threonine kinase receptor associated protein
(Strap) structurally contains one DNA binding OB
fold as do the simple SSBs, while the TPP1 - protection of
telomeres 1 (POT1) breast cancer 2, early onset (BRCA2)
and the CST complex form complexes reminiscent of
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Figure 1 Human OB-fold containing proteins are essential for multiple aspects of genome stability maintenance. Schematic
representation of human OB-fold containing proteins, illustrating their predicted domains and central function. Domains are not drawn to scale.

higher order SSBs. While containing only a single
OB-fold, the majority of simple SSBs, including all
human simple SSBs, do however assemble as higher
order multiple OB-fold containing oligomers [5-7].
This is exemplified by hSSB1, which is predominantly
dimeric in solution and may shift to a stable tetrameric
conformation following activation by the ataxia telangi-
ectasia mutated kinase (ATM) [unpublished data from
within our group].

DNA binding

The ssDNA-binding characteristic of the SSBs is largely
facilitated by the OB-fold [4,8]. This domain comprises
five antiparallel B-strands arranged as a cylindrical (-
barrel, capped at one end by an a-helix between the
third and fourth B-strands [8]. OB-folds interact with

their ssDNA substrates through nucleotide base stacking
with aromatic residues in the binding cleft and electro-
static interactions with the phosphodiester backbone
[9-20]. While ssDNA-binding of the OB-fold is in most
cases largely non-specific, OB-fold mediated DNA binding
of the telomere associated protein POT1 is seen to be
highly specific for telomeric repeats [21]. This may be
due to the high pyrimidine content of the telomeric
single strand where POT1 binds. Thermodynamic studies
of Escherichia coli SSB-ssDNA interactions show that
purines (due to the double-ring) may not sterically fit
into the SSB ssDNA-binding cleft compared to pyrimidines
[22,23]; a preference for binding to pyrimidine-rich
sequences has also been noted for hSSB1 [7]. Telomere
specific binding is also observed for the STN1 protein,
however this seems to be due to two C-terminal winged
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helix-turn-helix domains, rather than specificity of the
OB-fold [24].

Eukaryotic RPA is a heterotrimeric complex composed
of ~70 kDa, ~32 kDa, and ~14 kDa subunits (RPAI,
RPA2 and RPA3, respectively) (Figure 1). Between them,
the subunits contain 6 OB-folds, which are homologous
to those of the simple SSBs; these are designated A-F, in
order of their respective DNA-binding affinities. Of the
OB-folds in the RPA complex, four bind ssDNA. To
date, two RPA DNA binding conformations have been
designated [25,26]. In one, facilitated by the A and B
OB-folds of RPA1, RPA binds ssDNA with low-affinity,
occluding a region of ~8 nucleotides (nt) [27,28]. The
additional contribution of the C and D OB-folds then al-
lows RPA to bind ssDNA with a high-affinity, where ~30
nt are occluded [29]. Associated with these discrete
binding modes is a difference in protein-protein interac-
tions; while the A-OB-fold interacts with various proteins
in the low-affinity mode, there is a considerable decrease
following transition to the high-affinity state [30]. Further-
more, in the high-affinity state, RPA binds ssDNA with a
5’ to 3’ polarity, whereby RPA1 is positioned 5’ to RPA2;
this arrangement has a considerable effect on the func-
tionality of the RPA complex [26,31-33].

The recently identified hSSB1 and 2 exemplify simple
SSBs in the human genome [7]. Both proteins are struc-
turally similar, possessing a single N-terminal OB-fold,
as well as a basic C-terminus [1]. For hSSBI1, the C-
terminus is involved in a protein-protein interaction
with NBS1, a component of the MRE11-NBS1-RAD50
(MRN) repair complex [34]. Agarose gel shift analysis
using virion phiX174 ssDNA as a substrate has indicated
that the hSSB1 dimer occludes a region of ~12 nt (5-6
nt per monomer) [1]. As yet, DNA binding activity has
not been described for hSSB2. As well as binding DNA,
the OB-fold of hSSB1 (and presumably hSSB2) has been
shown to interact with the integrator complex subunit 3
(INTS3) [35].

Recent data has suggested the interaction with INTS3
leads to diminished hSSB1 ssDNA-binding, as demon-
strated by an increase in observed Ky for a ssDNA sub-
strate (15 nm [36] to 45 nm [34]) when in complex.
Interestingly, a similar ssDNA-binding affinity has been
observed between unbound hSSB1 and the RPA hete-
rotrimer [36]. While both RPA and hSSB1 show high
specificity for ssDNA, hSSB1 has also recently been
shown to bind short (33 nt) duplex DNA constructs,
as well as duplex DNA with short 6 bp overhangs
[37]. In this instance, hSSB1 was suggested to bind
ssDNA at natural breathing sites in the constructs ra-
ther than binding the dsDNA. As a number of SSBs
are capable of melting dsDNA, such as the SSB from
Sulfolobus solfataricus [38], this may suggest a similar
activity for hSSB1. This is consistent with data that
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show the minimal ssDNA length required for binding of
hSSB1 is reduced when it is adjacent to duplex DNA
[36]. Interestingly, unlike the bacterial SSBs, which wrap
65 nt of DNA around their tetrameric structure [39],
both RPA and hSSB1 bind ssDNA in an extended fash-
ion, presumably to allow access of other DNA interacting
factors [1,36,40].

SSBs are required for DNA replication

The accurate replication of DNA is a central process in
the maintenance of a stable genome. For this, RPA has a
central role in both replication initiation and progres-
sion. Despite the central importance of this process,
RPA appears to function as the sole required SSB, and
neither hSSB1 nor 2 have been found to co-localise with
replication foci or to influence S-phase progression
[7,37]. In the earliest stage of eukaryotic DNA replica-
tion, sites of initiation are bound by origin recognition
complexes (ORC), which stimulate the accumulation of
downstream replicative factors. These include Cdc6 and
Cdtl, both of which are required for the loading of
minichromosome maintenance proteins (MCMs), which
form the pre-initiation complex [41].

Following MCM mediated ssDNA exposure, RPA
binds these stretches, where the 70 kDa subunit inter-
acts with and stabilises the DNA polymerase a-primase
complex (Pol a) [42,43]. Pol a is required for the synthe-
sis of short oligonucleotide primers from which the
more processive DNA polymerases § and € (Pol 6 and ¢)
can synthesise the new lagging and leading strands, re-
spectively [44]. Therefore, Pol « is required for initiating
leading strand synthesis, as well as for the production of
the ~20 million Okazaki fragment primers [45]. Here
the primase subunit of Pol «a firstly synthesises an RNA
strand of 7 — 12 nt, which is extended with an additional
short DNA chain (~ 20 nt) by the polymerase subunit
[46,47]. The efficiency of Pol a chain extension appears
reliant on RPA, where it has been reported to act as a
enhancer of polymerase processivity and fidelity [48].

To allow access of Pol § and ¢, the Pol a complex
must be removed following primer synthesis. This is at
least partially facilitated by replication factor C (RFC),
which competitively binds RPA, and disrupts its inter-
action with Pol « [42]. In addition, RFC is an essential
clamp loader of the proliferating cell nuclear antigen
(PCNA) sliding clamp [49]. PCNA is a central protein in
the initiation and persistence of DNA replication, where
it functions as a processivity factor for DNA polymerase
8 [50]. PCNA encircles the duplex DNA by virtue of its
ring-like structure, formed by three PCNA monomers;
the inner surface of the homotrimeric clamp is rich in
basic residues, allowing interaction with the DNA
phosphodiester backbone, while the outer surface of
PCNA interacts with various replication factors, thereby
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tethering them to sites of replication [51,52]. The abso-
lute requirement of RPA and PCNA in mediating primer
extension has lead to the co-localisation of these pro-
teins being widely used as a marker of replication
[53,54].

The discontinuous synthesis of the lagging strand
means that each section will eventually collide with the
initiating primer of the downstream fragment; this
process results in displacement of short oligonucleotide
flaps, which must be removed. In eukaryotic cells, this is
facilitated by two major pathways, depending on the
length of the displaced section [55]. In the first, short
displaced ssDNA fragments of 3-5 nt are recognised
and cleaved by the flap endonuclease (FEN1), leaving be-
hind a nick in the phosphodiester backbone, which is
sealed by DNA ligase [56-58]. In vitro data have however
suggested that while the majority of these flaps are re-
moved by FENI, a small portion are missed, such that
they form lengthier regions [59,60]. In this instance, the
second pathway seems to be initiated where the exposed
ssDNA is bound by RPA [61,62]. This event appears ne-
cessary for the recruitment of the Dna2 helicase/nucle-
ase, which cleaves the flap and generates shorter 5-7 nt
overhangs to be processed by FEN1 [61,62].

The replicative activity of RPA is partially governed by
phosphorylation events. During S and G2/M of the cell
cycle, the N-terminus of RPA2 is phosphorylated at S23
by cyclin dependent kinase 2 (CDK2)-cyclin B. The func-
tional consequence of this modification is however un-
clear, and contradictory findings regarding the role of
this event have been reported. Indeed, while addition of
purified CDK2-cyclin B has been shown to stimulate
replication in vitro [63], S23 mutated RPA?2 is still able
to support DNA synthesis [64,65]. At the initiation of
mitosis, S29 of RPA2 is also phosphorylated by CDK2
[66]. This modification appears to deactivate RPA, as the
DNA binding affinity of the complex purified from
mitotic cells appears reduced when compared to the de-
phosphorylated form [67]. This is supported by the find-
ing that purified CDK2 is able to disassemble RPA foci
from interphase chromatin [68]. Phosphorylation of
RPA2 has also been demonstrated following DNA
damage induction as a means of inhibiting RPA repli-
cative activity [69-71]. This was observed after both
oxidative [71] and replication-mediated damage [72]
during S-phase, as well as throughout the cell cycle as a
result of double-strand DNA break formation [73]. In
these cases, damage activates the phosphatidylinositol
3-kinase related kinases: ATM, ATM and Rad3 related
kinase (ATR) and DNA-dependent protein kinase
(DNA-PK); each of these kinases phosphorylate RPA2
at five N-terminal residues [73-82]. Following DNA
damage repair, or migration out of M phase, RPA2
must then be de-phosphorylated to reset replicative
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potential [83,84]. This has been suggested to occur
via the 1A/2A protein phosphatases (PP1A and PP2A,
respectively), as RPA de-phosphorylation is suppressed
following inhibition of these enzymes using okadaic acid
[84]. This has been further supported by RNA interfer-
ence data, which has indicated a role for PP2A in de-
phosphorylation of the RPA T21 and S33 ATM/ATR
phosphorylated residues [85].

SSBs are essential for the stabilisation and restart of
stalled replication forks

As mentioned above, RPA is essential for the replication
of DNA during S-phase, functioning both in the estab-
lishment and elongation of the replicative fork [1]. In
the event of DNA damage, these processes may however
be interrupted, causing the fork to stall [86]. Here SSBs
also play an important role both in the stabilisation and
protection of exposed ssDNA, as well as in re-initiation
of fork migration. Additionally, the collapse or disassem-
bly of the replicative machinery may result in the forma-
tion of single- or double-stranded DNA breaks, the
repair of which requires the concerted effort of SSBs. In
a typical scenario, replication fork migration is disrupted
by a bulky lesion, which inhibits polymerase activity. Al-
ternatively, certain regions of genetic material are appar-
ently more difficult to replicate, and as such are subject
to high rates of fork stalling. These sites include so-
called ‘fragile sites, regions of the human genome associ-
ated with increased genetic instability [87].

Following fork stalling, repair of the damaged region
and restart of replication may be facilitated through two
main mechanisms: homology directed repair (HDR) and
translesion synthesis (TLS). While HDR makes use of a
homologous region found in an opposing strand, TLS in-
stead utilises a set of low-fidelity polymerases to repli-
cate through the damage site, potentially introducing
base mismatches [88].

Homology directed repair

One of the most immediate requirements in the pre-
vention of stalled replication fork collapse is the stabil-
isation of exposed ssDNA; this is in part facilitated by
the rapid accumulation of RPA [89,90]. Here, the re-
quirement of ssDNA-binding is further amplified by
helicase uncoupling from the replicative machinery
[91,92]. In this role, RPA functions both to protect the
exposed ssDNA, as well as to interact with a number of
proteins involved in both stabilising and remodelling
the replication fork. An example of this is the localisation
of RPA with the MRN complex at sites of replicative
stress [90,93]. Here the RPA1 N-terminal OB-fold has
also been shown to interact directly with Mrell, an asso-
ciation required for S-phase checkpoint activation
[94-96]. In addition, NBS1 of the MRN complex appears
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necessary for hyper-phosphorylation of the 32 kDa RPA
subunit [93], a modification mediated by the central DNA
repair kinase ATR [97,98]. Recently hyper-phosphorylation
of RPA has been shown as stimulatory for RAD51 foci for-
mation at replication forks stalled by hydroxyurea treat-
ment [99]. The formation of RAD51 nucleofilaments is an
essential aspect of homology directed strand invasion. Sta-
bilisation of the RAD51 coated strand is also promoted by
an interaction between RADS51 and the C-terminus of
BRCAZ2, an interaction that is dispensable for the repair of
double-strand DNA breaks but appears important in the
prevention of fork collapse [100].

The RPA2 subunit is also known to interact directly
with Timeless-interacting protein (Tipin) [101,102].
Tipin is a component of the replication pausing com-
plex (RPC), a protein complex that is involved in the
coordinated pausing of both polymerase and helicase
migration at stalled replication forks [103-112]. Fol-
lowing replication fork disruption, RPA stabilises the
Timeless (Tim1)-Tipin heterodimer, a central unit of
the RPC, at sites of DNA damage [102]. Furthermore,
this interaction appears to promote the stabilisation
of claspin, a Tipin binding partner required for effi-
cient S-phase checkpoint activation [102]. In agree-
ment with these findings, Tim1-Tipin depleted cells
show deficient intra-S checkpoint activation, including
deficient Chkl phosphorylation [101,112-114].

A central aspect of replication restart is remodelling of
the stalled replicative fork; this is largely facilitated by
the concerted effort of DNA helicases, a number of
which have been shown to interact with RPA following
replication fork stalling. Of these, the RecQ family mem-
bers Werner’s syndrome protein (WRN) and Bloom’s
syndrome protein (BLM) appear to play an important
role [115-118]. This is highlighted by the cancer-prone
syndromes for which they are named, where cells defi-
cient of these proteins display high rates of genetic
instability. In functional cells, both BLM and WRN are
suggested to suppress excessive homologous recombin-
ation by inhibition of RAD51-mediated strand exchange,
and the promotion of fork regression [119,120]. In vitro
data have suggested that this is largely facilitated by the
interaction with RPA, which is seen to promote helicase
activity [118,121-123]. Interestingly, three OB-folds have
recently been identified in the RMI heterodimer, a
central component of the Bloom’s helicase complex
[124-126]. RMI consists of two proteins, RMI1, which
contains 2 OB-folds, and RMI2, which contains 1 OB-
fold [124,126]. Here, dimerisation appears to be facili-
tated by protein-protein interactions between the RMI1
C-terminal OB-fold and the OB-fold of RMI2 [124].
While no detectable DNA-binding activity has been ob-
served for RMI [124], depletion experiments have indi-
cated potential roles in the stabilisation, chromatin
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localisation, and activity of the BLM complex, including
dissolution of Holliday junctions [124-126].

In response to replication fork disruption, RPA also
interacts directly with the FANC]J helicase (also known
as BRCA1l-associated C-terminal helicase; BACHI) [127].
FANC]J is one of 15 known Fanconi anaemia (FA) pro-
teins, the deficiency of which is associated with Fanconi
anaemia syndrome [128-130]; like Bloom’s and Werner’s
syndrome, FA is characterised by genetic instability
[131]. In addition, FANC]J deficiency has been associated
with early-onset breast cancer in cells normal for BRCA1
and BRCAZ2 [132]. Support for a role of FANC] in the re-
sponse to replicative stress is provided by sensitisation of
cells to hydroxyurea treatment following its depletion
[133]. At stalled replication forks, RPA promotes FANC]
processivity and helicase activity [127]. Interestingly,
depletion of FANC] or its binding partner TopBP1
[134,135] decreases RPA-chromatin loading in cells
[134]. In addition, FANCJ and TopBP1 depleted cells also
show decreased Rad9 and ATR accumulation following
hydroxyurea treatment, presumably due to disrupted
RPA binding [134]. Recent findings have also demon-
strated a direct interaction between the FANC] C-terminus
and BLM helicase following replicative stress [133]. A sub-
stantial decrease in BLM protein levels was observed
when FANC]J was depleted, which could be rescued by
treatment with the proteasome inhibitor MG132,
suggesting a potential role for FANC] in the stabilisation
of BLM [133].

RPA has also been seen to localise with SWI/SNE-
related, matrix associated, actin-dependent regulator of
chromatin, subfamily A-like 1 (SMARCALIL) at stalled
replication forks [136-139]. This seems to be largely
facilitated by a SMARCAL1 RPA-binding domain similar
to that found in TIPIN; this interaction appears neces-
sary for the in vivo activity of the protein [137]. Interest-
ingly, SMARCAL1 does not show conventional DNA
unwinding helicase activity, but instead functions in
the ATPase-mediated re-annealing of unwound ssDNA
stretches (known as annealing helicase activity) [140]. In
this way, SMARCAL1 appears to function in the regression
and remodelling of stalled replication forks [136].

A potential role for hSSB1 in DNA repair at replica-
tion forks has also recently been proposed [141]. These
data indicate that while Obfc2b, the murine homologue
of hSSB1, is essential for maintenance of genomic stabil-
ity, this is through a means other than double-strand
DNA break recognition or cell cycle checkpoint activa-
tion. Specifically, Obfc2b is suggested to function directly
in the suppression of replication-associated DNA dam-
age. Additionally, a similar role has been suggested for
Obfc2a (murine homologue of hSSB2), and indeed a com-
pensatory effect for Obfc2a is observed following Obfc2b
depletion [141,142]. These data potentially represent a role
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for these homologues in the response to stalled replication
forks, and as such, it will be of interest to determine if a
similar role exists for hSSB1 and 2.

Translesion repair

The choice to repair by HDR or TLS appears largely
governed by mono-ubiquitination of the PCNA sliding
clamp. Such modification is generally considered to pro-
mote recruitment of TLS polymerases to sites of DNA
damage [143-145] and indeed, while association be-
tween TLS polymerases and non-ubiquitinated PCNA
has been demonstrated [146,147], this is with decreased
efficiency [148]. Complementary to this event is the
poly-ubiquitin-mediated degradation of PCNA during
HDR, presumably inhibiting TLS [149]. Recently it has
been suggested the switch between PCNA mono- and
poly-ubiquitination may be modulated by RPA. This
comes from the observation that in cells, RPA interacts
directly with RADI18, the E3 ubiquitin ligase which
mono-ubiquitinates PCNA following damage [150]. In
addition, RPA is seen to interact directly with DNA re-
pair polymerase \, and to promote correct nucleotide in-
corporation [151]. Together, these data suggest RPA may
play at least two regulatory functions in translesion repair
of replicative damage.

SSBs function in double-strand DNA break repair by
homologous recombination

Double-strand DNA breaks (DSBs) are amongst the
most cytotoxic DNA damage lesions encountered by the
cell, and must be repaired to prevent chromosomal frag-
mentation. In eukaryotes, one of the major mechanisms
through which these lesions are repaired is homologous
recombination with a sister chromatid. In this process,
DSBs are detected and signalling pathways initiated by
the ATM and ATR DNA repair kinases. These signalling
cascades serve to recruit repair proteins, including
nucleases that resect DNA in a 5-3" direction. This
resection generates stretches of ssDNA, which during
homologous recombination may invade into a sister
chromatid, forming an intermediate structure known as
a D loop; this allows the sister chromatid to act as a
template for polymerase-mediated extension of the
invading strand. In addition, the non-invading strand
can be extended using the displaced sister chromatid
portion, present in the D loop. Resolution of this mobile
junction (the Holliday junction) then yields two intact
and identical DNA molecules [152-155].

In cells, the majority of DSBs generated by endogenous
events, such as the collapse of replication forks, contain
short ssDNA ‘sticky ends’ [156]. When compared with
blunt-ended DSBs, the presence of these overhangs is seen
to enhance activation of the ATM kinase. ATM is a central
DNA repair kinase with downstream substrates involved in
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cell cycle checkpoint activation (e.g, CHK1, CHK2, p53)
and directly in DSB repair (e.g, NBS1, EXO1 and the his-
tone variant H2AX) [157-159]. The recruitment of ATM
to sites of DNA damage is largely reliant on DSB recogni-
tion by the MRN complex [157,159-161]. MRN is structur-
ally conserved in higher eukaryotes; it contains a MRE11
flexible dimer enfolded by a single NBS1 polypeptide and
two RAD50 polypeptides that function to bridge the
DNA break [162-165]. Structural analysis has indicated
that while the MRE11-RAD50 clamp interacts directly
with DNA at DSBs, NBS1 interaction is important
in modulating its DNA-binding function [162,166].
Furthermore, crystallography data of the Saccharomyces
pombe complex has indicated the NBS1 N-terminus is
orientated in such a way as to interact directly with DSB
foci proteins located near the MRE11-RAD50 binding
cleft [162]. Of these interacting proteins, hSSB1 is seen
to have a central role in DSB repair by homologous re-
combination [7,34]. Here, hSSB1 rapidly interacts with
ssDNA overhangs at sites of DSBs, where it functions as
an initial recogniser of these breaks [34,37] (Figure 2).
This has been supported by in vitro data, where hSSB1
was found to bind duplex DNA with 6 bp ssDNA over-
hangs, as well as, to a lesser degree, natural breathing
sites of a short 33 bp dsDNA oligo [34]. Additionally, laser
micro-irradiation of cells has demonstrated hSSB1 binding
at sites of DSBs within 10 seconds of DNA damage in all
interphase cells [37]. hSSB1 recruitment to DSBs is also
independent of CtIP, MDC1 or MRN [37]. Furthermore,
MRN recruitment at sites of DSBs is substantially
inhibited in cells deficient of hSSB1 [37]. As the hSSB1 C-
terminus interacts directly with NBS1, this suggests that
hSSB1 may participate in the immediate recruitment of
the MRN complex to DSB foci [34]. Further in vitro
data has supported this, demonstrating that MRN nucle-
ase activity, which is known to be weak, is substantially
stimulated in the presence of hSSB1 [34].

Both hSSB1 and 2 have recently been shown to form
separate heterotrimeric protein complexes (sensor of
single-stranded DNA 1 and 2; SOSS1 and 2) with the inte-
grator complex subunit 3 (INTS3) and hSSB-interacting
protein 1 (hSSBIP1) [35,167,168]. These complexes
are both structurally and functionally unlike the RPA
heterotrimer, and neither INTS3 nor hSSBIP1 have
yet been shown to have ssDNA-binding affinity. In
addition, while hSSB1 and hSSBIP1 co-localisation has
been observed at sites of DNA damage [167], incon-
sistent findings have been reported regarding the lo-
calisation of INTS3 and MRN at DNA damage sites.
Interestingly, the addition of SOSS1 components has
however recently been shown to promote exonuclease
1 (EXO1) DSB resection in vitro [36], although it re-
mains unclear whether this is due to activity of the
SOSS1 complex, or dissociated hSSB1. Furthermore,
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Figure 2 hSSB1, RPA, and BRCA2 are essential SSBs in the repair of double strand DNA breaks (DSBs) by homologous recombination.
A potential model for human SSBs in the repair of DSBs: The MRN complex is initially recruited to sites of DSBs by hSSB1, allowing for resection
of the 5" strand. ssDNA stretches are rapidly bound by RPA, which, following BRCA2-DNA binding, is removed to allow for RAD51 nucleofilament
formation. Homologous recombination is then facilitated by RAD51-mediated strand invasion into a sister chromatid. hSSB1 has also been found
to interact directly with RAD51 and to facilitate strand invasion in vitro, however its precise function at these later stages is unclear.

DNA damage

End resection

3‘]: RPA

RAD51

BRCA2-mediated exchange of
RPA for RAD51

while reduced clonogenic survival of cells depleted of
SOSS1 and SOSS2 components and exposed to DNA dam-
aging agents has been observed, INTS3 and hSSBIP1 de-
pletion caused only a slight reduction in homologous
recombination-dependent DSB repair, when compared to
depletion of hSSB1 or 2 [167]. As there is compounding
evidence to suggest INTS3 associates at DNA damage sites
at later time points (4—6 hr following damage) [35,169],
one explanation for these findings may be that the SOSS1
complex functions in DSB repair only during the later
phases. Alternatively, as INTS3 depletion has been shown
to destabilise hSSB1 and 2 [167,168], as well as to decrease
the transcriptional rate of hSSB1 [35], this may suggest
INTS3 modulates DSB repair through the regulation of
hSSB1 and 2, as opposed to a direct means. Interestingly,
while most known SSBs bind ssDNA with four OB-folds,
recent data has indicated hSSB1 may exist as part of the
SOSS1 complex in a monomeric form [36]. Furthermore,
while the complex contains a single hSSB1 OB-fold, this

domain is also known to interact with INTS3 [35,169], and
so may indeed not be available for DNA binding.

An essential role of the MRN complex is the resection
of DSB 5 strands to expose stretches of ssDNA for
RAD51-mediated strand invasion. While the MRE11 com-
ponent has both exo- and endo-nuclease activity, only the
endonuclease function seems to be required for DSB pro-
cessing [170,171]. For this, MRE11 nicks the target strand
up to 300 bases from the DSB site, and resects the strand
in the 3'-5' direction. This is complemented by the 5'-3’
exonuclease activity of EXO1, which concurrently digests
the target strand away from the DSB site [171]. The
activation of MRN nuclease activity is stimulated by inter-
action with C-terminal binding protein interacting protein
(CtIP) [172]. Interestingly, MRN and CtIP have been
found to interact directly with BRCA1, an association
necessary for efficient end resection and loading of RPA
onto ssDNA [173-175]. The association of RPA with
ssDNA is likely important for the protection of the
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otherwise exposed ssDNA strand, preventing it from dam-
age and digestion, or the formation of disruptive secondary
structure [176].

RPA ssDNA-binding is also necessary for the recruit-
ment of downstream proteins involved in active DNA
repair and checkpoint signalling. Of central importance
is the interaction with the RAD51 recombinase, a pro-
tein which, following RPA displacement, rapidly coats
ssDNA strands [177,178]. Although it remains unclear
exactly how this interchange occurs, several interactions
appear necessary for both the removal of RPA, and the
loading of RADS51. Of these, the direct interaction of
RPA and RADS51 appears to play a central role. Here,
the A-OB-fold of ssDNA-bound RPA interacts directly
with the RAD51 N-terminus, potentially representing a
means of competitive ssDNA-binding [179]. One mech-
anism through which this has been suggested to occur is
the capture of transiently bound RPA, presumably
preventing its re-association with the ssDNA strand
[179,180]. In addition, the RPA-Rad51 exchange seems
to be promoted by Rad52, a protein shown to bind the
RPA1 and 2 subunits, and to stimulate their displace-
ment [181-183]. This interaction seems to be promoted
by phosphorylation of RPA1, an event that also stimu-
lates ssDNA exchange [184].

The displacement of RPA, which is essential for comple-
tion of homologous recombination, also appears to be
promoted by the OB-fold containing protein, BRAC2
[185]. Structural analysis of this protein has indicated the
presence of a DNA-binding region composed of a helical
domain, followed by three OB-folds [186]. Interestingly,
the central OB-fold also contains a protruding structure
composed of five a-helices, three of which form a helix-
turn-helix bundle which sits atop the remaining two anti-
parallel helices; this structure is referred to as a ‘tower
domain’. While the helical domains and three OB-folds
may bind ssDNA, the tower domain seems to bind
dsDNA [186]. This dual-binding ability presumably allows
BRCA2 to interact efficiently with both ssDNA and
dsDNA found at the ends of a resected DSB, as has been
observed for the Brh2 nuclease, the Ustilago maydis fun-
gal homologue of BRCA2 [187]. In this manner, it seems
likely the DNA binding activity of BRCA2 may be in-
volved in modulating RPA-ssDNA-binding, potentially
displacing RPA through competitive ssSDNA association.
In addition to binding DNA, the first and second OB-
folds and the tower domain have also been found to
interact with deleted in split-hand/split-foot syndrome 1
(DSS1), a protein associated with BRAC2 stability and
modulation of DNA binding activity [186,188,189]. Al-
though a direct interaction between the RPA complex
and the GST-tagged N-terminus of BRCA2 has been
suggested [190], this has not been supported by more re-
cent studies using full-length BRCA2 [191].
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BRCA2 also interacts directly with RAD51 through a
series of eight 35 amino acid repeat motifs, known as the
BRC repeats [192-195]. Remarkably, the crystal structure
of BRC4 bound to RAD51 identified a conserved BRC
fingerprint that mimics the RAD51 homodimer interface;
this may potentially support stabilisation of the RAD51
monomeric form [196]. Such stabilisation presumably
represents a rationale for interaction of the BRC repeats
in RAD51 loading [197,198]. This has been supported
by in vitro data, where BRCA2 was shown to increase
RAD51-mediated DNA strand exchange of an RPA-
coated ssDNA construct [191]. Additionally, a 7-fold in-
crease in RAD51 binding to RPA-coated ssDNA has
been observed in the presence of BRCA2, suggesting a
role for BRCA2 in RAD51 nucleofilament formation
[199]. Recently the BRC repeats have been further clas-
sified into two distinct classes, distinguished by their
differing RAD51-binding affinities; while the first series
(BRC1-4) bind the free protein with high affinity, the
second (BRC5-8) strongly interact only when RAD51 is
in a filamentous ssDNA-bound form [200]. The exist-
ence of these two classes supports the notion that
BRCA2 functions in both loading and stabilisation of
RAD51 nucleofilaments.

hSSB1 and RAD51 have also been found to co-localise
following ionising radiation exposure, which, on the
basis of immunoprecipitation data, could be facilitated
through a direct interaction [7]. This suggests that
hSSB1 may potentially share an overlapping role with
RPA in the modulation of Rad51-mediated strand inva-
sion. Such a suggestion is consistent with in vitro data,
where hSSB1 was able to stimulate Rad51-mediated
strand exchange to a similar degree as RPA [7]. Further,
depletion of the hSSB1 binding partner, INTS3, was
shown to suppress RAD51 foci formation, as well as
the recruitment of topoisomerase binding protein 1
(TopBP1) and BRCAL1 to sites of DNA damage [169].
Interestingly however, using high-resolution micros-
copy, RPA and hSSB1 were not shown to directly localise
at radiation-induced foci, but to form proximal centres
[7]. This may suggest that while functional overlap be-
tween these proteins exists, their individual roles at each
DSB site may be independent, representing different
stages of processivity.

Nucleotide excision repair requires the action of SSBs

Nucleotide excision repair is an important pathway in
the maintenance of genomic stability, as it represents an
essential mechanism through which the cell is able to
remove a large number of structurally varied adducts.
These adducts may arise through either endogenous or
exogenous means and are recognised as a result of the
ensuing disruption to base pairing and helical distortion,
as opposed to their precise chemical nature [153].
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However, adducts caused by ultraviolet (UV) light-
induced damage, such as cyclobutane pyrimidine dimers
(CPDs) and 6-4 photoproducts, do represent primary
targets. This is demonstrated by the conditions Xero-
derma pigmentosum (XP), Cockayne syndrome (CS) and
Trichothiodystrophy (TTD); these conditions are all
associated with diminished NER and severe photosensi-
tivity [201]. In functional cells, NER may occur through
two related pathways: global genomic NER (GG-NER),
which removes lesions non-specifically throughout the
genome, and transcription-coupled NER (TC-NER),
which removes lesions from actively transcribed genes.

RPA has a well-established role in NER, where it func-
tions to both stabilise exposed ssDNA and to recruit
repair proteins at these sites [202,203]. Of these, the XP
proteins (XPA — XPQ) play a direct function both in the
recognition and excision of damaged nucleotides [204].
In the earliest stages of NER, damage is recognised by a
complex of the XPC protein and hHR23B [205]. This
allows unwinding of the lesion, a function further facili-
tated by the helicase activity of the TFIIH transcription
factor [206]. Additionally, this process is stimulated by
XPA, which recognises damaged DNA and seems to
function in the recruitment of TFIIH [207,208]. Here,
XPA binding of damaged DNA is promoted through the
direct interaction with RPA [204,209,210]; this inter-
action is facilitated both by the RPA1 and 2 subunits
[211,212]. Through promotion of TFIIH helicase activity
(facilitated by the XPB and XPD components), RPA-
XPA expands the damage region [213,214]. RPA2 also
interacts directly with the XPF-ERCC1 exonuclease,
while RPA1 interacts with XPG [31,215-218]. As a result
of the differential interaction regions for these proteins,
and the binding polarity of RPA, RPA can correctly
position XPF-ERCC1 and XPG at sites of damage; XPG
is recruited 3’ to the lesion, while XPF-ERCC1 binds on
the 5" side [31,215,217]. In addition, by binding the
undamaged DNA strand, RPA is able to direct ERCC1-
XPF nuclease activity to the site of damage on the
opposing strand [31].

In response to UV treatment, RPA2 phosphorylation
is mediated through the combined efforts of the ATR
and DNA-PK kinases, leading to replication arrest
[69,71,72,78,97,219]. Interestingly, hSSB1 is also stabilised
following exposure to UV, and is localised to sites of the
resulting DNA damage [7]. It will therefore be of interest
to determine whether hSSB1 plays a role in NER.

SSBs are necessary for cell cycle checkpoint activation
following DNA damage

An essential step to prevent the propagation of damaged
DNA, either by its replication or division amongst
daughter cells, is the damage-induced suppression of
cell cycle progression. This is achieved through the
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activation of cell cycle checkpoints, a cascade of signalling
events resulting in the inhibition of cyclin/CDK-mediated
checkpoint progression [220,221]. In mammalian cells,
initiation of checkpoint signalling is largely facilitated by
two members of the PI3 kinase-related kinases family,
ATM and ATR [222-224]. For both ATM and ATR, acti-
vation results in the initiation of downstream signalling,
facilitating activation of effector kinases, namely Chk1 and
Chk2 [225]. Although Chkl activation is predominantly
mediated by ATR, and Chk2 activation predominantly by
ATM, considerable crossover is also apparent between
these pathways [225-230]. In addition, a temporal contrast
exists in the primary initiation of ATM and ATR signal-
ling; while ATM is activated prior to DSB resection as a
result of MRN recruitment [221], ATR activity is stimu-
lated by RPA-coating of ssDNA strands [89,231,232].
ssDNA-bound RPA partially activates ATR through a
direct interaction between the RPA1 N-terminus and the
ATR-interacting protein (ATRIP) [89,161,232] (Figure 3A).
This is supported by suppressed phosphorylation of the
CHKI1 and Rad17 ATR substrates following RPA1 deple-
tion [89]. Disruption of the RPA-ATRIP interaction is
however not sufficient to eliminate localisation of the
ATR-ATRIP complex to sites of DNA damage [232], and
full RPA-mediated activation requires an additional
interaction with the checkpoint complex Rad9/Radl/
Husl (9-1-1)/ Rad17-Rfc2-5 [89,233,234]. Here, the 9-1-1
component forms a PCNA-like sliding clamp [235], which
seems to interact directly with the RPA1 N-terminal OB-
fold [94], as well as with the topoisomerase-binding pro-
tein 1 (TopBP1) [224,236,237]. In turn, recruitment and
activation of TopBPI is seen to stimulate the kinase activ-
ity of ATR, amplifying downstream signalling [238].
Recent data has suggested that RPA also mediates p53
activity by interaction with the RING finger and WD
repeat domain 3 (RFWD3) E3 ubiquitin ligase [239,240].
RFWD3 has been identified through proteomic screen-
ing as a substrate of ATR kinase [241-243], and is
important for CHK1 activation [239]. In response to
replication-stress and DNA damage, RFWD3 is rapidly
recruited to RPA coated ssDNA stretches [239,240,244].
Here it interacts directly with murine double minute 2
(Mdm?2), the major E3 ubiquitin ligase involved in p53
poly-ubiquitination [244]. While suppression of p53
poly-ubiquitination immediately following damage ap-
pears to be facilitated through various post-translational
means [245], competitive ubiquitination by RFWD3
seems to present a method of stabilisation during the
later phase (after 2.5 hours) [244]. This may occur
through the generation of smaller non-proteasome
-targeting ubiquitin chains. In addition to this role,
RFWD3 may also have a more direct role in DSB repair,
as suggested by disrupted RPA phosphorylation follow-
ing DNA damage in REWD3 depleted cells [240]. As yet
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Figure 3 SSBs function in cell cycle checkpoint activation. (A) Schematic of the potential role of RPA in ATR signalling: RPA coated ssDNA
stimulates ATR signalling both through direct interaction with its binding partner ATRIP, as well as through the 9-1-1 complex. Activated ATR
phosphorylates various cell cycle checkpoint proteins, including p53 and CHK1, allowing for cell cycle arrest. RPA also interacts with RFWD3, an E3
ubiquitin ligase involved in p53 stabilisation. (B) Schematic of the potential role of hSSB1 and Strap in ATM signalling: hSSB1 activation allows for
the recruitment of the MRN complex, which activates the ATM kinase. ATM phosphorylation of hSSB1 then facilitates a positive feedback loop,
which further activates ATM, as well as many downstream ATM targets. hSSB1 also interacts with and stabilises p53 and p21 (an effector of p53
signalling), as well as the p53-interacting acetyltransferase p300. Strap, a phosphorylation substrate of ATM, interacts with and stabilises p53, and
additionally directs it to transcriptional targets.
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however, the mechanism through which this occurs
remains unclear.

Activation of the ATM kinase is one of the most im-
mediate consequences of MRN recruitment to DSB foci.
In addition to a large number of other substrates, this
activation allows for the ATM-mediated phosphorylation
of hSSB1, facilitating a positive feedback loop that ampli-
fies ATM signalling (Figure 3B). This was demonstrated
by mutation of the ATM-mediated hSSB1 phosphoryl-
ation site (T117), which led to suppression of ATM auto-
phosphorylation [7]. In addition, depletion of hSSB1 from
cells demonstrated defective ATM-checkpoint signalling,
including loss of G1/S and G2/M checkpoint activation,
as well as suppressed NBS1, p53, CHK1 and CHK2 phos-
phorylation [7]. Interestingly, despite this central role for
hSSB1, hSSB2 has been reported as dispensable for ATM
activation and checkpoint arrest [1].

hSSB1 has also been seen to interact directly with the
cyclin-dependent kinase inhibitor p21 [246], an import-
ant effector of p53-mediated G1-S and G2-M checkpoint
arrest [247-251]. This is achieved through the inhibition
of cyclin E/CDK2 and cyclin B/CDK2 activity, arresting
cell cycle progression. In response to DNA damage,
hSSB1 was suggested to bind p21 [246], where it inhibits
the ubiquitin-mediated degradation associated with the
labile protein [252-254]. More recent data has indicated
that hSSB1 may also function to promote p53 stabilisa-
tion through a direct interaction [255]. Additionally,
hSSB1 depletion was found to suppress p300-mediated
acetylation of p53 [255], an important modification asso-
ciated with p53 transcriptional activity. This was sup-
ported by the decreased expression of p21 and SULF2,
two p53 transcriptional targets [247,256], following
hSSB1 depletion [255]. Together, these data suggest a
further upstream function of hSSB1 in the p53 pathway;
in addition to amplification of ATM signalling, hSSB1
may regulate the G1/S and G2/M transitions.

Recently, a novel OB-fold was reported in Strap, an
important cofactor of p53 [257,258]. In response to
DNA damage, ATM-mediated phosphorylation of Strap
allows for nuclear accumulation of the protein, while
protein stabilisation is achieved following phosphoryl-
ation by CHK2 [259,260]. This is supported by the
observation that in ataxia telangiectasia cells, or cells ex-
pressing Strap mutated at the S203 ATM phosphoryl-
ation site, Strap is restricted to the cytoplasm [260].
Following damage, localised Strap interacts with other
components of the p300 coactivator complex, including
p300, the junction mediating and regulatory (JMY) pro-
tein, and protein arginine methyltransferase 5 (PRMT5)
[258,261-263]. Such protein interactions are facilitated
by both the Strap N-terminus, which contains six
tetratricopeptide repeat (TPR) motifs [258], as well as
the C-terminus, which largely consists of the OB-fold
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[257]. Here, MY is bound by two N-terminal domains
[258], identified as TRP motifs 1-3, and 4-5, while
TRP6 and the OB-fold interact directly with p300 [257].
As part of the p300 complex, Strap has been shown to
promote p53 activity both by promoting stabilisation of
p53 through suppression of MDM2-mediated poly-
ubiquitination, as well as by stimulating p53 transcrip-
tion modulating activation [258]. In agreement with the
later, in vitro data has indicated the Strap OB-fold is able
to bind ssDNA and dsDNA, while chromatin immuno-
precipitation has demonstrated localisation of Strap, as
well as the TRP and OB-fold domains, at p53 target
genes [257].

ssDNA at telomere ends are bound by SSBs

The replication of chromosome ends presents a unique
challenge in eukaryotic cells. This arises from the strict
requirement of a primed template from which 5-3'
extension can occur, a constraint preventing the replica-
tion of chromosome 3’ terminal regions. To overcome
this ‘end-replication problem; eukaryotic chromosome
ends are comprised of protein-nucleic acid structures
known as telomeres. These structures contain telomeric
DNA arranged in a series of repeats, the sequence of
which varies between organisms. In humans, telomeric
DNA is composed of precise hexanucleotide (CCCTAA/
TTAGGG) repeats constituting 2—50 kb of code (3,000-
80,000 repeats) [21,264,265]. While telomere repeats are
re-synthesised in germ and embryonic cells by the
enzyme telomerase, in somatic cells, shortening of chro-
mosomes to a critical length causes the induction of a
senescence phase [264].

An additional consequence of incomplete lagging strand
replication is the generation of 3’ ssDNA overhangs on
each chromosome end. The precise length of these over-
hangs is fundamentally determined by the positioning of
the final RNA primer, generally ranging in human cells
from 30-40 nt for leading strand, and 80-120 nt for
lagging strand, daughter chromosomes [265,266]. The
presence of these overhangs offers an additional challenge
for eukaryotic cells, as to prevent their degradation or
deleterious recognition as a site of DNA damage, they
must be in some way sequestered [21]. One mechanism
through which this occurs is the formation of a T-loop
structures, in which the 3’ overhangs invade an upstream
telomere duplex region, and by virtue of the telomere
hexanucleotide repeats, form stable interactions at the
base of the T-loop [267,268]. However, while this shields
the 3’ termini, ssDNA is still exposed in the displaced
section of the telomere duplex (the D-loop). To protect
these regions, telomeric ssDNA is protein bound, forming
a telomere ‘caps’ [24].

An important component of the telomere cap is the
shelterin/telosome complex, a protein complex composed
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of six subunits: TRF1, TRF2, TIN2, TERF2IP, TPP1, and
POT1 [269]. Of these, protection of telomeres 1 (POT1)
and TPP1 (also known as POTl-interacting protein;
PIP1), form a DNA-binding heterodimer that interacts
directly with teleromic ssDNA [270,271]. Although OB-
folds have been detected in both proteins, DNA-binding is
predominantly facilitated by POT1, which interacts with
strong specificity to 5'-(T)TAGGGTTAG-3’ sequences in
the T- and D- loops [272-274]. Crystallography data has
indicated that POT1 contains tandem OB-folds, both of
which bind ssDNA. This is facilitated by the special
arrangement of the OB-folds, where the binding grooves
of each domain form a continuous channel, with both
OB-folds arranged in-line [273]. In addition, the second of
these domains is somewhat modified from the archetypal
OB-fold, containing a 31-residue insertion between the
first and second [-barrels, similar to that observed in the
CTC1 DNA binding domain [275]. While suggested not
to bind ssDNA directly, a third POT1 OB-fold has also
been suggested in the TPP1 interaction region [271]. In
addition, TPP1 also contains a putative OB-fold [270], al-
though it does not appear to bind ssDNA directly, and in-
stead TPP1 localisation at telomeric DNA is mediated by
POT1 [270,271]. A protein-interaction function has how-
ever recently been described for the TPP1 OB-fold, where
the domain was observed to bind and recruit the telomer-
ase reverse transcriptase (TERT) [276-278]. Interestingly,
this is in addition to the observation that POT1-TPP1
binding delays primer dissociation [279], suggesting at
least two possible mechanisms through which the dimer
may function in telomere processivity. Contrasting this
idea however is the observation that, in vitro, POT1 bind-
ing of 3 terminal ends sterically inhibits telomerase access
[273]. Furthermore, deletion of the POT1 N-terminal
OB-fold resulted in an increase in telomere length
in vivo [280]. Together, these seemingly conflicting roles
may indicate the POT1-TPP1 heterodimer is involved
both in the stimulation and suppression of telomerase
activity, however as yet the coordination of these activities
remains unclear.

In addition to binding DNA by virtue of the POT1-
TPP1 heterodimer, the telomeric repeat-binding factors
1 and 2 (TRF1 and 2), as well as TRF2 interacting pro-
tein (TERF2IP, also known as RAP1), also allow the
shelterin complex to bind dsDNA at sites adjacent to
the T-loop [269,281]. As with POT1, DNA-binding of
TRF1 and 2 is highly sequence specific, with both pro-
teins recognising telomeric duplex DNA of sequence
5-GTTAGGGTTAGGG-3' [282-284]. Such sequence-
specificity is however not evident for TERF2IP, where
in vitro data has demonstrated similar binding of the
protein with telomeric and non-telomeric DNA [281].
Even so, TERF2IP recruitment remains sequence-specific
in vivo, based on the requirement of TERF2 interaction
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for efficient DNA binding [285]. Another important
factor of teleromic DNA protection is stabilisation of the
shelterin complex, a process facilitated by the scaffolding
protein TIN2, which couples TRF1 with TRF2, as well as
linking TRF1 to TPP1 [279,286,287]. Additionally, this
also represents a mechanism through which TRF1 and 2
are able to recruit POT1 by indirect interaction with
TPP1 [288,289].

A central function of the shelterin complex is to pre-
vent induction of a DSB response against exposed telo-
meric DNA. Recently this has been demonstrated by
double knockout of TRF1 and 2 in mouse embryonic
fibroblasts, leading to generation of shelterin-free telo-
meres. Here, both ATM and ATR responses were elic-
ited against the exposed chromosome ends, as indicated
by the accumulation of 53BP1 foci, CHK1 and 2 phos-
phorylation, and increased telomere fusion events [290].
These data were consistent with previous observations
in senescent cells [291,292], as well as cells where TRF2
and/or POT1 was depleted [293-296]. Interestingly,
TRF2 and POT1 seem to play independent roles in the
suppression of DSB signalling; while ATM suppression
seems to occur through TRF2, POT1 is involved in the
prevention of ATR activation [293]. Here, POT1 sup-
pression of ATR signalling was suggested to be through
the steric inhibition of RPA localisation, a process
described in previous sections as essential for such sig-
nalling. Interestingly however, RPA is known to bind
telomeres during S-phase where it is suggested to pro-
mote telomerase activity [297,298]. Although POT1 is
unable to displace RPA on its own, the switch from RPA
to POT1 binding seems to be facilitated outside of S-
phase by the heterogenous nuclear ribonucleoprotein Al
(hnRNPA1) [299].

An additional protein complex central for the capping of
telomeres is composed of the proteins CTC1 (CDC13),
STN1 and TEN1 [24,300-302]. Together, this com-
plex (CST) constitutes a ssDNA-binding unit which
interacts independently of POT1 [301]. Furthermore,
as each of these subunits contain putative OB-fold
domains, structural and functional similarities have
been drawn with the RPA heterotrimer [302,303]. An
exception to this is the presence of an additional C-
terminal winged helix-turn helix (WHTH) motif on
the STN1 subunit, which confers a telomere-specific
binding function [24]. CTC1 appears to contain 3
OB-folds, in contrast to the 4 of RPA1, two of which
have been further confirmed by structural analysis
[275,304-306]; here, ssDNA-binding is largely facilitated
by the CTC1 C-terminal OB-fold [307,308]. Currently the
end-protection role of CST remains unclear, and indeed
while some authors have reported de-protection of telo-
meres following CST component depletion [301,309],
others have suggested only a minimal effect [302,310].
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Furthermore, while it seems uncontested that CST func-
tions in telomere length control, both telomere lengthen-
ing [302], and shortening [310] has been reported in cells
deficient of CST. As the N-terminal OB-fold of CTCI is
known to interact with telomerase [304,308], these length
control functions are likely due to regulation of telomerase
activity. As yet the coordination of this function, as with
the POT1-TPP1 dimer, remains unclear.

Summary

SSBs from the OB domain family play an essential role in
the maintenance of genome stability, functioning in DNA
replication, the repair of damaged DNA, the activation of
cell cycle checkpoints, and in telomere maintenance. The
importance of SSBs in these processes is highlighted by
their ubiquitous nature in all kingdoms of life [1]. Here, in
addition to genome stability maintenance, SSBs function
in all known processes involving the exposure of ssDNA,
such as transcriptional activation [311]. In humans, RPA
has long been known to play an important role in the pro-
cessing of ssDNA, however the recent identification of
hSSB1 and 2 has raised several questions regarding the co-
ordination of these processes. Additionally, the diversity of
OB-fold primary sequences has made it difficult to detect
these domains by non-biophysical means, allowing for the
continued identification of OB-folds in previously identi-
fied proteins. This is highlighted by the recent identifica-
tion of Strap and the RMI dimer, and suggests that further
SSBs are likely to be identified.
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